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The focus of this selection of papers is the linkage of habitat and population

dynamics for the purpose of conservation. We thus provide a general framework

for making conservation decisions, emphasizing how knowledge of habitat–

population linkages fits into this framework. We begin by describing structured

decision-making (SDM) as a general approach to making conservation decisions.

SDM requires the development of the following elements: objectives, actions,

model(s), monitoring, and decision algorithm. We then describe adaptive

resource management (ARM), a specific type of SDM developed for recurrent

decisions characterized by potentially resolvable uncertainty. Many different

classes of actions can be used to influence animal population dynamics, and

modification of habitat is one class of action that is frequently used. Habitat

management requires models for predicting responses of the managed system

to management actions, and these models are based on our knowledge of

habitat–population linkages. Frequently, these models are decomposed into two

submodels: one used to predict habitat changes expected to result from

management actions and another used to predict population responses to

habitat changes. This latter modeling focuses generally on the influence of

habitat change on vital rates governing the dynamics of population state

variables (variables such as population size or density that describe the status

or health of a population). Specific recommendations depend on 1) the vital rates

and state variable(s) being considered, 2) the relative spatial scales of animal

movement and habitat measurement, and 3) the relative temporal scales of

habitat change and vital rate estimation. Finally, we present an example of an

ARM program for habitat management, highlighting the role of habitat-linked

population modeling in this effort.
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Introduction

Conservation of wildlife populations requires taking actions

intended to meet specified objectives. One specific class of action

widely used to influence wildlife populations is habitat management.

Specifically, habitat quality influences populations by influencing the

vital rates that determine population dynamics. Vital rates that define

the dynamics of single populations are rates of survival, recruitment,

immigration, and emigration. For metapopulations, the rates of local

extinction and colonization are the vital rates often used to describe

dynamics. Here, we describe structured decision-making (SDM) as a

general approach to selecting management actions. We then describe

adaptive resource management (ARM), a subset of SDM developed

for recurrent decision processes that are characterized by uncertainty.

Many habitat management programs are candidates for the use

of ARM.

One element of SDM and ARM processes is one or more

models that can be used to predict the consequences of different

management actions. In the case of habitat management, such

modeling frequently includes two sequential submodels: one

concerning the influence of management actions on habitat and

the other concerning the influence of habitat changes on wildlife

population dynamics. This latter submodel is the focal topic for this

collection of papers.

Our aim in this paper is to show how models linking habitat to

wildlife population dynamics fit into larger conservation programs.

We first describe SDM, which provides a general framework for all

decisions in conservation. We then describe ARM as a special case

of SDM developed for recurrent decision processes that are

characterized by uncertainty. These descriptions of SDM and

ARM are intentionally general, as we seek to emphasize their

applicability to a wide range of decision problems.

Manipulating habitat is one class of management action used in

conservation decision problems and is the focus of this set of papers.

Habitat management using SDM or ARM requires models to

predict the effects of these actions on system responses and

“returns” (benefits, as defined by objectives). These predictions

are used to make smart, even optimal, decisions within SDM and

ARM programs. We thus provide a conceptual framework for using

models linking habitat management to wildlife population

dynamics in conservation decision processes. We provide some

general observations about developing such models and using them

to learn, and we describe an example of an ARM process of habitat

management, highlighting the role of models in this process.
Structured decision-making

Selecting a management action represents a decision, and

structured decision-making (see Martin et al., 2009; Gregory

et al., 2012; Hemming et al., 2021) provides a means of making

logical and transparent decisions. SDM breaks a decision process

into key elements, focusing on each element separately, and then

combining them to make a decision.

The SDM process should begin with an effort to define and

frame the decision problem (Runge et al., 2020; Hemming et al.,
Frontiers in Conservation Science 02
2021). Problem definition identifies the issue that the decision

process is intended to resolve. Framing requires identifying the

decision-maker, the geographic and temporal scales of the problem,

relevant laws and regulatory constraints, likely stakeholders, and

key uncertainties. Attention to problem definition and framing

prevents unnecessary expenditure of time and effort on vaguely

defined problems.

The major elements of SDM are objectives, potential actions,

model(s) of system response to actions, a monitoring program, and

a decision algorithm. Objectives are simply statements of what the

decision-maker and relevant stakeholders would like to achieve.

Allocating adequate time and effort to the development of objectives

is essential, as objectives drive the entire process, strongly

influencing all of the other elements of the SDM process.

Objectives may appear to be obvious, yet it is surprising how

frequently like-minded stakeholders differ in their ideas

about what they would like to achieve. Failure to explicitly

define objectives is a common reason for the breakdown of

decision processes.

Potential actions represent the set of management alternatives

to be considered. The decision process is designed to select one of

the potential actions for implementation, and this selection

represents the decision. In some problems, the set of potential

actions is clear, but this is not always the case. As with all other

SDM elements, the development of potential actions should be

guided by the objectives.

Models are abstractions of the managed system designed to

provide specific predictions used to help the decision-maker select

the best action with respect to objectives. The abstractions are

frequently mathematical although this is not necessary. Indeed,

models may be encoded in a computer program, the mind of the

manager, or on a sheet of paper. Models useful for decision-making

must make predictions about how the system responds to the

different management actions. For each action in the set, the

model must predict the returns and, for recurrent decisions,

the subsequent state of the system. Some managers view models

as interesting to academics, but not useful for people who make

real-world decisions. However, if there is no way to predict the

consequences of management actions, then there is no basis for

selecting one option over another. Management requires

predictions, so models are not optional for informed management.

Monitoring programs provide information that serves multiple

needs for SDM. An estimate of a system state (e.g., abundance for

single-population management) is needed for making state-

dependent decisions. For example, if the population size is too

small relative to our objectives, we would likely select a very

different action than if the population size is too large.

Monitoring also permits the manager to gauge the success of the

management action. Monitoring data are frequently used to develop

and improve the models required for management. In the case of

recurrent decisions (see below), monitoring data can be used to

learn about system responses to management.

A decision algorithm requires input from all of the other

elements of the SDM process and combines these to determine

which action is predicted to be best, based on expected returns. In

some cases, determination of the best action to take is
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straightforward, but when this is not the case, optimization

algorithms can be used (e.g., Puterman, 1994; Williams et al., 2002).

