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Unraveling the meiotic puzzle:
chromosome count, meiotic
behaviour, and reproductive
challenges in Phlomis
cashmeriana Royle ex Benth.
from the Kashmir Himalaya
Roof Ul Qadir1, Hanan Javid1, Aijaz Hassan Ganie2,
Bilal A. Wani1, Irshad A. Nawchoo1 and Junaid A. Magray1*

1Plant Reproductive Biology, Genetic Diversity and Phytochemistry Research Laboratory, Department
of Botany, University of Kashmir, Srinagar, India, 2Department of Botany, University of Kashmir,
Baramulla, Jammu and Kashmir, India
Meiotic stability is crucial for maintaining reproductive success and genetic

diversity in plants, especially in montane regions like the Himalaya, where

fluctuating environmental conditions can disrupt normal chromosome

behavior. Phlomis cashmeriana Royle ex Benth., a medicinally important

species, has not previously been studied for the meiotic behavior and its

impact on reproductive output. This study presents the first comprehensive

meiotic analysis of P. cashmeriana across three populations in the Kashmir

Himalaya, focusing on chromosome count, meiotic behavior, pollen fertility,

and seed set. While most of the Pollen Mother Cells (PMCs) exhibited normal

meiosis, several meiotic abnormalities were recorded, including chromosome

stickiness, laggards, unoriented bivalents, and interchromosomal connections.

Chromosome stickiness (11.48%) was the most prominent abnormality,

particularly during diakinesis and metaphase I across all the study sites. These

irregularities, likely influenced by high UV radiation and low temperatures

characteristic of the region, were associated with reduced pollen viability

(67.65–74.50%) and seed set (54.40–59.75%) across the studied populations.

Such reproductive impairments may compromise the long-term survival and

genetic resilience of P. cashmeriana, potentially limiting its adaptive capacity

under ongoing changing environmental conditions. These findings highlight the

broader ecological significance of meiotic behavior as a determinant of

reproductive fitness and evolutionary potential in Himalayan flora.

Understanding these cytological constraints is vital for developing informed,

long-term conservation and management strategies for P. cashmeriana and

other threatened montane species. Future research should explore the genetic

basis of these abnormalities and assess population viability under shifting

climate conditions.
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Introduction

The genus Phlomis L. is one of the largest genera of the

subfamily Lamioideae (Lamiaceae) with about 93 species

distributed throughout the world (POWO, 2024). These species

have been divided into two main sections: Phlomoides and Phlomis

(Rechinger, 1982; Albaladejo et al., 2005). The diagnostic character

for separating the sections is corolla morphology. The species of

genus Phlomis have corolla with a curved upper lip and trifid lower

lip with large median and smaller lateral lobes while the species

belonging to Phlomoides have corolla with straight upper lip and

trifid lower lip with subequal lobes (Azizian and Moore, 1982).

In Kashmir Himalaya the genus Phlomis is represented by two

species namely, Phlomis cashmiricaWells and Phlomis cashmeriana

Royle ex Benth (POWO, 2024). The later species native to Kashmir

Himalaya has been selected for the present study. P. cashmeriana,

locally known as Darshol is used in traditional medicine systems to

treat wounds and bone fractures. Phytochemical analyses have

identified a wide range of bioactive compounds, including

flavonoids, triterpenes, alkaloids, phenolics, tannins, coumarins,

shikimic acid derivatives, and steroids (Qadir et al., 2022, 2024a;

Hussain et al., 2024). Consequently, this plant species is reported to

have different biological activities, including antioxidant, anti-

inflammatory, anti-bacterial anti-fibrillation, immunosuppressive,

and antidiabetic properties (Qadir et al., 2024b; Hussain et al.,

2024). In addition to its medicinal value, P. cashmeriana is also used

as an ornamental plant (Sarkhail et al., 2007; Shang et al., 2016).

