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The applications of the deep reinforcement learning method to achieve the arcs welding by
multi-robot systems are presented, where the states and the actions of each robot are
continuous and obstacles are considered in the welding environment. In order to adapt to
the time-varying welding task and local information available to each robot in the welding
environment, the so-called multi-agent deep deterministic policy gradient (MADDPG)
algorithm is designed with a new set of rewards. Based on the idea of the distributed
execution and centralized training, the proposed MADDPG algorithm is distributed.
Simulation results demonstrate the effectiveness of the proposed method.
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1 INTRODUCTION

Welding control is an important technology in industrial manufacturing due to the fact that its
performance can determine the product quality (Shan et al., 2017). With the development of
information technology, coordinated welding control, using multiple arc-welding robots to achieve a
complex welding task, has increasingly received attention. Some details can be found in Hvilshøj
et al., 2012; Feng et al., 2020; Zhao and Wu, 2020). The key of coordinated welding control is to
optimize collaborative welding path without collision.

The classical method in this line of research is trajectory planning. In Cao et al. (2006), an artificial
potential field algorithm is presented. However, such method just achieves the local optimization. In
Enayattabar et al. (2019), a greedy method called the Dijkstra algorithm is designed only for the
graphs with positively weighted edges. The so-called A* algorithm is proposed in Song et al. (2019).
However, the A* algorithm will be exponential with spatial growth. Therefore, there is a trend to use
intelligent algorithms to solve the welding control problem. The details can be found in bioinspired
neural network (Luo and Yang, 2008), the genetic algorithm (Hu and Yang, 2004), the colony
algorithm (Karaboga and Akay, 2009), and the particle swarm optimization (Kennedy and Eberhart,
1995). Due to the limitation of a large number of calculations and slow convergence speed for these
basic intelligent algorithms in increasingly complex tasks, many improved methods building upon
the above method have been proposed. In Luo et al. (2019), an improved bioinspired neural network
is designed to reduce the time cost and the mathematical complexity in the case of trajectory
planning. In Nazarahari et al. (2019), an enhanced genetic algorithm to improve the initial paths in
continuous space and find the optimal path between start and destination locations is given. In Pu
et al. (2020), an improved ant colony optimization algorithm integrated to the pseudo-random state
transition strategy is designed in the three-dimensional space. In Mohammed et al. (2020), an
enhanced particle swarm optimization algorithm to find a safer path is presented. In Chen et al.
(2017) and Chen et al. (2019), a coordinated path following control law is designed without any
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optimization. It is noted that the above methods rely on the
accurate mathematical models, and thus it is difficult to be
applied in the dynamic environments and the complex scenarios.

Recently, reinforcement learning methods stand out in various
competitions, for example, Go game (Silver et al., 2016) and
StarCraft (Vinyals et al., 2019; Sutton and Barto, 2018). Such
methods using the reward values and the information of the
environment to update an intelligent algorithm give lights in
coordinated trajectory planning. In Tang et al. (2019), the idea of
a multi-agent reinforcement learning method is introduced in the
case of trajectory planning. With knowledge of the whole
environmental information, a rule-based shallow trial
reinforcement learning algorithm is given. In Qie et al. (2019),
a reinforcement learning method for the continuous state and
action space is given based on the Actor-Critic (AC) framework.
In Lowe et al. (2017), a MADDPG algorithm is designed based on
the structure of the distributed execution and the centralized
training. As we all know, the reinforcement learning method has
not been used in the coordinated welding control problem.

This paper deals with the coordinated welding control
problem of multi-robot systems. To achieve the time-varying
welding task, the optimization of robot trajectory, and collision
avoidance, a MADDPG algorithm with a new set of rewards is
designed based on local information available to each robot in the
welding environment. This is the first result of the application of
using the deep reinforcement learning method in the coordinated
welding control problem.

The remainder of the paper is structured as follows: Section 2
presents the problem formulation of coordinated welding.
Section 3 provides the MADDPG with a new set of rewards.
Section 4 gives the validation of the algorithm by simulations.
Conclusions are given in Section 5.