SDM provides a very general approach to decision-making.

SDM can be used for one-time decisions (e.g., conservation land

acquisition), as well as recurrent decisions, and it can be used for

problems regardless of whether they are characterized by

uncertainty. A key point with respect to the topic of this paper is

that SDM requires models in order to predict the consequences of

management actions.
Adaptive resource management

Recurrent decision processes

Recurrent decisions are made periodically, usually for the same

system (Figure 1). At each decision point in Figure 1, an “action” is

selected and imposed on the system. “State” refers to the general

condition of the system, often assessed by the values of one or more

state variables (e.g., population size, habitat type, species richness).

The action generates two responses: 1) it produces returns, and 2) it

drives the system to a new state (Figure 1). “Returns” are benefits, as

defined by the objectives. For example, in harvest management,

returns are usually defined in terms of the number of animals

harvested (e.g., Johnson et al., 1997). In many other types of

conservation problems, the objectives are defined in terms of the

state variables that characterize the resource system. For example,

returns associated with a conservation action might include change

in population size (e.g., Eaton et al., 2021) or change in the

probability of a population going extinct.

Recurrent decision processes impose additional complexity for

decision algorithms because current decisions affect system

dynamics and thus future decisions. For example, we cannot just

maximize returns for the immediate time step. Instead, we must
Frontiers in Conservation Science 03
also consider the predicted state for the next time step, as objectives

are typically based on the entire time horizon of the process.

Recurrent decisions also admit the possibility of learning as

management proceeds. Adaptive resource management is a subset

of SDM developed for making recurrent decisions in the face of

uncertainty about the effects of different management actions. ARM

incorporates a scientific step (the comparison of observations

against model-based predictions for the purpose of learning)

within the larger decision process in order to reduce uncertainty

and learn (Walters, 1986; Williams et al., 2007). Here, we revisit the

elements of SDM from the perspective of a recurrent decision

process and ARM.
ARM elements

As with SDM, objectives retain their primacy in ARM and all

the other decision process elements derive from them. Objectives

for recurrent decisions typically include the accrual of benefits and

costs over time. Often, this is quantified by simply summing returns

over the time horizon of the process. Time may also be incorporated

by defining the objective in terms of a specific time interval, for

example, when our objective is to minimize the probability of a local

population going extinct over a specified time horizon (e.g., the next

50 years), as computed via population viability analysis (Beissinger

and McCullough, 2002).

The set of potential actions for recurrent decisions may remain

fixed for the entire process or it may evolve. Recurrent decisions

admit the possibility of modifying the set of actions, either adapting

them to a changing system or else considering new alternatives (see

Double-loop learning).

The role of models in decision processes is to project the

consequences of management actions. Models for one-time

decisions may only need to predict immediate returns, but
FIGURE 1

Diagram of a generalized recurrent decision process. A management action is selected and taken at each decision point (time step, t). The action leads
to the production of returns (variables that are components of management objectives) and potential changes in the resource system itself. Note that
objectives (and thus returns) may include functions of state variables that characterize the resource system (modified from Nichols and Williams, 2013).
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models used for recurrent decision processes must predict

immediate and subsequent returns, as well as system state for the

next, and subsequent, decision points (Figure 1). For habitat

management, models may need to predict both the effects of

management actions on habitat and the effects of habitat change

on the managed wildlife population or community.

Decision processes are frequently characterized by many

sources of uncertainty. Four of these are often highlighted and

should be incorporated into modeling when possible:

environmental variation, partial controllability, partial

observability, and structural uncertainty. Although the primary

focus of SDM and ARM modeling is on the effects of

management actions, environmental variables external to

management actions may also influence system dynamics. If

certain environmental variables are identified as important system

drivers, they may be incorporated individually into models.

Variation associated with environmental variables that are not

explicitly modeled simply adds variation to model predictions.

Partial controllability refers to variation in the implementation

of management actions. For example, habitat management actions

such as prescribed burning may be based on very precise and

specific instructions, but the actual habitat effects that these actions

produce can exhibit substantial variation, depending on such

factors such as wind, recent weather (vegetation dry or wet),

extent of bare ground, and fuel load (e.g., Breininger et al., 2010).

Partial observability refers to the ubiquitous problem in

studying wildlife populations and communities that we can

hardly ever count individuals perfectly. Instead, our counts nearly

always “miss” individuals present on surveyed sample units, such

that we require estimation methods to deal with non-detection (e.g.,

Seber, 1982; Williams et al., 2002; Kery and Royle, 2015; Seber and

Schofield, 2019). For many problems in conservation, focal

populations and communities inhabit areas so large that they

cannot be surveyed completely. These situations require spatial

sampling, which also adds variation to estimates of state variables

(e.g., Lancia et al., 1994, 2005; Thompson, 2002; Williams et al.,

2002). Such variation naturally adds to the variance of predictions

and should be accounted for when possible.

Structural uncertainty refers to imperfect knowledge of the

manner in which systems respond to management actions. This

uncertainty is sometimes expressed in the form of different discrete

models of system behavior. Define a discrete model set as the

models (usually small in number) considered to provide plausible

descriptions of the dynamics of the managed system. Each model in

the set is characterized by a model weight, reflecting the predictive

ability of that model expressed relative to the other models in the

set. Model weights sum to one for all the models in the set. We have

more confidence in models with higher weights, believing them to

be more likely to represent reasonable abstractions of the modeled

processes. The weight of each model at a decision point determines

its relative influence on the optimal decision. As the ARM process

proceeds, weight should increase for model(s) that predict well and

decrease for those that predict poorly (see Learning).

Another way to express structural uncertainty is by using

parameters in a general model that permit a range of model

behaviors. Such models are general with respect to the system
Frontiers in Conservation Science 04
response to management actions, such that different values of the

parameters produce substantial differences in system response. As

the ARM process proceeds and more observations are obtained, the

estimated parameters should become more accurate (decreased bias

and increased precision).