Over the past few decades, P. cashmeriana has experienced severe

anthropogenic pressures like habitat degradation, and overharvesting

due to its high therapeutic demand leading to a rapid decline in its

populations across natural habitats (Ganie et al., 2019; Wani et al.,

2022). These pressures often result in habitat fragmentation and

population isolation, which limit gene flow and reduce genetic

diversity. Small and fragmented populations are more prone to

inbreeding, which can lead to the accumulation of deleterious alleles

and heightened expression of meiotic abnormalities. Such genetic

consequences impair reproductive success by reducing pollen viability,

seed set, and overall fitness. As a result, conserving this species has

become a critical priority. For developing effective conservation

strategies, detailed knowledge about the meiotic behavior of a plant

species is crucial as it offers valuable scientific insights into identifying

genetic factors influencing reproduction, viability, and long-term

survival (Armstrong and Jones, 2003).

Meiosis is fundamental for regular cell division, gamete formation,

and the maintenance of chromosomal stability—all crucial for

sustaining plant populations, especially in challenging montane

environments (Golubovskaya, 1979; Pagliarini, 2000). Disturbances

(mutations) during meiosis result in abnormalities, leading to

variations in the genetic constitution (Kaul and Murthy, 1985; Jiang

et al., 2009). Studies on other plant species have shown that such

abnormalities—like chromosomal stickiness, laggards, bridges, and

micronuclei—can significantly impair gamete viability and seed

production, ultimately affecting population sustainability (Pagliarini,

2000; Singhal et al., 2018; Kaur and Singhal, 2019). These cytogenetic

disruptions are often associated with environmental stress, polyploidy,
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or genomic instability and have been widely used as indicators of

reproductive constraints in threatened and endemic species. In fragile

ecosystems like the Kashmir Himalaya, where climatic extremes and

anthropogenic disturbances can intensify reproductive limitations,

understanding the meiotic behavior of P. cashmeriana is particularly

important. Such insights can help identify the reproductive constraints

contributing to its reduced reproductive success and inform targeted

conservation strategies.

Although the Kashmir Himalaya harbors a rich diversity of

medicinal plants, Phlomis cashmeriana was chosen for this study

due to its restricted geographic distribution, high medicinal

importance, and lack of prior cytogenetic research. Its rapid

population decline makes it a priority species for understanding

reproductive constraints among Himalayan medicinal plants.

This study does have certain limitations, including a focus on a

limited number of populations and an emphasis solely on

cytological parameters. Broader ecological interactions, genetic

diversity assessments, and long-term population monitoring were

beyond the current scope. Nonetheless, this work establishes a

cytogenetic baseline and highlights key reproductive bottlenecks

that can guide future conservation efforts for this and other

threatened species in the region.

To date, Phlomis cashmeriana has not been investigated for its

chromosome count, meiotic behavior, and the effect of meiotic

irregularities on pollen fertility and seed set. Given the ecological

and medicinal significance of this species, we hypothesize that

disturbances in meiotic processes contribute to reduced pollen

fertility and seed set, thereby impacting the reproductive success

and long-term survival of P. cashmeriana in its natural habitat.

Based on this hypothesis, we addressed the following research

questions: (a) What is the chromosome number and meiotic

behavior of Phlomis cashmeriana? (b) What are the different

meiotic abnormalities in P. cashmeriana across selected sites? (c)

How do meiotic abnormalities affect pollen viability, fruit, and seed

set in the target plant?

