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Annual point counts are commonly used to monitor birds to track population

densities across space and time. Palila (Loxioides bailleui) are surveyed annually in

the first quarter, but we recently instituted quarterly sampling that offers a unique

opportunity to improve estimator precision. We conducted point-transect

distance sampling point counts during the first quarter of 2020 through 2024,

and the second through fourth quarters in 2022 and 2023, and the second

quarter in 2024. The reduced sampling intensity during the quarterly counts,

however, requires model-based methods to estimate abundance to the entire

sampling frame. We modeled spatial and temporal correlation using a soap film

smoother within a generalized additive modeling framework, a density surface

model, fitted to palila counts each quarter for the five-year timeseries to track

changes in population abundances. Our results indicate that palila maintained a

high-density hotspot throughout the five-year timeseries; however, the extent of

the hotspot declined substantially over the timeseries while densities within the

hotspot declined from about 3 birds/ha in 2020 to about 1 bird/ha in 2024, which

resulted in a 66% decline in palila abundances over 5 years. Density surface

model estimates give on average a confidence interval width that was 74.7%

shorter than the associated distance sampling confidence interval widths. Our

results indicate that palila may benefit most if management actions were applied

within the remaining hotspot. Additionally, this temporally fine-grained sampling

provides information on seasonal movement patterns and resource tracking, and

population response to management and conservation actions. Our spatially

explicit, model-based approach is applicable to a wide range of monitoring

programs, particularly those with inconsistent, opportunistic spatial coverage.
KEYWORDS

abundance, density surface modeling, distribution, generalized additive model, Hawai’i,

Loxioides bailleui, palila, spatio-temporal model
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Introduction

Annual, long-term point counts are commonly used to monitor

birds across large-scales, such as the North American Breeding Bird

Survey (Link and Sauer, 1998) and Christmas Bird Count (LeBaron,

2023), and at local and island- or region-scale point counts such as

the Hawaiian Forest Bird Survey (Camp et al., 2009). These surveys

provide essential information on species’ distribution and when

combined with ancillary data necessary to estimate detection

probability, such as distance sampling (Buckland et al., 2015),

they provide information to track population densities across

space and time (Gorresen et al., 2009). Increasing the frequency

of surveys from annual to quarterly counts may improve estimator

precision and is a common approach to describe the variability in

counts at survey points that arises from differences among breeding

cycles and seasons. This additional information facilitates tracking

population distribution and size, movement and biological

processes such as resource tracking, and responses to

management and conservation actions.

The palila (Loxioides bailleui), a seed-eating, finch-

billed Hawaiian honeycreeper (family Fringillidae: subfamily

Drepanidinae), is listed as Critically Endangered by the

International Union for the Conservation of Nature (BirdLife

International, 2021), Endangered by the U.S. Fish and Wildlife

Service (USFWS (U.S. Fish and Wildlife Service), 1967), and

Endangered by the State of Hawaii (Hawaii Administrative Rules,

2013). Palila were once widely distributed on multiple Hawaiian

Islands (Olson and James, 1982; Burney et al., 2001) and across

diverse habitats from lowland dry-forest through montane dry- and

mesic-forest to subalpine dry-woodland (Banko and Banko, 2009).

Palila are now found only in subalpine, dry-woodland habitat on

the southwestern slope of Mauna Kea, Island of Hawai’i, where their

numbers and range have been rapidly contracting (Banko et al.,

2020; Genz et al., 2022).

Palila abundance, reproduction, and survival are strongly

associated with the availability of their primary food, the unripe

seeds of māmane (Sophora chrysophylla: Fabaceae; van Riper et al.,

1978; Scott et al., 1984; Lindsey et al., 1995; Banko et al., 2009).

Palila track the availability of māmane pods (Fancy et al., 1993; Hess

et al., 2001), which vary over time along an elevation gradient

(Banko et al., 2002). Detailed information about palila life history,

conservation, and management is provided by Banko et al. (2009,

2013, 2014), Banko and Farmer (2014), and references therein.