Monitoring in an ARM program serves the same three purposes

listed above for any general SDM program. Monitoring 1) provides

estimates of system state for making state-dependent decisions, 2)

permits the manager to gauge the success of management, and 3)

provides data used to develop and update management models. In

ARM, monitoring is also 4) critical to learning, providing estimates

to be compared against model predictions.

Decision algorithms provide a means of determining the “best”

action based on the other process elements, where “best” is

determined by the objectives. Decision algorithms can range from

the thought processes of a manager to dynamic optimization

programs. As noted above, recurrent decisions require

consideration not only of expected returns for the current time

step but also for all remaining steps in the decision process time

horizon. Such decision problems can be solved using dynamic

optimizat ion approaches such as stochast ic dynamic

programming (SDP) (Bellman, 1957; Puterman, 1994). SDP deals

with environmental variation and partial controllability, but not

directly with the other two sources of uncertainty: partial

observability and structural uncertainty.

An extension of SDP known as adaptive stochastic dynamic

programming (ASDP) (Williams, 1996) projects both system and

learning dynamics through time in order to determine optimal

decisions for processes with structural uncertainty. Partially

observable Markov decision process (POMDP) optimization was

developed to deal with dynamic systems for which system state

variables cannot be directly observed but must be estimated

(Chades et al., 2021; Williams and Brown, 2022). The theoretical

framework for dynamic optimization that can deal with all four

sources of uncertainty has been developed (Williams, 2011; Fackler

and Pacifici, 2014). SDP and ASDP have been used for most of the

ARM programs implemented over the last 25–30 years in North

America (Johnson et al., 1997; Martin et al., 2011; McGowan et al.,

2015; Eaton et al., 2021; U.S. Fish and Wildlife Service, 2021).
ARM: deliberative phase

The deliberative or set-up phase of adaptive management

entails the initial development of the above elements (Table 1).

The establishment of objectives is a critical first step and requires

attention to legal and regulatory considerations, as well as input

from all relevant stakeholders for the managed system. Objectives

are based on human values, and different stakeholder groups

frequently differ in how they value any system. Workshops are

sometimes held to obtain stakeholder input and to accomplish the

difficult task of developing compromise objectives to which all

stakeholders can agree. Scientists may be stakeholders, but their

perspectives carry no extra weight in identifying objectives.

Deciding on a set of potential actions also requires substantial

stakeholder input, as some actions (e.g., predator control) may be
frontiersin.org
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deemed unacceptable for social or political reasons. Scientists may

have a more substantial role than other stakeholders in developing a

set of potential actions, as scientists sometimes have specific insights

about the relative effectiveness of different actions.

Development of the other three elements—models, monitoring

program, and decision algorithm—is typically carried out primarily

by scientists and managers. Other stakeholders may be asked to

contribute, but the technical aspects of these elements usually

require specialized expertise. Technical experts are often

organized into ARM working groups, which then report back

periodically to the full stakeholder group. Models, monitoring,

and the decision algorithm should be tailored to the specified

objectives and actions. Examples of deliberative phase efforts for

different ARM programs are provided by Johnson et al. (1997),

Nichols (2000); McGowan et al. (2015), and Eaton et al. (2021).
ARM: iterative phase

The initial step of the iterative phase entails selecting a

management action at the first decision point (Figure 1) using the

decision algorithm with all the elements developed in the

deliberative phase (Table 1). The selected action is then applied to

the system, producing returns and driving the system to a new state.

The new system state is estimated before the next decision point

via the monitoring program. The estimated state is compared

against model-based predictions in order to update model weights

or model parameters (see Learning). At the next decision point, a

management action is selected using the decision algorithm and

based on the objectives, actions, and models, all of which typically

remain the same as in the first step, together with the new estimate
Frontiers in Conservation Science 05
of the system state and the updated model weights. The new action

is applied, returns are accrued, and the system again moves to a new

state. The iterative process proceeds in this manner (Table 1).

The iterative phase thus entails selecting actions that are good or

optimal with respect to the specified objectives while simultaneously

reducing uncertainty by learning which model(s) represents the best

approximation to the processes governing system responses to

management actions. This combination of wise decision-making

and simultaneous learning distinguishes adaptive management

from other forms of management.
Learning

Learning in ARM occurs via the incorporation into the decision

process of a scientific step, entailing the comparison of model-based

predictions against observations. When structural uncertainty is

expressed as a set of discrete models, learning occurs via the

updating of model weights via Bayes’ theorem (e.g., Williams

et al., 2002; Link and Barker, 2010). The updating is based on two

sources of information for each model. The first source is the

current (prior) weight, reflecting the relative predictive ability of

each model based on past observations accrued up until the decision

point. The second source of information is the probability of

observing the current value of the system’s state variable (as

estimated via monitoring) under each model. The updating

entails computing a new model weight (posterior) based on both

the old weight and how well each model predicts the new data on

the system state. If the model set includes a good approximating

model, then the weight for that model should evolve to approach 1,

whereas the weights of models that predict more poorly should

eventually approach 0.

Model uncertainty can also be expressed using a very general

model with one or more focal parameters, the values of which can

produce models with very different behaviors. For example, we

might have a model parameter for a habitat effect that can take any

value between 0 and 1, with 1 indicating a maximal effect of the

habitat manipulation and 0 indicating no effect. Such a model can

be viewed as providing a continuous model set, and we reduce

uncertainty by increasing the accuracy of the estimate of this

parameter and its distribution. The updating of the distribution(s)

of the parameter(s) again follows Bayes’ theorem and includes the

information about the distributions based on all data collected

through time t (the prior distributions), as well as the new data

(time t+1). The estimated distributions of these parameters are

expected to become more and more accurate through time.

Learning in adaptive management is thus accomplished by this

updating of either model weights or focal model parameters that

specify structural uncertainty. Sometimes, a distinction is made

between active and passive adaptive management. Under passive

ARM, learning is an anticipated, but untargeted, by-product of

management. In passive ARM, the dynamic decision algorithm uses

the current state of knowledge to represent knowledge in all future

points in the time horizon (Nichols and Williams, 2013). In active

ARM, learning is anticipated and targeted, such that the

management decision is based not only on the system state (e.g.,
TABLE 1 Operational steps in adaptive management include the
development of ARM elements in the deliberative or set-up phase and
the iterative process of making and implementing decisions.