By addressing these questions, this study provides essential

cytogenetic insights that can aid in understanding the reproductive

constraints of P. cashmeriana, ultimately informing its conservation

and management strategies.
Materials and methods

Study area

Kashmir Himalaya is located at the north-western extremes of

India and lies between latitude 32°17ʹ and 37°05ʹ North and

longitude 72°31ʹ and 80°20ʹ East. This Himalayan region has a

wide elevational gradient, diverse geological formations, and varied

climatic zones, supporting a rich diversity of medicinal plants (Tali

et al., 2019; Ganie et al., 2020). For the current study, 3 sites viz.,

Daksum (Site 1), Hillar Naar (Site 2), and Jawahar Tunnel (Site 3)

were selected across the Kashmir Himalaya based on the ease of

access, habitat characteristics, and abundance of the target plant

population (Figure 1). Herbarium specimens of P. cashmeriana
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collected from selected sites were deposited in the University of

Kashmir Herbarium (KASH) under voucher specimen numbers

2941, 2942, and 2943.
Study species

Phlomis cashmeriana (Cashmere Sage) is a densely woolly

multi-stem perennial herb native to Tadzhikistan, Pakistan,

Afghanistan, and West Himalaya (POWO, 2024). The species

mainly grows on open exposed slopes at an elevational range of

2000—2800 m asl. The stem is simple or branched, and the

rootstock is woody. Leaves are lanceolate-oblong and leathery,

covered with hairs. The inflorescence is verticillaster with dense

lilac-purple flowers, and corolla lobes pale purple.
Analysis of pollen mother cells

For meiotic studies, young floral buds were randomly collected

during the early morning hours in April 2023 from three wild

populations—Daksum, Hillar Naar, and Jawahar Tunnel. This

period coincides with the pre-anthesis stage of P. cashmeriana,

when meiotic activity is at its peak, allowing accurate observation of

meiotic stages. The buds were fixed in fresh Carnoyʼs solution (3

ethanol: 1 glacial acetic acid) for 24 hours, and then stored in freshly
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prepared 70% ethanol at 4°C in a refrigerator till further analysis. The

squashing technique involving crushing individual anthers in 2%

acetocarmine was used for slide preparation. To ensure high-quality

slide preparations, only appropriately sized buds were selected, and

squashing was performed gently to minimize mechanical damage and

avoid overlapping cells. Each slide was carefully screened, and only

well-spread, clearly stained PMCs were used for meiotic analysis. The

anther squash method is widely used for its reliability in visualizing

meiotic stages and chromosomal behavior. To reduce potential errors

such as poor staining, cell overlap, or mechanical damage, buds were

carefully staged, and squashes were performed gently and consistently.

Multiple cells from each stage were analyzed to ensure reproducibility

and accuracy.

The freshly prepared slides from each population were analyzed

for chromosome counts and meiotic behaviour in Pollen Mother

Cells (PMCs) at different stages (diplotene, diakinesis, metaphase I,

II, anaphase I, II, telophase and tetrad stage). This procedure was

repeated for two consecutive years (2023–2024). Only good

preparations were used for chromosome counts and analyzing

meiotic behavior. Photomicrographs of PMCs with ideal stages

(for chromosome counts, meiotic abnormalities, and sporads)

were taken using a trinocular microscope (Leica) integrated with

Leica software (magnification 100x). The percent meiotic

abnormality (stickiness, laggards, unoriented bivalents,

interchromosomal connections) was calculated by the following

formula:
FIGURE 1

Map showing study area and sampling sites in Kashmir Himalaya.
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 Meiotic abnormality ( % )

=
Total number of abnormal cells (particular stage) observed 

Total number of cells observed
� 100

From each population, buds were collected from 25 plants and

the anthers from these floral buds were squashed to ascertain the

meiotic behavior and the results were obtained from about 50 slides

with different meiotic stages from each population.
Pollen fertility estimation

To determine pollen viability, three methods were employed, in

the first method; the mature pollen grains were mounted in

Fluorescein diacetate (FDA) solution and incubated for 3–5 min.

The pollens with fluorescent and non-fluorescent cytoplasm were

treated as fertile and non-fertile, respectively. In the second method,

the ready-to-dehisce mature anthers were placed in 1% tetrazolium

chloride for one hour and squashed to check for viability. In the

third method, mature and undehisced anthers were squashed in 1%

aniline blue-lactophenol and observed after 15 minutes. These

methods have been widely validated in previous studies for their

reliability in evaluating pollen viability. FDA staining is sensitive to

enzymatic activity in viable pollen (Heslop-Harrison and Heslop-

Harrison, 1970), while tetrazolium chloride assesses metabolic

activity through dehydrogenase function (Norton, 1966). Aniline

blue-lactophenol has been effectively used to identify viable pollen

based on the intensity of cytoplasmic staining (Shivanna and

Rangaswamy, 2012). The use of multiple techniques enhances the

accuracy and robustness of pollen fertility estimation.