Since 2020, palila movements have been limited to a core-

survey area on the southwestern slope of Mauna Kea, where they are

surveyed regularly using point-transect distance sampling methods

(point counts; Genz et al., 2022). Starting in 2022, quarterly point-

count surveys were conducted to better track changes in population

densities and to understand palila seasonal movement patterns

within the core-survey area. The quarterly counts, however, were

restricted to the area where palila are concentrated. Thus, analyzing

the quarterly counts with design-based methods is inappropriate

and spatially explicit, model-based methods are required to estimate

abundance to the entire sampling frame.
Frontiers in Conservation Science 02
The primary objective of our study was to identify and evaluate

the distribution of density hotspots within the core-survey area. Our

second objective was to estimate seasonal palila densities accurately

and precisely by modeling the spatial and temporal correlation in

palila counts. Our approach provides distributional information

that managers can use to identify areas where management

decisions may be most effective. Our approach can also be

applied to other species and is applicable to other point count

studies where data are collected using distance sampling methods

(e.g., Bak et al., 2024; Richardson et al., 2024).
Methods

Study area

Our study area was located on the upper southwestern slope of

Mauna Kea, Island of Hawai’i (19°50′N, 155°35′W), USA

(Figure 1). Survey transects extended from tree line at

approximately 3,000-m elevation down to about 2,000-m

elevation through the subalpine zone that is dominated by

māmane and naio (Myoporum sandwicense: Scrophulariaceae)

woodland, with native shrubs and non-native grasses and forbs

common throughout the lower and middle portions of the study

area and native grasses more abundant at the higher elevations. The

climate is cool and dry, with annual temperatures averaging 11.1 ±

1.5°C and annual rainfall averaging 511 mm, including substantial

inputs from cloud water interception (Giambelluca et al., 2013).

Detailed information about the substrate and lava flows, habitat,
FIGURE 1

Location of palila sampling (red dot) conducted on Mauna Kea,
Island of Hawai’i. Black lines are survey transects sampled between
2020 and 2024.
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and climate is provided by Hess et al. (1999, 2014), Johnson et al.

(2006), Banko and Farmer (2014), and references therein.
Survey data

Annual point-transect distance sampling surveys for palila and

other forest birds were conducted in the forests around Mauna Kea,

Island of Hawai’i starting in 1980 (Scott et al., 1984). The sampling

frame was changed in 1998 when additional transects were added

on the southwestern slope to produce a more precise population

estimate and provide more complete coverage of a core survey area

containing > 95% of palila detections (hereafter, core area; Johnson

et al., 2006; Leonard et al., 2008). Since 2020, no palila have been

detected outside the core area despite expanded sampling during

annual surveys in 2022, 2023 and 2024 (Hunt et al., 2025). Within

the core area, sampling points were spaced approximately 150 m

apart on 13 transects between 3 km and 7.5 km in length that

descended from the tree line. During a six-minute count at each

point, trained observers recorded the species, detection type (heard,

seen, or both), and distance of each bird from the observer. Time of

sampling and weather conditions (cloud cover, rain intensity, wind

strength, and gust strength) were also recorded, and surveying was

postponed when conditions hindered the ability to detect birds

(wind and gust strengths > 20 kph, e.g., Beaufort scale ≥ 4, or heavy

rain). Counts commenced at sunrise and continued up to four

hours. For our analyses, we evaluated patterns from annual point

count data collected during the first quarter of 2020 through 2024

(hereafter annual surveys) and quarterly point count data collected

from the second quarter of 2022 through the second quarter of 2024

(hereafter quarterly surveys; 12 surveys in total). The quarterly

surveys were initially spatially restricted to the upper portions of

transects where palila were detected during annual surveys, a subset

of the annual survey sampling points. Starting in 2023, the spatial

extent of the quarterly surveys was expanded to include the upper

and middle portions of transects, an area that included the entire

distribution of palila (Figure 2).
Detection function modeling

Miller et al. (2013) describe a “2-stage” density modeling

approach whereby the detection probability is modeled in the first

stage using distance sampling methods and is then passed to and

used as an offset term in a generalized additive model (GAM),

which predicts counts based on smooth functions of spatial and

temporal covariates. Using the Distance package (Miller et al., 2019)

in R (R Core Team, 2024) we fitted half-normal and hazard-rate key

detection functions and the key models with either adjustment

terms or covariates to estimate the detection probability.