Deliberative or set-up phase
1. Objectives
Identify and clearly specify objectives agreeable to all relevant stakeholders
2. Management actions
Identify a set of management actions with the potential to achieve objectives
3. Models
Develop models for predicting system dynamics and responses to management
actions, accounting for uncertainty
4. Monitoring
Establish monitoring to estimate system state and other key variables
5. Decision algorithm
Develop a clear approach to using elements 1–4 to decide which action should
be selected at each decision point

Iterative phase
1. Make decision
Select the management action that is “best” relative to objectives, using all of the
elements of the deliberative phase
2. Implement action
Apply the action to the system
3. Monitor
Estimate system response and returns
4. Assess/learn
Learn by comparing model-based predictions against observed system dynamics
5. Return to iterative step 1
Next decision depends on new system state (from monitoring) and updated
model weights (learning from last decision point)
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abundance) and projections of it into the future but also on the

current state of knowledge (e.g., model weights or parameter

estimates) and projections of its future evolution. Active adaptive

management thus addresses the “dual control” problem of

balancing short-term benefits (immediate returns) with the long-

term benefits that result from learning. Both approaches

incorporate learning and then use what is learned to manage,

essential features of adaptive management.
Double-loop learning phase

We have emphasized the importance of the deliberative phase

in carefully establishing the various elements of the ARM process.

However, the adoption of ARM does not mean that these elements

cannot be modified at some later time in the process. Double-loop

learning is the term used to indicate a phase of ARM at which one

or more of the decision process elements are revisited and possibly

revised (Williams et al., 2007; Williams and Brown, 2018).

Double-loop learning can be initiated for a variety of different

reasons. For example, experience with the ARM process could

produce changes in perspective that would lead to reconsideration

and possible modification of objectives. New ideas may arise for

additional actions that might be effective. If none of the models in

the model set seems to predict well, then modifications or new

models may be considered. Monitoring programs may be modified

in efforts to produce more accurate estimates.

The temporal scale of double-loop learning is typically longer

than that of the iterative phase of ARM. For example, the iterative

phase may entail decision points every year. However, double-loop

learning interventions often occur irregularly, for example, after 5

or 10 years of experience with the ARM process, if reconsideration

of one or more of the process elements seems warranted.
ARM and habitat–population linkages

It is common in grant proposals and introductions to ecological

papers to claim conservation utility for the proposed and reported

work. It is true that any information about an ecological system has

the potential to be somewhat relevant to conservation decisions for

the managed system. However, it is also true that different kinds of

information about a system can vary greatly in their utility to

conservation. Our primary motivation for describing SDM and

ARM is to provide a shared understanding of these processes and

how they work in general. Using this framework, we next specify

exactly how information about habitat–population linkages fits into

these formal decision processes (see Habitat management).

Specifically, when actions for an SDM or ARM process include

habitat manipulations, models predicting the consequences of such

actions for the managed system are required for informed decision-

making. Such models will typically include submodels for

predicting 1) the effects of actions on habitat and 2) the effects of

habitat changes on the focal population (habitat–population

linkages). It is our hope that knowledge of this use of habitat–

population linkages will provide greater focus for those wishing to
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contribute to conservation via habitat management. A secondary

motivation for this description of SDM and ARM is to create greater

awareness of these formal approaches to conservation decisions,

leading to good decisions now and to learning (reducing

uncertainty) that allows even better decisions in the future.
Habitat management

A frequent objective in conservation biology and wildlife

management is to increase or maintain the population size of a

focal species. The management actions that can be used to achieve

such an objective are usually very limited and frequently entail

efforts to modify habitat, in a broad sense. For the purposes of this

set of papers, we operationally define “habitat” as “the resources and

conditions present in an area that produce occupancy - including

survival and reproduction - by a given organism” (Hall et al., 1997).
Models for habitat management: general

SDM (including ARM) approaches to management require

models to project responses of the focal population to the

different management actions (Figure 1). Habitat management

models developed for this purpose are frequently comprised of

two submodels. First, we attempt to project the consequences of

management actions on habitat itself. Second, we try to project the

consequences of changed habitat for the focal population(s)—the

topic of this special issue. This decomposition usually leads to

models that include at least two state variables: one characterizing

habitat and the other the focal population.

Models used for habitat management do not require the

decomposition of focal processes as described above. We could

model focal population responses to habitat management actions

directly, but this less mechanistic approach may not be as useful in

some respects. For example, if direct modeling of population

response to habitat management provides poor predictions, then

it may be more difficult to diagnose the reasons for the problem

than if the two processes had been modeled separately. The poor

performance could be attributed to the failure of the management

action to affect habitat in the predicted way, the failure of the habitat

change to affect the focal population as predicted, or a combination

of both issues.
Models for habitat management: habitat
responses to management

Models of habitat dynamics are used for projecting the

consequences of management actions on the habitat state

variable(s), where such variables are defined based on their

relevance to the focal wildlife population(s). Such habitat models

can focus on the processes governing habitat change, frequently

parameterized as habitat state transition probabilities. For example,

we might have one set of transition probabilities that govern

changes in habitat state in situations with no habitat management
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(e.g., arising from natural successional processes) and another set of

transition probabilities associated with the application of a

management action to habitats of each specific state.

As a specific example, we consider management of Florida scrub

and flatwoods habitat for the Florida scrub-jay, Aphelocoma

coerulescens. Scrub-jay habitat can be classified by structural

height into four classes: short (Sh), optimal (Op, the best habitat

state for scrub-jays), tall-mix (Tm), and tall (Ta; see Breininger and

Carter, 2003; Breininger and Oddy, 2004). For the purposes of

scrub-jay management, habitat within a managed area can be

subdivided into a grid of 10-ha cells (the approximate size of a

scrub-jay territory). We define nrt as the number of patches (cells) in

habitat class r at time t and transition probability y rs
t as the

probability that a habitat patch in state r in year t is in habitat

state s in year t+1. Habitat dynamics can be modeled as a first-order

Markov process governed by a matrix of transition probabilities:
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2
666664

3
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We expect such transition matrices to differ for different habitat

management actions. The probabilistic nature of habitat transitions

reflects, among other things, the partial controllability of

habitat management.