The percentage pollen fertility was determined by the following

formula:

Pollen fertility ( % )

=
Number of pollen grains stained 

Total number of pollen grains observed
� 100
Calculation of fruit set

To assess the fruit set, we recorded the total number of flowers

at the peak blooming period and the number of mature fruits post-

fruiting period on selected, tagged plants. The fruit set percentage

was calculated using the formula:

Fruit set( % ) =
Number of fruits 
Number of fowers

� 100
Calculation of seed set

For estimating the seed set, plants were selected randomly,

tagged, and scored for the number of seeds produced per plant

following Lubbers and Christensen (1986).
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Seed set( % ) =
Total number of seeds produced 

Total number of ovules borne by the plant
� 100
Results

The meiotic analysis of P. cashmeriana revealed that the species is

diploid, possessing a chromosome number of 2n = 2x = 20 at all three

study sites. This was confirmed by the presence of 10 bivalents during

diplotene, diakinesis, and metaphase-I (Figures 2a-d). The bivalents

exhibited both terminal and interstitial chiasmata, and with ring-

shaped bivalents particularly evident at diakinesis (Figure 2d). The

present investigation revealed normal anaphasic segregation of 10:10

chromosomes in pollen mother cells (PMCs) at anaphase I and II

(Figures 2g, n), followed by normal telophase and tetrad formation

(Figure 2o). In addition to normal meiosis, a range of abnormalities

were identified in PMCs, including chromosomal stickiness, lagging

chromosomes, chromosome bridges, out-of-plate bivalents, and inter-

chromosomal connections.

Among 3,648 PMCs analyzed at different stages, chromosome

stickiness was the most prominent meiotic abnormality observed,

occurring mainly at diakinesis and metaphase I (Figure 2e), in all the

3 selected sites. Stickiness caused chromosomes to form compact

masses, losing their distinct morphology and appearing as dense

clumps in affected PMCs. At metaphase I, the frequency of stickiness

was highest at Site 3 (31.12 ± 1.15%), followed by Site 2 (23.03 ±

1.81%) and Site 1 (20.59 ± 1.03%) (Table 1). Out-of-plate bivalents

observed during metaphase I did not show significant variation

among sites. This abnormality was recorded in 3.81 ± 1.46%, 4.61

± 0.62%, and 5.87 ± 1.87% of PMCs at Sites 1, 2, and 3, respectively

(Figure 2f, Table 1). Likewise, PMCs with Lagging chromosomes

were recorded during anaphase I and II (Figures 2k-m), with the

highest frequencies observed at Site 3 (17.14 ± 1.28% and 11.91 ±

1.80%, respectively), followed by Site 2 (13.18 ± 0.59% and 5.36 ±

2.77%) and Site 1 (9.64 ± 1.21% and 4.36 ± 1.60) (Table 1). Lagging

chromosomes are those that fail to migrate properly to the poles

during anaphase, often due to spindle defects or chromosomal

adhesions. Chromosome bridges, resulting from incomplete

separation of chromatids or unresolved chiasmata, were most

prevalent at Site 3 (18.24 ± 0.61% in anaphase I, 12.64 ± 1.31% in

anaphase II), followed by Site 2 (16.55 ± 1.99% and 6.07 ± 1.80%) and

Site 1 (11.09 ± 1.92% and 5.03 ± 1.44%) (Figures 2h-k; Table 1).