Preliminary analysis revealed key detection functions with

adjustment terms were not strictly monotonic, and there were

only sufficient detections per factor to model the covariate survey

(year and quarter). Data were truncated at a distance w where the

estimated detection probability (using a preliminary detection
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function model) was about 0.1. Model selection for the detection

function used Akaike information criterion (AIC) and model fit was

evaluated with a Cramér-von Mises test (Buckland et al., 2015). Our

approach follows methods detailed in Thomas et al. (2010) and

Buckland et al. (2015). Data manipulation was performed using the

tidyverse package (Wickham, 2022) and figures were generated

using the ggplot2 package (Wickham et al., 2022) in the RStudio

(RStudio Team, 2023) integrated development environment of

program R.

The detection probability from distance sampling was entered

in the smoother model as an estimated offset, which adjusts counts

for undetected animals (Camp et al., 2020). In practice the detection

probability variance, i.e., the variance in the slope of the probability

density function of detected distances, is small (<< 10%) while the

variation in counts among points, the encounter rate variance,

typically dominates the component percentages of uncertainty in

density estimates (Camp et al., 2009; Buckland et al., 2015). Thus,

not propagating the detection probability variance through the

GAM likely had minimal effect in underestimating total

uncertainty while the encounter rate variability was efficiently

modeled in a principled way via the smoother model (Camp, 2021).
Smoother modeling

A soap film smoother was used to account for the complex

study boundaries, including a polygon with concave arcs (Wood

et al., 2008). Soap film smoothers require defining a study area

boundary that constrains predictions by the survey sampling

domain and the extent of the spatial predictor variables. A

boundary encompassing the points was delineated using R

package splancs (Bivand et al., 2017). Camp et al. (2023) provides

a detailed description of how the boundary accounting for habitat

was delineated. The study area bounded domain contained 91,409,

30x30 m cells and an area of 8,226.81 ha. The extent of core area

used herein differs from that of Genz et al. (2022; 6,440 ha) and

Hunt et al. (2025). The main difference between the study areas is

that our expanded area includes the critical habitat on the west

slope. The number and location of knots (knots identify the

dimension of the basis function controlling the amount of

wiggliness) spread throughout the bounded domain was a priori

defined as a set of knots on a regular 20 x 20 grid (400 total knots)

using the make.soapgrid function of the dsm package (Miller et al.,

2020). There were 138 knots inside the domain. The soap smoother

is a two-component smooth where one component models the

surface delineated by a domain and the other component models

the polygon bounding the domain (i.e., the soap boundary). Density

values on the boundary were fixed to zero as the breeding

population of palila occurs only within the core area (Banko and

Farmer, 2014).

The response variable, count, was a discrete, non-negative value

and is reasonably modeled with Poisson, negative binomial, and

Tweedie distributions. We checked model assumptions through

inspection of the deviance residuals and refitting the selected model,

with intercept, to the residuals to determine the amount of any
frontiersin.org
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remaining residual variance following methods described by Marra

et al. (2012) and Wood (2017).

The models were built in R using the mgcv package (Wood,

2016). The mgcv optimization routine used to fit smooth terms is

designed to balance the bias-variance trade-off (Wood, 2017) and

we used restricted maximum likelihood (REML) methods to

estimate smoothing parameters. We used AIC to select among

the combination of smoother models following guidance provided

in Wood (2017). We estimated abundances and their uncertainty

using a Metropolis-Hastings sampler. A Metropolis-Hastings

sampler is a simulation method for obtaining a random draw of

samples from a posterior distribution, and the Metropolis-Hastings

sampler is more appropriate both for counts that are not
Frontiers in Conservation Science 04
approximately Gaussian and for spatial models where large areas