Inferences about habitat state transition probabilities are readily

obtained from data on habitat classification of patches over time.

Each habitat patch forms a row in a data matrix with columns

identifying the different times (e.g., year 1, 2,…) they were visited.

Habitat classes are the matrix entries specifying the habitat class of

the patch at each sampling occasion during the study. Any of several

software packages can then be used to estimate the y rs
t and

associated variances from such data. For example, if no patches

become non-habitat and all patches can be located by investigators

each time step (year), then multistate capture–recapture software

(e.g., White and Burnham, 1999; Choquet et al., 2009) can be used

to estimate transition parameters by setting survival and detection

parameters equal to one. Loss of sites and non-detection can be

dealt with as well. If habitat classification is based on remote sensing

data, then misclassification may be an issue but can be handled if a

subset of ground truth patches is available (Veran et al., 2012).

Figure 2 provides a schematic diagram for a multistate model

analysis of habitat dynamics in Florida scrub and flatwoods

systems (Breininger et al., 2010).

In addition to the estimation of transition probabilities, analytic

methods such as multistate capture–recapture and occupancy

modeling also permit direct inferences about the potential

influence of covariates on habitat transitions. For decision

problems, these covariates can include management actions such

as burning and mechanical cutting, leading to different transition

matrices for different management actions. Examples of such

analyses for Florida scrub and flatwoods systems are found in

Breininger et al. (2009, 2010), Johnson et al. (2011), and Eaton
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incorporation of such modeling into decision processes.

In some situations, the classification of habitat into a small

number of discrete states may not be feasible or as useful as simply

focusing on a single habitat variable. In the case of Florida scrub-jay

habitat, an important habitat variable for defining habitat quality is

simply vegetation height (Breininger and Carter, 2003; Breininger

et al., 2010). Thus, another approach to modeling would be to treat

average vegetation height as a continuous variable, with different

management actions (e.g., burning, mechanical cutting) predicted

to decrease average height by different amounts. Scrub-jay survival

and reproduction would then be predicted to be greater at

intermediate heights and lower at shorter and taller heights.
Models for habitat management:
population responses to management

The objectives of most programs of animal conservation and

wildlife management focus on animal populations, and efforts to

modify habitat provide one means of achieving such objectives.

Although models of habitat change as a function of management

actions are required by ARM, additional modeling is needed to

specify focal population responses to changes in habitat, the focus of

papers comprising this special topic. State variables frequently used

in population management models include abundance, density, and

occupancy. One way to draw inferences about population responses

to habitat management is by observing static patterns of species

abundance, density, or presence–absence in different locations

characterized by different sets of habitat variables. However, such

associations may not be good predictors of changes in abundance

associated with habitat changes (e.g., Van Horne, 1983; Yackulic

et al., 2015; MacKenzie et al., 2017). A more reliable approach is to

address the effects of habitat on the vital rates governing population

change (see Tyre et al., 2001; Yackulic et al., 2015).

Models most useful for management are also based on the effects

of management actions on the vital rates governing state variable

dynamics (Nichols, 2021). For example, assume that we are able to

estimate abundance of a focal species in two different habitats within a

system. If the system is in approximate equilibrium, then the estimated

difference in abundance can be viewed as a measure of habitat effect.

However, if we take a management action that converts a patch of one

habitat type into the other, then we would not necessarily expect to

predict the new abundance on that patch using the habitat effect.

Instead, we would expect a period of transient dynamics as

abundances changed in the direction predicted by the effect. When

systems are not in equilibrium, the difference between abundances in

patches of the different habitat types would not necessarily be useful in

predicting abundance response to habitat changes either. However,

when habitat effects on vital rates are estimated, then these effects can

be used, together with estimates of current abundance, to directly

predict abundance responses to habitat changes. In general, vital rates

are used to predict time-specific changes in abundance resulting from

any management action, absent any assumptions about equilibrium.
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The selection of data used to estimate system responses to

changes in habitat depends on the system state variable(s) being

modeled and on the methods chosen to estimate the variable(s) and

associated vital rates. For example, there are many ways to estimate

abundance, density, and vital rates (survival, recruitment, movement)

that govern population dynamics (e.g., Seber, 1982; Williams et al.,

2002; Royle et al., 2013; Kery and Royle, 2015, 2021; Seber and

Schofeld, 2019). Many of the approaches for estimating abundance

and density only require data from relatively short periods of time.

Inferences about vital rates require multiple detections from

individually marked individuals over longer time periods or,

sometimes, temporal sequences of simple counts at multiple

sampling locations (Dail and Madsen, 2011; Kery and Royle, 2021).

The occupancy state variable focuses on the presence or absence

of a species in each of a set of specified sample units, and inference

methods based on species-level detection–non-detection data are

well-developed (MacKenzie et al., 2002, 2017). Similarly, methods

are available for estimating the rates of local extinction and

colonization from temporal sequences of detection–non-detection

data across multiple sample units (MacKenzie et al., 2003, 2017).

Selection of analytic methods for estimating the effects of

habitat on vital rates of animal populations is dictated by 1) the

types of vital rates (hence, state variable) being considered, 2) the

relative spatial scales of animal movement and habitat

measurement, and 3) the relative temporal scales of habitat
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change and vital rate estimation. The relevance of identifying the

appropriate vital rates stems from the need for reasonable samples

of marked individuals for estimation of survival, recruitment, and

movement using capture–recapture methods (e.g., Williams et al.,

2002; Seber and Schofeld, 2019; Kery and Royle, 2021). If the scale

of habitat assessment is relatively coarse, and if spatial sample units

are large relative to the scale of animal movement, and if habitat

change is very slow relative to study duration, then it may be

reasonable to assume that animals remain associated with specific

habitats for the duration of a study. In such cases, sample units may

be grouped by habitat type, or habitat covariates can be measured

for each unit, and tests for a habitat effect can be conducted using

standard capture–recapture models for open populations (Pradel,

1996; Schwarz and Arnason, 1996). For example, Conway et al.