Similarly, inter-chromosomal connections were observed in PMCs

during diplotene and diakinesis, occurring at frequencies of 13.43 ±

1.47%, 15.77 ± 1.20%, and 17.39 ± 0.69% at Sites 1, 2, and 3,

respectively. All these meiotic irregularities resulted in the

formation of non-fertile pollen grains and reduced seed set.

The pollen fertility (Figure 2p), fruit set, and seed set of P.

cashmeriana varied significantly among study sites (Table 2;

Figure 2n). Pollen viability was assessed using three staining

techniques: aniline blue, 2,3,5-triphenyl tetrazolium chloride (TZ), and

fluorescein diacetate (FDA). Viability was consistently highest at Site 1

and lowest at Site 3 across all staining methods. At Site 1, pollen viability

was maximum, with 79.57 ± 2.28% for aniline blue, 73.70 ± 1.57% for
frontiersin.org

https://doi.org/10.3389/fcosc.2025.1542455
https://www.frontiersin.org/journals/conservation-science
https://www.frontiersin.org


Qadir et al. 10.3389/fcosc.2025.1542455
TZ, and 73.70 ± 1.57% for FDA. In contrast, Site 3 exhibited the lowest

pollen viability, with 65.83 ± 1.04%, 64.67 ± 1.45%, and 62.30 ± 3.11%

for aniline blue, TZ, and FDA, respectively (Table 2). Similarly, both

fruit set and seed set showed site-dependent variation. Site 1 showed the

highest fruit set (69.77 ± 2.84%) and seed set (62.43 ± 1.85%), whereas

Site 3 exhibited the lowest values, with 59.40 ± 1.25% fruit set and 49.43

± 2.79% seed set (Table 2). These findings indicate a progressive decline

in reproductive success from Site 1 to Site 3, coinciding with increased

frequencies of meiotic abnormalities.
Discussion

In the present study, we determined the chromosome number

and detailed meiotic behaviour of Phlomis cashmeriana from
Frontiers in Conservation Science 05
Kashmir Himalaya, India. This study presents the first report on

chromosome count and meiotic analysis for this species. Our results

revealed a basic chromosome number of x=10 in the studied

populations. Plant populations from all three study sites showed

the same chromosome count of 2n=2x=20, confirming the diploid

nature of the species. Previous reports reveal that all the studied

Phlomis species have chromosome counts of 2n=2x=20 (Aparicio

and Albaladejo, 2003; Ozdemir et al., 2014; Yousefi et al., 2018;

Sadeghian et al., 2021). Azizian and Moore (1982) reported that

Phlomis species in the section Phlomis are characterized by

having 2n=20 chromosomes, while those in the section

Phlomoides have 2n=22 chromosomes. Ozdemir et al. (2014) also

reported a chromosome count of 2n=20 for P. grandiflora H.S.

Thomps. and P. lunariifolia Sm., both members of the Phlomis

section Phlomis.
FIGURE 2

(a-p) Meiotic behavior of Phlomis cashmeriana. (a) PMC at diplotene with 10 bivalents and prominent nucleolus (arrowed); (b, c) PMC at diakinesis
with interchromosomal connections (arrowed); (d) PMC showing 10 bivalents at metaphase I; (e) PMCs with chromatin stickiness at metaphase I
(arrowed); (f) Out of plate bivalent at metaphase I (arrowed); (g) Anaphase I showing 10:10 chromosome distribution at each pole; (h) PMC with
single bridge at anaphase I (arrowed); (i, j) PMCs with multiple bridges at anaphase I (arrowed); (k) A bridge and laggards at anaphase I (arrowed);
(l, m) PMCs with laggards at anaphase I (arrowed); (n) PMC at Anaphase II, (o) Tetrad, (p) Viable and non-viable pollens.
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Other studies have also confirmed a chromosome count of

2n=20 in other species within the genus Phlomis, including P. italica

L., P. lychnitis L., P. herba-venti L. var. tomentosa, and P. purpurea

L., Boiss (Mateu, 1986); P. cypria Post var. cypria (Yildiz and Gücel,

2006); Phlomis composita (Aparicio and Albaladejo, 2003); Phlomis

olivieri Benth. (Yousefi et al., 2018) and Phlomis anisodonta and

Phlomis pachyphylla (Sadeghian et al., 2021).