have zeros, which were common in the palila dataset. We obtained

1,000 replicate parameter value sets from the posterior distribution

of densities based on a Metropolis-Hastings sampler with a vector

of covariates conditional on the data and the posterior variance-

covariance matrix. We used a burn-in of 10,000 samples and set the

sampler with t-distribution degrees of freedom (t.df) of 15 and a

random walk step (rw.scale) size of 0.04. A t.df controls the amount

of sampling from the tails of the density distribution with a small

value sampling more from the tails. The t.df value was increased

from 15 by 5 until biologically unrealistic population estimates were

excluded (> 8,000 individuals; the maximum 95% CI upper limit

from Genz et al., 2022). We increased the size of the random walk
FIGURE 2

Location of samples and palila detections during each survey conducted on Mauna Kea, Island of Hawai’i, from 2020 through 2024 (refer to Figure 1
for study area location). Survey points are represented with gray dots, points sampled during a specific survey are represented with black dots, and
points where one or more palila were detected are represented with yellow dots. The black polygon is the core study area. Base map from World
Geodetic System 1984 (WGS84) zone 5 from U.S. Geological Survey’s National Elevation Dataset (USGS (U.S. Geological Survey), 2014).
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step from 0.01 by hundredths until the acceptance probability was

about a quarter (Wood, 2016). We refitted the linear predictor

matrix to the replicate sets and estimated abundance as the mean

and median of the replicate sets and SE as the standard deviation of

the replicates. The 95% confidence intervals (CIs) were computed

from the 2.5th and 97.5th quantiles.
Results

The number of points sampled varied from 116 to 212 for the

quarterly surveys (quarters 2, 3 and 4) and from 444 to 742 for

annual surveys (quarter 1; Figure 2). More than twice as many palila

were detected during annual surveys (49—141; 84.6 ± 37.9 SD),

which sampled all of the palila core survey area, than were detected

during the second through fourth quarterly counts (14—65; 42.1 ±

17.1; Figure 2).

The hazard-rate detection function with covariate for survey

(year and quarter) was > 28 AIC units smaller than other models

(Supplementary Table S1). Key models including adjustment terms

either failed to converge, were not monotonically decreasing, or

were not selected. The Cramér-von Mises test for the best-fit model

was non-significant at the alpha = 0.05 level indicating that the

detection function provided a satisfactory fit to the distance

histogram. Inspection of diagnostic plots also indicated that the

model adequately fit the data (Supplementary Figure S1).

Truncation distance was w = 87.5 m yielding 615 observations

from 3,740 points. The effective area surveyed was n̂ = 1.352 ha and

the detection probability was p̂ = 0.562 (SE = 0.028).

The Tweedie distribution had the lowest AIC by > 31 AIC units

and inspection of residual quantile-quantile (QQ) plots showed that

the Tweedie distribution gave the best fit to the data

(Supplementary Table S2, Supplementary Figure S2). Inspection

of the Tweedie distribution diagnostic plots fitted with a soap film

smoother for spatial variables and a temporal smooth, the full

model, revealed that the residual errors showed acceptable behavior

(Supplementary Table S3, Supplementary Figure S3). The estimated

Tweedie over-dispersion parameter was 1.101 and the scale

parameter was 1.666 while the deviance explained was 47.4% for

the full model (Supplementary Figure S4). The effective degrees of

freedom values were approximately zero for the model refitted to

the residuals, suggesting that there was little un-modeled residual

structure (Supplementary Table S4).

Throughout the timeseries, there was a high-density palila

hotspot in the east, central portion of the core area that is

surveyed annually (Figure 3). Palila density remained low along

the entire southern portion, lower southwestern boundary, and

northern lobe of the core survey area. We defined the hotspot as

cells with predicted densities > 0.5 birds/ha, a density that is

relatively high for the rare palila and useful for management

planning. The extent of the hotspot contracted 66% from 686 ha

in the first quarter of 2020 to 231 ha in the second quarter of 2024,

and the rate of range contraction was relatively constant across the

timeseries (Supplementary Table S5). While the hotspot was

contracting, the area extent of very low densities, < 0.25 birds/ha,
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in the 8,227-ha core area increased by only 7% from 7,203 ha in the

first quarter of 2020 to 7,732 ha in quarter two of 2024.

Densities within the hotspot declined from about 3.4 birds/ha in

2020 to less than 1.2 birds/ha in each quarter in 2023 and 2024. The

distribution of standard errors followed the same pattern seen in

densities (Figure 4). Uncertainties were greatest in the east, central

portion of the core survey area and were zero or near zero elsewhere

in the core survey area. As the palila population declined

throughout the timeseries, standard errors declined from a high

of 1.7 birds/ha in 2020 to about 0.6 birds/ha in each quarter in 2023

and 2024. The spatial distribution of coefficients of variation

remained consistent throughout the timeseries (Supplementary

Figure S5), indicating that the spatial distribution and ratio in

uncertainty in density and standard error estimates has

changed little.