(1995) used capture–recapture modeling to test for differences in

overwintering survival between neotropical migrant birds in

successional habitat vs. mature tropical forest in Belize but found

survival to be very similar for the two habitat types. In addition to

capture–recapture, inferences about survival and recruitment can

also be drawn from raw counts of individuals in multiple sample

units (Dail and Madsen, 2011; Kery and Royle, 2021) although this

approach requires greater dependence on the selected model and its

underlying assumptions.

If habitat remains relatively constant, but individuals move

from one habitat type to another between sampling occasions, then
FIGURE 2

Transitions and associated probabilities estimated using a multistate model of scrub and flatwoods at Kennedy Space Center, Florida, 1994–2004
(Breininger et al., 2010). y rs

t = probability that a patch in habitat state r at time t is in state s at time t+1, where Sh = short; Op = optimal; Tm = tall
mix; and Ta = tall. Transitions depicted by heavy solid lines had adequate sample sizes for models including all covariates. Transitions depicted by
thin sold lines occurred infrequently and were modeled using fewer covariates. Transitions with dotted lines had few occurrences and were
modeled using only the covariate oak. Transitions from short to tall, optimal to tall, and tall to optimal never occurred and were constrained to zero.
Transition probabilities for states that remained the same were estimated by subtraction (modified from Breininger et al., 2010).
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capture history records of animals that are known to have moved

can be manipulated and used with standard open-population

capture–recapture models to draw inferences about associations

between vital rates and habitat type (Franklin et al., 2000). However,

multistate capture–recapture models were developed specifically for

this situation of individual animal movement between sampling

occasions (Arnason, 1972; Brownie et al., 1993; Schwarz et al., 1993;

Lebreton et al., 2009) and are a natural choice. For example, Senar

et al. (2002) used multistate models with capture–recapture data on

the citril finch (Serinus citrinella) in a metapopulation containing

one high-quality and one low-quality habitat in southern Spain.

Birds in the high-quality habitat had higher survival rates, and

movement from low- to high-quality habitat was greater than that

in the reverse direction. While most studies focus on the habitat of

patches inhabited by the focal species, multistate models can also be

used to draw inferences about the effects of matrix habitat

(occurring between patches) on rates of between-patch movement

(Skvarla et al., 2004).

If habitat remains relatively constant over the period of study,

but the scale of habitat assessment is very fine-grained such that

animals are likely to move among multiple habitat classes frequently

during a study, then near-continuous radio telemetry data may be

required to properly estimate habitat-specific survival (Conroy,

1993; Conroy et al., 1996). In a radio-telemetry study of wintering

American woodcock (Scolopax minor) in coastal Virginia, Conroy

et al. (1996) used a proportional hazards approach (Cox, 1972,

1975) and found no apparent difference in daily survival rates

between pine and hardwood habitats.

Data requirements for estimating probabilities of local extinction

and colonization within an occupancy framework are generally less

stringent than for estimation of survival and recruitment. Periodic

surveys are used to collect species-level detection–non-detection data

for the focal species on multiple sample units, and if habitat change is

slow relative to study duration, units may be grouped by habitat type

or characterized by a continuous habitat covariate. In an early

application of this approach, Ferraz et al. (2007) investigated

habitat fragmentation effects experimentally for 55 Amazon bird

species in Brazil, finding strong evidence of a negative effect of patch

size on local extinction probabilities.

Two general approaches can be used to investigate habitat–

population relationships when habitat and the focal population

exhibit dynamics operating at approximately the same time scale

during a study. One approach is similar to that used for relatively

static habitat, in the sense that habitat for each sample unit at each

sampling occasion in the study is recorded and inserted as a

standard covariate, absent any effort to model habitat dynamics.

Multistate capture–recapture models can be used with changes of

state induced by either animals moving or animals remaining in a

sample unit, but habitat changing.

The other approach is to model habitat and population

dynamics jointly. Breininger et al. (2009) used multistate capture–

recapture models to estimate survival rates of Florida scrub-jays on

breeding territories, with habitat state defined at each sampling

occasion as short, optimal, tall-mix, or tall (see above). Survival was

greatest for birds in territories with optimal habitat, as predicted.
Frontiers in Conservation Science
 09
Territory habitat dynamics were modeled separately and used to

conclude that most changes of habitat state experienced by birds

resulted not from birds moving, but from birds remaining in

territories that changed habitat state via natural succession or

management action (e.g., burning). So, both habitat and

population dynamics were modeled, and the next step would be

to directly link the two models using a joint likelihood. The

advantages of a joint likelihood include the ability to deal with

potential misclassification of habitat (or missing values) in certain

sampling occasions. In addition, joint likelihoods admit reciprocal

relationships in which wildlife populations can also influence

habitat dynamics (as with some grazing systems), and provide a

natural approach for the direct estimation of variances associated

with habitat–population relationships.

Joint likelihoods can also be developed for the occupancy state

variable, permitting simultaneous modeling of population and

habitat dynamics (MacKenzie et al., 2011). As an example,

MacKenzie et al. (2011) surveyed seasonal pools for spotted

salamander (Ambystoma maculatum) egg masses in Canaan

Valley National Wildlife Refuge (NWR), West Virginia, for the

purpose of investigating the potential effects of pool size (based on

the surface area of water) as a habitat variable. The probability that a

pool with no egg masses (no breeding) in breeding season t was

colonized and had egg masses in t+1 was greater for pools that were

larger in t+1. The probability that a pool with egg masses in year t

again had egg masses in year t+1 was also greater for pools that were

larger in year t+1.

Investigations may also include multiple habitat variables that

differ with respect to the temporal scale of their dynamics. Miller

et al. (2012) investigated the occupancy of the arroyo toad

(Anaxyrus californicus) in southwestern California focusing on

the effects of two habitat variables: watershed class and water

availability. Watershed class referred to areas populated by mostly

ephemeral or mostly perennial streams, and this classification did

not vary during the study. Sample units were stream segments

within watersheds and were classified as unsuitable (dry) or suitable

(containing water) each breeding season. This aspect of habitat

suitability was highly dynamic throughout the study and modeled

as a first order Markov process that was linked with toad occupancy

dynamics. Inferences were available about the effects of both habitat

variables on local extinction and colonization of toads.