The present study revealed that meiosis was normal in most

(about 80%) of the observed PMCs; however, some PMCs showed

meiotic abnormalities such as stickiness, laggards, unoriented

bivalents, inter-chromosomal connections, resulting in sterile pollen

grains and low seed set. The meiotic abnormalities were also observed

in some other species of the family Lamiaceae and genus Phlomis

growing in India (Singh et al., 2018). Chromosome stickiness was the

most prominent abnormality observed across all three populations of
Frontiers in Conservation Science 06
P. cashmeriana and has been widely reported in various flowering

plants, including species from the western Himalaya (Tripathi and

Kumar, 2010; Kaur and Singhal, 2012, 2014; Rana et al., 2013; Rashid

et al., 2021: Rashid et al., 2022; Wani et al., 2022). Chromosome

stickiness is thought to arise from defects in the function of specific

non-histone proteins, such as DNA topoisomerase II and peripheral

proteins, which are essential for proper chromatid segregation

(Gaulden, 1987; Azad et al., 2022). Some researchers attribute

chromosome stickiness to genetic and environmental factors

(Nirmala, 1996; Baptista-Giacomelli et al., 2000; Bione et al., 2000;

Saggoo and Farooq, 2011; Jeelani et al., 2012; Rashid et al., 2021). In

the alpine to sub-alpine regions of the Himalaya, harsh environmental

conditions such as low temperatures, high UV radiation, and shorter

growing seasons likely intensify meiotic stress, contributing to

chromosomal stickiness, failure of segregation at anaphase I, and

other irregularities (Weitz et al., 2021; Fu et al., 2024). The formation

of laggards and bridges during meiosis is considered a syndrome

indicating reduced control over the meiotic process (Jones and

Brumpton, 1971; Sofi et al., 2023). Laggards may result from

delayed terminalization and stickiness at chromosome ends (Kaur

and Grover, 1985; Rashid et al., 2022), while bridges are likely caused

by chiasma interlocking in bivalents, chromatin stickiness, and late

disjunction of bivalents (Tarar, 1980; Rashid et al., 2022). The presence

of laggards may also be attributed to irregular spindle formation,

cytoskeletal disruptions, and other cellular changes (Vasek, 1962;

Potapova and Gorbsky, 2017).

The irregularities in the meiotic course—such as chromatin

stickiness, interchromosomal connections, and formation of lagging

chromosomes and bridges can lead to defective sporad formation and

reduced pollen viability (Risso-Pascotto et al., 2005; Kumar and
TABLE 2 Pollen fertility, fruit set and seed set of Phlomis cashmeriana
recorded during the present study.

Characters Study Sites

Site 1 Site 2 Site 3

Pollen viability (%)
i) Aniline blue

79.57 ± 2.28*a 72.90 ± 2.15b 65.83 ± 1.04c

ii) TZ 74.97 ± 1.69a 67.17 ± 2.58ab 64.67 ± 1.45b

iii) FDA 73.70 ± 1.57a 68.70 ± 1.98b 62.30 ± 3.11c

Fruit set (%) 69.77 ± 2.84a 67.03 ± 3.20b 59.40 ± 1.25c

Seed set (%) 62.43 ± 1.85a 58.93 ± 1.0b 49.43 ± 2.79c
*Mean ± SD, means with the different superscript letters in the same column are significantly
different at p ≤ 0.05.
TABLE 1 Percentage of PMCs with normal and irregular meiotic behavior observed at different meiosis stages in Phlomis cashmeriana.