Overall, we observed that the palila range had contracted (i.e.,

smaller extent of the hotspot) and densities within the contracting

range had declined across the timeseries, which resulted in

declining abundance from about 1,500 palila in 2020 (95% CI

1,264—1,949) to about 530 palila in the second quarter of 2024

(95% CI 421—669; Table 1). This decline was significant over the 5-

year timeseries (F1,10 = 90.4, p <0.001; Figure 5). Palila declined

sharply between 2020 and 2023, but abundances since the first

quarter of 2023 have fluctuated at 500 or fewer birds and

abundances increased slightly during the first two quarters of

2024 to just over 500 birds.
FIGURE 3

Predicted spatio-temporal surfaces of palila densities in the core
survey area on Mauna Kea between 2020 and 2024. Densities range
from 0 (violet) to 3.5 birds/ha (yellow).
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Discussion

Understanding species’ distribution can help to inform effective

species’ management and conservation. We fitted a generalized
Frontiers in Conservation Science 06
additive model with a soap film smoother and detectability, first

estimated using conventional distance sampling, entered as an

estimated offset, which adjusts counts for undetected animals, a

DSM, to simultaneously identify the distribution and estimate the

density of palila based on quarterly surveys. Our results indicate

that palila maintained a high-density hotspot throughout the five-

year timeseries, and that the hotspot was in the same location as that

identified in 2017 (Camp et al., 2023). The extent of the hotspot

with densities > 0.5 birds/ha, however, declined substantially over

the timeseries from nearly 700 ha in 2020 to just over 200 ha in

2024, indicating a 66% range contraction. In 2017, the extent of the

hotspot estimated using excursion set analysis with densities > 1

bird/ha was about 1,500 ha (Camp et al., 2023). The equivalent

high-density area with palila > 1 bird/ha in the second quarter of

2024 was only 11 ha, or a 93% decline in the extent of the hotspot in

just 7 years. Moreover, areas where palila were rare remained so

throughout the timeseries and there was no indication that the

location of the density hotspot had changed, either moving up- or

down-slope or migrating east or west, among seasons. Management

efforts, such as increased mammalian and avian predator control,

predator exclusion, and supplemental feeding, that coincide with

the location of the hotspot could therefore help arrest the decline of

palila, although expanding management to enlarge the hotspot or to

facilitate other hotspots may be needed to increase population

persistence in the longer term.

Contraction of the palila hotspot was matched with declines

in abundance. Densities within the hotspot declined from

about 3 birds/ha in 2020 to about 1 bird/ha in 2024. The

combined contracting hotspot and decreasing density yielded

correspondingly lower abundances and a downward trend across

the timeseries (Figure 5). We observed a 66% decline in abundance

over 5 years, which was on par with the decline Genz et al. (2022)

observed in the decade between 2012 and 2021 (54%), but

substantially less than the 89% decline they observed for the 23-

year period 1998 to 2021. The decline evident in the quarterly

surveys since 2020 also corroborates the trend of declining annual

abundances that Hunt et al. (2025) observed over the most recent 5-

and 10-year trends from 2019 and 2014, respectively. Because of the

different methods, our DSM estimates were some 240 to 330 birds

higher than estimates by Genz et al. (2022) who used distance

sampling (DS) methods. We used the same truncation distance

(87.5 m) and hazard-rate key detection function as Genz et al.

(2022) and Hunt et al. (2025); however, we incorporated additional

survey data, fit a spatio-temporal-correlated smoother model

instead of a standard distance sampling model, and estimated

confidence intervals using a Metropolis-Hastings sampler instead

of bootstrap procedures used in standard distance sampling

analyses. Despite our abundances differing by roughly 148 birds

less (in 2024) to 357 birds more (in 2021) than Hunt et al. (2025),

the confidence intervals bracketed the mean point estimates in all

but the 2021 survey, indicating that the differences were not

statistically significant.