In summary, there are multiple analytic approaches for

investigating the relationships between habitat variables and

population dynamics. Such relationships underlie any attempt to

manage populations by managing their habitat and must be

incorporated into models used in decision processes such as SDM

and ARM. Models of habitat effects on population vital rates are

expected to be more useful to management than models describing

the relationships between habitat and static state variables. Multiple

approaches are available for drawing inferences about these

habitat–population relationships, and selection of the most

appropriate approach for a study depends on the selected state

variables and vital rates, the rate of habitat change relative to study

duration, and the rate of animal movement relative to study

duration and habitat change.
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ARM for habitat management:
an example

We describe a program of adaptive habitat management for the

Florida scrub-jay inhabiting scrub and flatwoods habitat in coastal

Florida. As described above, habitat in this system can be divided

into classes based on vegetation height and value to scrub-jays. For

the purposes of the scrub-jay ARM program, habitat of optimal

height in previous classifications was further classified as either

optimal-open (containing numerous patches of open sand) or

optimal-closed (sand patches grown over by encroaching

vegetation), producing five overall habitat classes: short, optimal-

open, optimal-closed, tall-mix, and tall. These five habitat classes

can be located on soils characteristic of either scrub or flatwoods,

providing one other habitat variable relevant to transitions of both

habitat class and scrub-jays.

Scrub-jay population growth is greatest in the optimal-open

habitat class (Breininger and Carter, 2003; Eaton et al., 2021), which

represents a transitional stage of natural vegetative succession in

this system. Alterations in the natural fire regime caused by human

land-use changes over the last half-century in Florida’s Atlantic

coast have resulted in significant losses of open scrub and flatwoods

habitats with a transition to taller scrub and fire-resistant forests

(Duncan et al., 1999; Duncan and Schmalzer, 2004). The

management problem is thus one of maintaining enough optimal

habitat to permit the maintenance and growth of Florida scrub-jay

populations. However, habitat management actions (burning and

mechanical cutting) do not usually lead directly to optimal habitat.

Instead, these actions can increase the probabilities that tall-mix

and tall habitat transition to short habitat, which can then transition

to optimal-open habitat in subsequent years. So, despite the

availability of potentially useful management actions, the problem

of creating and maintaining enough optimal-open habitat to

promote scrub-jay population growth is a difficult one.

The 1990s and early 2000s were characterized by a general

concern for the loss of good scrub and flatwoods habitat in coastal

Florida and the consequent problems for scrub-jay populations. An

adaptive habitat management program for Florida scrub-jays was

developed for Merritt Island National Wildlife Refuge and the

Kennedy Space Center (Johnson et al., 2011). This ARM program

was not fully implemented, but aspects of it were viewed as

successful, and it provided a blueprint for subsequent efforts.

In the early-mid 2000s, Brevard County community leaders,

land managers, and local biologists expressed interest in developing

an ARM program for the mainland ecosystem. Potential

stakeholders were identified and invited to two workshops in

2006 to discuss the idea of developing an ARM program for

scrub and flatwoods habitat directed at Florida scrub-jays (Eaton

et al., 2021). The positive response to these initial workshops led to a

decision to develop an ARM program in Brevard and Indian River

counties. As part of the deliberative phase of ARM, subsequent

workshops proceeded with program development, focusing on

eliciting management objectives, identifying alternative actions,

developing preliminary hypotheses and associated models, and

establishing a monitoring program. The iterative phase of the
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2018 summarized by Eaton et al. (2021).

The overall objective of this scrub-jay ARM program was to

maximize the number of 10-ha grid cells (the approximate size of a

scrub-jay territory) within managed land units that were occupied

by scrub-jays. The larger management units were areas

administered by different agencies or land ownership groups. The

four potential management actions were identified as follows:

1. Burn (BRN): the use of prescribed burning with high-

intensity fires generally applied when vegetation is low enough to

carry fire, often during the growing season;

2. Light mechanical cutting, followed by burn (LMB): the

targeted spot-cutting of taller, less flammable vegetation, followed

by a prescribed burn within 3 months;

3. Heavy mechanical cutting, followed by burn (HMB): a more

intensive mechanical treatment than LMB in sites where vegetation

is beyond the height to perform a fire;

4. No action (NONE): no management action.

The ARM process entailed selecting one of these actions for each

10-ha cell each year.

The modeling for this ARM program included one submodel

for habitat responses to management actions and another submodel

for scrub-jay responses to habitat. Both submodels were developed

at the 10-ha cell level. For habitat state, there were 5 × 5 transition

probability matrices for each soil type (scrub, flatwoods) and each

management action, producing 8 matrices and 200 transition

probabilities. These transition probabilities provided a natural

way to incorporate the partial controllability of scrub-jay habitat

management. During the deliberative phase, managers and

knowledgeable stakeholders were asked to provide their estimates

for each of these 200 transition probabilities, and elicited estimates

were used to develop pseudo-observations that provided the prior

distributions for these initial transition matrices (Eaton et al., 2021).

Subsequent values for these transition matrices were obtained by

updating based on new monitoring data each year.

A dynamic occupancy model (MacKenzie et al., 2003, 2017) was

developed to model scrub-jay dynamics. Cell-level probabilities of

local extinction and colonization were modeled as functions of

habitat state, neighborhood cell occupancy (an autologistic effect;

Augustin et al., 1996; Yackulic et al., 2012; Eaton et al., 2014), and

overall system occupancy. The neighborhood and overall

occupancy levels (proportions of cells occupied by scrub-jays)

were included because of their potential influence on probabilities

of cell-level colonization (sources of colonists) and extinction (via

the rescue effect; Brown and Kodric-Brown, 1977). Initial

occupancy levels were estimated directly from monitoring data,

and the habitat effect parameters were initially estimated based on

expert elicitation from the group of managers and then updated

with monitoring data as the program proceeded.

Many of the land managers participating in the program were

already doing some level of habitat and scrub-jay monitoring prior

to the program. A monitoring protocol for ARM was developed to

ensure that the needed information was being collected each year.