Population
Meiotic
stages

Total
PMCs

Normal
PMCs

PMCs
with
Stickiness

Out of
Plate
Bivalents

PMCs
with
Laggards

PMCs
with
Bridges

Inter-
chromosomal
Connections

Site 1

Diplotene/
Diakinesis

350
81.29
± 1.44*ab

5.28 ± 1.18f 0 0 0 13.43 ± 1.47a

Metaphase I 315 75.6 ± 2.88c 20.59 ± 1.03b 3.81 ± 1.46a 0 0 0

Anaphase I 318 73.61 ± 2.33cd 5.66 ± 0.95f 0 9.64 ± 1.21bc 11.09 ± 1.92bc 0

Anaphase II 298 82.89 ± 2.00a 7.71 ± 0.96de 0 4.36 ± 1.60e 5.03 ± 1.44e 0

Site 2

Diplotene/
Diakinesis

317 76.03 ± 1.86bc 8.2 ± 1.26cd 0 0 0 15.77 ± 1.20a

Metaphase I 304
72.37
± 1.89cde

23.03 ± 1.81ab 4.61 ± 0.62a 0 0 0

Anaphase I 296 63.51 ± 1.65ef 6.76 ± 1.58ef 0 13.18 ± 0.59ab 16.55 ± 1.99ab 0

Anaphase II 280 81.07 ± 2.67ab 7.5 ± 1.23de 0 5.36 ± 2.77de 6.07 ± 1.80de 0

Site 3

Diplotene/
Diakinesis

310 70.29 ± 2.00de 12.32 ± 2.03c 0 0 0 17.39 ± 0.69a

Metaphase I 295 63.1 ± 2.27ef 31.12 ± 1.15a 5.87 ± 1.87a 0 0 0

Anaphase I 290 57.34 ± 0.55f 7.26 ± 1.23de 0 17.14 ± 1.28a 18.24 ± 0.61a 0

Anaphase II 275 67.09 ± 2.92e 7.46 ± 1.42de 0 11.91 ± 1.80b 12.64 ± 1.31b 0
*Mean ± SD, means with the different superscript letters in the same column are significantly different at p ≤ 0.05.
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Singhal, 2008, 2012; Rashid et al., 2021). These meiotic abnormalities

disrupt microsporogenesis and contribute to pollen sterility,

negatively impacting the reproductive success of species in natural

habitats (Lattoo et al., 2006; Kumar and Singhal, 2008, 2012; Kumar,

2010; Rashid et al., 2021). In this study, a clear link was observed

between the frequency of meiotic abnormalities and reduced

reproductive success in P. cashmeriana. Site 1, with the highest

incidence of abnormalities, showed the lowest pollen viability, fruit

set, and seed set, whereas Site 3, with more regular meiotic behavior,

exhibited higher reproductive output. This highlights the direct

impact of meiotic stability on fertility and subsequent fruit and

seed production (Pagliarini, 2000; Souza et al., 2006; Kumar and

Singhal, 2012). Such abnormalities can result in the formation of

abnormal gametes, leading to reduced genetic recombination,

impaired gene flow, and lower genetic diversity among populations

—ultimately threatening long-term survival and adaptability.

Furthermore, in the context of environmental change, factors such

as habitat degradation, climate-induced stress, and pollinator decline

may intensify reproductive constraints. Pollen sterility, combined with

declining pollinator populations due to habitat fragmentation, and

global climate change can significantly reduce fertilization success and

gene exchange between fragmented populations.

While meiotic abnormalities appear to be a key factor, other

ecological and genetic influences—such as pollinator limitation,

environmental stress, and low genetic diversity—may also

contribute to reduced reproductive output (Ashman et al., 2004;

Barrett, 2010). Limited seed dispersal and low seedling recruitment

caused by reproductive bottlenecks could further restrict gene flow

among fragmented populations, increasing inbreeding and

reducing population connectivity—factors that must be

considered in conservation planning (Aguilar et al., 2006; Browne

and Karubian, 2018).