2 PROBLEM FORMULATION

Since two or three mechanical arms are generally used in the
actual ship welding, let us consider that n≥ 2 welding robots
denoted by r1, . . . , rn and m≥ n welding arcs in the two-
dimensional (2D) space, as shown in Figure 1A. Each robot is

a kinematic point with the second-order dynamical system
given by

{ _pi � vi
_vi � ui,

(1)

where pi(t) � [pxi (t), pyi (t)], vi(t) � [vxi (t), vyi (t)] ∈ [−1, 1], and
ui(t) � [uxi (t), uyi (t)] ∈ [−1, 1] are its position, velocity, and
control input, respectively.

The objectives of this paper are to optimally accomplish all the
welding arcs without any collision. In this paper, the following
assumptions are required: 1) a welding arc can be welded by a
robot with a constant speed; 2) once a welding arc is
accomplished, it can not be welded again; 3) the states of
welding arcs are accessible to all robots but only the
neighbors’ states and obstacle status with local measurements
are known to each robot; 4) without loss of generality, the shapes
of all robots and all obstacles are round and the shapes of all
welding arcs are straight lines.

3 MADDPG ALGORITHM

In this section, the main designing process will be given by
referring to MADDPG (Lowe et al., 2017). The environment
consists of agents model, action space, and state space, where the
model of each agent moving the 2D environment, and the states
{pi, vi} and the actions ui are defined in the previous section.

In our algorithm, there are actor network, critic network, and
two target networks used for each robot. Specifically, there are
two Muti-Layer Perception (MLP) layers of 256 and 128 neurons
with Rectified Linear Unit (RELU) activation and softmax action
selection on the output layer in the actor network. In the critic
network for each robot, there are three MLP layers of 256, 128,
and 64 neurons with RELU activation and softmax action
selection on the output layer. The structures of two target
networks are the same as the actor network and the critic
network, respectively, but their update times are not
synchronized for satisfying the independence and the
distribution of the sampled data. In the execution, the actor

FIGURE 1 | The environment of assumed welding and the reward of the robots with different weight coefficients.
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network outputs the action of each robot for the exploration
based on the states obtained by itself. Then, the environment
outputs the rewards and the states at the next moment according
to the actions. In the training, the critic network evaluates the
action chosen by each actor network to improve the performance
of the actor network by constructing a loss function. The in-batch
data of tuples is sampled uniformly from the replay buffer D
composed of the states and the actions of all robots at the current
moment, and the reward and the state of all robots at the next
moment, which is the input of each critic network. Episodes are
used for learning such that it is terminated when all welds are
executed or the number of steps reaches the maximum.

The total reward

rtotal � k1riw(t) + k2rid(t) + k3ric(t) (2)

consists of three terms, where k1, k2, and k3 are the weight
coefficients. Each term is listed as follows. In Equation 1, the
welding-based reward riw(t) is set by

riw(t) � { 1, robot i is welding
0, otherwise.

(3)

This forces the robots to find the welding arcs that are not welded.
In Equation 2, the distance-based reward rid(t) is set by

rid(t) �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, all robots are welding

−∑m
j�1
(sh(j, t) − 1)min( d(i, j, t)

sa(i, t) + σ
), otherwise.

(4)

Here, d(i, j, t) represents the distance from the robot i to the
starting point of the welding arc j at time t and σ is a small positive
value for avoiding the invalid distance. sh(j, t) is equal to 1 when
the welding arc j is welded at time t and otherwise sh(j, t) � 0.
sa(i, t) is equal to 1 when the robot i is welding and otherwise
sa(i, t) � 0. The distance-based rewards are used to yield each free
robot to find the nearest unsoldered welds, which is used to
achieve the trajectory optimization of each robot. In Equation 3,
the collision-avoidance-based reward ric(t) is given by

ric(t) � {−1,
∣∣∣∣∣∣∣∣∣∣pi − pOk

∣∣∣∣∣∣∣∣∣∣≤Di + Dm

0, otherwise.
(5)

Here, Di and Dm denote the safe radius of the robot i and the
obstacle Ok, respectively. pOk denotes the position of the center of
obstacle Ok. It is a punishment/reward design for collision
avoidance.