Uncertainty in the DSM estimates was relatively large (mean

CV = 32.6%, standard deviation (SD) = 1.8) compared to

uncertainty of the annual DS estimates by Genz et al. (2022;
TABLE 1 Predicted palila abundance and uncertainty on Mauna Kea
between the first quarter of 2020 and the second quarter of 2024.

Yr &Qrt Mean Median SE CV LCL UCL

2020 Q1 1,553 1,488 547 0.37 1,264 1,949

2021 Q1 1,036 1,007 314 0.31 849 1,361

2022 Q1 727 700 223 0.32 583 950

2022 Q2 698 672 215 0.32 560 918

2022 Q3 670 648 206 0.32 535 888

2022 Q4 643 622 199 0.32 515 856

2023 Q1 507 485 164 0.34 413 650

2023 Q2 496 475 160 0.34 403 631

2023 Q3 488 467 155 0.33 396 617

2023 Q4 482 462 152 0.33 390 607

2024 Q1 518 500 153 0.31 416 652

2024 Q2 530 511 155 0.30 421 669
FIGURE 4

Predicted spatio-temporal surfaces of palila standard errors in the
core survey area on Mauna Kea between 2020 and 2024. Standard
errors range from 0 (violet) to 1.8 birds/ha (yellow).
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2020 = 15.0% CV and 2021 = 18.7% CV) and Hunt et al. (2025;

mean = 18.9%, SD =2.4). Similarly, Camp et al. (2023) observed that

the DSM estimate was less precise than the DS estimate for palila in

2017. In contrast to comparing CVs, the confidence interval widths

(CI widths) can be calculated following methods described in Camp

et al. (2020) to compare the performance of DSM and DS methods.

DSM gives on average a CI width that was 74.7% shorter than the CI

widths using the DS methods of Hunt et al. (2025; SE = 26.8;

Table 1). This pattern matches the shorter CI widths using DSM

methods for Hawai’i ‘ākepa (Loxops coccineus), where Camp et al.

(2020) observed that CI widths were 37% shorter using DSMs

compared to DS methods. Our DSM method accounted for spatio-

temporal correlation in palila counts that yielded substantial

reduction in the length of the CI widths compared to DS

methods. Moreover, quarterly surveys early in the time series

were less structured and had slightly larger CVs than the more

recent quarterly survey that followed a more standardized, formal

structure with greater spatial coverage (CV = 0.32 vs. CV = 0.30;

Table 1, Figure 2). The narrower CIs of DSMs increases the ability

to detect population trends.

Quarterly surveys occurred predominately within the hotspot,

an area where palila were known to occur based on previous annual

surveys. This targeted sampling prohibited estimating abundance

using standard distance sampling (Buckland et al., 2015); however,

when combined with the more extensive annual surveys, the

quarterly surveys may better inform palila distribution and
Frontiers in Conservation Science 07
density estimates when analyzed using GAMs within the DSM

framework. Although palila are not territorial, they show strong site

tenacity and their small home ranges are confined to the core area

throughout the year (Fancy et al., 1993). Based on radio tracking

data, palila median distances moved was relatively short and similar

during both breeding and non-breeding seasons (349 ± 81 m and

388 ± 34 m, respectively). Thus, it is unlikely that birds moved or

migrated outside of the hotspot during our time series; therefore,

substantiating our spatially explicit extrapolation of the quarterly

surveys. The extent of the sampling in earlier quarterly surveys was

limited to short segments of transects within the palila hotspot and

had slightly less precise estimates than the more recent quarterly

surveys that were more standardized and had greater spatial

coverage, sampling large sections of several transects across the

palila hotspot. The quarterly surveys in 2023 had the least amount

of spatial coverage and the largest CVs; thus, precision was

positively related to the extent of spatial coverage of the surveys

with greater coverage yielding greater precision. GAMs take

advantage of the spatial association of the observations through

modeling the spatial autocorrelation, assuming that observations

close to each other are more likely to be similar (Legendre, 1993).