Understanding the causes of the meiotic instability along with

the breeding behavior of the species is crucial for the conservation

and management of threatened and native plants (Souza et al.,

2006). Pollination plays a crucial role in determining fruit and seed

set in P. cashmeriana. The species is pollinated by four different

insect species, including Xylocopa sp., Bombus tunicatus, Apis

mellifera, and a wasp. Although ambophilous, P. cashmeriana

primarily relies on entomophily (Roof, 2024). Given its

dependence on insect pollination, pollen sterility caused by

meiotic irregularities could limit successful fertilization, ultimately

reducing reproductive success. The potential decline in pollinator

populations may exacerbate these challenges, especially in sensitive

ecosystems where both plants and pollinators are vulnerable to

environmental pressures. The effectiveness of pollinators, along

with the availability of viable pollen, significantly influences seed

production. In species exhibiting high pollen sterility, even efficient

pollinators may fail to ensure adequate seed set, leading to lower

reproductive output. The long-term survival of a plant species

depends on effective reproduction and constant recruitment of

new individuals to maintain healthy populations (Corlett, 2007).

In this study, significant meiotic irregularities observed in the

species could contribute to low seed production, leading to a

gradual decline in its population size. Previous studies on some
Frontiers in Conservation Science 07
species have shown that various meiotic abnormalities can reduce

plant fertility or even lead to complete male sterility (Pagliarini,

2000; Wani et al., 2022). From an evolutionary perspective,

persistent meiotic instability can reduce fitness and limit adaptive

potential, making species more susceptible to environmental

change. Given the restricted distribution of the target species,

increasing anthropogenic pressures and the presence of meiotic

bottlenecks could significantly contribute to a decline in its

population size within its native range in the Kashmir Himalaya,

thereby increasing the risk of extinction (Najar et al., 2024) within

its native range in the Kashmir Himalaya, which may decline

further in the near future. Therefore, it is important to devise

conservation strategies for this valuable medicinal plant species.
Conclusions and conservation
implications

This study presents the first comprehensive meiotic analysis of

Phlomis cashmeriana, a valuable Himalayan medicinal herb,

confirming its diploid chromosome number (2n = 2x = 20) and

identifying critical meiotic irregularities that may compromise

reproductive success. Although most Pollen Mother Cells (PMCs)

exhibited normal meiosis, abnormalities such as chromosomal

stickiness, laggards, unoriented bivalents, and interchromosomal

connections were observed—among which chromosomal stickiness

was most frequent. These disruptions were associated with reduced

pollen viability and seed set, indicating potential reproductive

bottlenecks that could limit natural regeneration.

Environmental factors characteristic of high-altitude habitats,

including low temperatures and elevated ultraviolet radiation, are

likely contributors to these meiotic disturbances. Given the species’

medicinal significance and the increasing anthropogenic pressures on

its native habitats, such reproductive challenges may critically threaten

population viability and long-term survival. Thus, integrating

cytogenetic insights into broader conservation frameworks is vital.

The observed meiotic irregularities—particularly chromosomal

stickiness, laggards, bridges, and interchromosomal connections—

impair microsporogenesis and reduce reproductive efficiency. In the

montane ecosystems of the Kashmir Himalaya, where populations

are already impacted by habitat degradation and unsustainable

harvesting, these reproductive constraints pose a serious risk to

species persistence. Limited seed output and reduced genetic

recombination due to meiotic instability may further decrease

genetic diversity, increasing vulnerability to environmental

stressors and human activities.

Urgent conservation interventions are warranted, including

habitat protection, regulation of wild harvesting, and promotion

of in situ conservation measures. Simultaneously, the development

of ex situ strategies—such as seed banking and micropropagation—

will be crucial for safeguarding germplasm and supporting

restoration initiatives. Future research should integrate

cytogenetic assessments with studies on breeding systems, genetic

diversity, and ecological adaptability to inform effective

conservation and sustainable utilization. This study underscores
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the importance of reproductive biology in shaping conservation

priorities for P. cashmeriana and other ecologically significant

Himalayan endemics.
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