Let Pt represent the random noise which is simple Gaussian
distribution with N(0, 1). x(t) � {o1(t), . . . , oN(t)} denotes the
states of all the robots from observation, where oi(t) is the
observation of the robot i. μθi denotes N continuous policies
with respect to target network parameters θi. ai denotes the action
of the robot i. Qμ

i (x, a1, . . . , aN) and yj represent the action-value
function and the actual action-value of the sample j by the target
critic network. S, c, j, k, τ denote the random mini-batch size of
samples, the discount factor, the index of samples, the index of
action, and the update speed of the target network, respectively.

From the above sets, the pseudocode of MADDPG for the
multiple arc-welding robots is given in Algorithm 1.

Algorithm 1Coordinated welding algorithm

1: for episode � 1 to Max-episode do
2: Initialize a random process P for action exploration.
3: Receive the initial states x(0).
4: for t � 1 to Max-step do
5: For robot i select action ai � μθi(oi) + Pt .
6: Execute the actions ai and calculate the rewards ri as
Equations 2–5 and acquire the new state x′
7: by interacting with the environment based on Equation 1.
8: Store (x, a, r, x′) in replay buffer D.
9: x←x′
10: for agent i � 1 to N do
11: Sample a random minibatch of S samples (xj, aj, rj, x′j)
from D.
12: Set yj � rji + cQμ

i (x′, ai′, . . . , aN′)
∣∣∣∣∣∣∣ak′ � μk′(o

j
k).

13: Update critic by minimizing the loss by L(θi) �
1
S∑

j
(yj − Qμ

i (xj, aj1, . . . , aJN ))
2
.

14: Update actor using the sampled policy gradient:
15: ∇θiJ ≈ 1

S∑
j
∇θiμi(oji)∇a1Q

μ
i (xj, aj1, . . . , ajN)|ai�μi(oji).

16: end for
17: Update target network parameters by θi←τθi +
(1 − τ)θi′, τ≪ 1.
18: end for
19: end for

4 SIMULATION RESULTS AND ANALYSIS

The simulation environment is under Pytorch, which includes
three welding robots and four welding arcs. The radiuses of the
robots are 0.01 m, and the radiuses of the obstacles are 0.08 m.
The hyperparameters of the neural network in training are set as
follows. The size of the replay buffer D is set to 100, 000. The
learning rate of Adam Optimizer is e−3. The discount factor c is
0.95. The episodes before training starts are 30 and the parameter
τ is e−2. Four sets of weight coefficients are selected as
k1 � k2 � k3 � 1; k1 � 5, k2 � 1, k3 � 1; k1 � 1, k2 � 5, k3 � 1;
and k1 � 1, k2 � 1, k3 � 5 for experiments. In the simulation,
10, 000 training episodes are given to show the performance of
the three robots, where each episode consists of 200 step
iterations, and the pictures of reward we obtain are all taking
an average every five episodes. A Savitzky–Golay filter has been
used in Figure 1 to smooth the data and mitigate this problem.

Figure 1B shows that the cumulative rewards in different
weight coefficients increase gradually and finally reach some
stable values, which implies that a good policy is learned in
each case. From Figure 1B, one can also obviously see that the
selection of the coefficients does not significantly affect
the learning results; in other words, the differences of the
parameters do not change the convergence speed too much.
Figures 2A,B present the trajectories of the robots in two
situations with the different positions of obstacles. From
Figure 2A, it is shown that the robots 1, 2, and 3 first figure
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out the nearest welding arcs 1, 2, and 3 and then robot 1
continuously accomplishes the welding arc 4 after finishing arc
1. Similar precedence is shown in Figure 2Bwhen the positions of
obstacles are changed. From the above figures, we conclude that
all the trajectories for the robots are almost shortest and there is
no collision between the robots and obstacles.

5 CONCLUSION AND FUTURE WORK

A MADDPG algorithm with a new set of rewards is designed
for the coordinated welding of multiple arc-welding robots.
The proposed MADDPG algorithm is distributed, and only
local information is available to each arc-welding robot. In the
ongoing work, we will devote ourselves to the coordinated
welding control problem in the three-dimensional space and
the situation that one welding arc is operated by multiple
robots.
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