GAMs are a semiparametric extension of generalized linear models

(Hastie and Tibshirani, 1990) and have the advantages that the

relationship between the natural processes response and

explanatory variables are often better approximated using

curvilinear models and that the data determines the shape of the
FIGURE 5

Palila population estimates from annual and quarterly surveys between 2020 and 2024 on the southwestern slope of Mauna Kea. The closed circles
are the mean point estimate and whisker bars are the 95% confidence interval of the point estimates, the line represents the best fit log-linear
regression, and the shaded area shows the 95% confidence interval of the trend.
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response. Temporal and other explanatory variables, such as

elevation, precipitation, and land cover type, can be included in

GAMs, and we added a term to account for temporal

autocorrelation in our model. Interpolation then yields predicted

estimates for locations with no observations, which allows us to

combine the quarterly surveys with the extensive annual surveys to

produce maps of seasonal population distribution and density.

Our spatio-temporal GAM accounted for 47% of the deviance,

and accounting for temporal autocorrelation explained 2% more

deviance than the spatial-only GAM fitted to the 2017 survey

(Camp et al., 2023). Thus, spatial autocorrelation remained

(Supplementary Figure S4). Expanding the quarterly sampling by

establishing more transects within and adjacent to the hotspot could

improve model inference and sampling on a high-density grid

would be expected to better capture the spatial correlation among

sampling points compared to the current low-density, irregular

spaced point sampling frame, which should yield more precise

population estimates (Cressie and Wikle, 2011). Although

switching to a high-density grid would not be needed to track

changes in palila densities and may not yield substantial

improvement in DS-based estimates, it would substantially

increase survey effort. Passive acoustic monitoring using

autonomous recording units may be an efficient alternative

technique for surveying palila (Navine et al., 2024b). Moreover,

Navine et al. (2024a) demonstrated that there is generally a strong

correlation in call density estimated with Perch (Google Perch Bird

vocalization Classifier; Denton et al., 2023, 2024) and bird densities

estimated using distance sampling in Hawaiian forest birds.

Expanding the spatial coverage of the quarterly surveys to

sample upslope and downslope and east and west of the hotspot

could provide data on palila movement and resource use to inform

effective conservation and management decision-making. Palila

may be concentrating in the hot spot due to the small population

and social preferences and interactions, and a lack of additional

high quality māmane forest available elsewhere in the core-survey

area. Historically, the māmane forest was heavily impacted by

ungulates but regeneration of māmane and other native plants

have improved following sheep (Ovis aries and O. a. musimon) and

goat (Capra hircus) removals of the 1980s and 1990s (Hess et al.,

1999; Banko et al., 2014). Ungulate control continues with aerial

shooting and public hunting to maintain lower ungulate numbers

(C. K. Asing, University of Hawai ’ i – Mānoa, written

communication, 2024) and qualitatively there is less browse

damage and more understory since earlier ungulate removals,

thus, palila may no longer be limited by ungulate browse that

previously limited the availability of māmane pods (Banko et al.,

2014). Instead, palila may be limited by arthropod or other food

resources, and expanded spatial coverage of the quarterly surveys

may provide information on palila movement to other potential

high-quality habitats. Mapping of the palila DSM overlayed with

current management areas could lead to increased overall

effectiveness. This would provide information necessary to
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identify areas for follow-up resource use research and target

where additional management actions may be most beneficial to

the species long-term survival.
Conclusions

A major goal of our study was to combine quarterly surveys

with annual surveys within a DSM framework to identify and map

seasonal changes in palila distribution and density. Our DSM

incorporating spatial and temporal autocorrelation yielded annual

abundance estimates similar to those of Genz et al. (2022) and Hunt

et al. (2025), but our DSM estimates yielded substantially shorter CI

widths, which improved our understanding of population trends,

and our upper confidence limit can be used as the maximum

population size to help guide management and conservation

decisions. Based on quarterly surveys, the location of the palila

high-density hotspot has not changed, but the size of the hotspot

has contracted 66% to slightly more than 200 ha, and densities

within the hotspot declined from about 3 birds/ha in 2020 to about

1 bird/ha in 2024. Palila may benefit most in the short-term if

management actions were applied within the remaining hotspot.

Further intervention is likely needed to halt range contraction,

arrest population declines, and prevent their extinction. We

conclude that our approach to include the spatially limited,

quarterly surveys with the more extensive annual surveys

produced accurate inferences for palila. Our modeling approach

can be extended to other taxa and systems; however, caution is

advised in applying our modeling approach for species that move

much outside the extent of the most limited surveys.
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