In cases where the land managers were unable to monitor, other

program biologists carried out these tasks.
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Optimal state-dependent decisions were obtained beginning in

2014 using modified stochastic dynamic programming approaches

(Miranda and Fackler, 2002; Fackler, 2012). A passive adaptive

management approach was used, such that the optimization was

based on anticipated system responses to management and not on

anticipated learning. Efforts were made to share the recommended

actions with the set of land managers, but carrying out these

recommendations was difficult and inconsistent. These difficulties

resulted from several factors, including 1) the numerous different

land managers involved and their different levels of resources to

devote to management, 2) the fact that most land managers had

multiple management cells with different actions recommended for

different cells, and 3) some recommended actions (e.g., those that

included fire) could not always be applied because of the absence of

suitable weather conditions during the appropriate time periods.

Thus, the recommended optimal actions were not applied at all

times and to all sites. However, this did not preclude learning, as an

action (recall that the action set included “none”) was taken at every

cell in every year, responses of habitat and scrub-jays were

estimated via monitoring every year, and these data were used

with model predictions for annual parameter updating.

The deliberative phase of this ARM program was quite long,

extending from approximately 2006 to 2012–2014. We believe that

the main reason for this was the increased difficulty in bringing the

stakeholder group together and eliciting objectives, actions, values

of parameters for prior distributions, etc., from such a diverse

group, as opposed to a more streamlined situation with a single

agency and decision-maker. Indeed, this is the first ARM program

that we know of to have been developed successfully by a

consortium of public and private landowners and stakeholders.

The iterative phase of ARM then proceeded as described in

general above. Management actions were carried out at sites,

resulting habitat and scrub-jay changes were identified by the

monitoring program, and transition parameter estimates for both

habitat and scrub-jays were updated each year using this new

information. Precision of habitat and scrub-jay transition

probability estimates increased through the years of the ARM

program, and the dissimilarity of the sets of annual estimates

decreased with time as well. Both of these trends provide

evidence of learning about these key management parameters

during the ARM program. Learning was also consistent with a-

priori hypotheses, with greater probabilities of scrub-jay

colonization and occupancy and lower probabilities of extinction,

associated with optimal habitat and with greater system-wide

occupancy. Scrub-jay colonization probabilities were higher for

cells with more occupied neighbors as well. The general

consistency of new results for scrub-jays with predictions was

expected because of the substantial research previously conducted

on this species. Some predictions about action-specific habitat

transitions were supported, whereas others were not, emphasizing

the importance of dealing with uncertainty even for well-

studied systems.

With respect to management of the system, the number of

optimal-open cells increased modestly over the course of the
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decreased, reflecting success in habitat management. The

proportion of cells occupied by scrub-jays did not increase over

the 2013–2018 period, emphasizing the difficulty associated with

managing this species using this type of habitat management.

Specifically, the habitat management actions for suboptimal tall

and tall-mix states increased transitions of patches to the short state

(also suboptimal), and short state patches eventually grew to the

optimal state. However, the time spent by patches in suboptimal

states, even post-management, presents a substantial difficulty.

Recognition of this difficulty is an important result, in this case

leading to consideration of new potential management actions.

More generally, the results of this ARM program emphasize the

importance of recognizing the limits of some management actions

and directly assessing via monitoring, rather than assuming, the

effects of management (e.g., Nichols, 2012).
Summary and conclusions

SDM provides a general framework for virtually any decision

process. ARM is a special case of SDM developed for recurrent

decisions characterized by potentially resolvable uncertainty. In the

iterative phase of ARM, periodic decisions are made based on

objectives, potential actions, models of system response to actions,

system monitoring, and a decision algorithm. Models, such as those

linking habitat quality to population dynamics, are important in

providing predictions about which action will be “best” at achieving

objectives. Model uncertainty impedes decision-making but is the

focus of ARM and is addressed by incorporating a scientific step

directly within the overall management process.

Linking habitat quality to population dynamics for conservation

decision-making, the theme of this group of papers, primarily

concerns the development of models to predict population

responses to habitat management. A logical way to think about

this modeling entails two steps: 1) linking management actions to

habitat dynamics and 2) linking habitat dynamics to population

dynamics. We describe one way to model habitat dynamics using

matrices of habitat state transition probabilities, with different

matrices associated with different management actions. We argue

that the linkage of habitat dynamics to population dynamics is best

accomplished by linking habitat and habitat change to population

vital rates. We further argue that the selection of methods used to

estimate the effects of habitat on population vital rates should be

based on 1) the types of vital rates (and state variable) being

considered, 2) the relative spatial scales of animal movement and

habitat measurement, and 3) the relative temporal scales of habitat

change and vital rate estimation. We outline modeling approaches

appropriate for different scenarios.

In order to illustrate how this modeling is incorporated within a

management program, we describe an example program of habitat

management focusing on the Florida scrub-jay, a species that relies

on a transitional stage of natural habitat succession. Decreases in

natural disturbance (fire) over the last half-century have produced
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decreases in the amount of habitat in this transitional stage,

motivating habitat management efforts. An ARM program was

developed to make good decisions for this recurrent decision

problem and to simultaneously reduce uncertainties that impeded

good decision-making. Models were developed to predict habitat

transitions as a function of management actions and scrub-jay

population dynamics as a function of habitat state. These

predictions informed annual decision-making. In addition, a

monitoring program provided information on both habitat and

population dynamics, permitting the updating of key model

parameter estimates (i.e., learning) and the use of the updated

models to make subsequent decisions.

It is very common for studies of habitat to claim a conservation

motivation. However, conservation requires the selection of actions

that will increase the likelihood of attaining program objectives, and

explanations of exactly how habitat study results will be used to

make those decisions are rare. We believe that SDM and ARM

provide frameworks that should be useful in making decisions

about habitat management. In particular, these frameworks

specify exactly how models linking management to habitat, and

habitat to population dynamics, are incorporated into the decision

process. We believe that models that are developed in the context of

these frameworks, and with explicit knowledge of their uses within

these frameworks, are most likely to be useful in developing

decisions about habitat management.
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