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In this work, we study finite-time stability of hybrid systems with unstable modes. We
present sufficient conditions in terms of multiple Lyapunov functions for the origin of a class
of hybrid systems to be finite-time stable. More specifically, we show that even if the value
of the Lyapunov function increases during continuous flow, i.e., if the unstable modes in the
system are active for some time, finite-time stability can be guaranteed if the finite-time
convergent mode is active for a sufficient amount of cumulative time. This is the first work
on finite-time stability of hybrid systems using multiple Lyapunov functions. Prior work uses
a common Lyapunov function approach, and requires the Lyapunov function to be
decreasing during the continuous flows and non-increasing at the discrete jumps,
thereby, restricting the hybrid system to only have stable modes, or to only evolve
along the stable modes. In contrast, we allow Lyapunov functions to increase both
during the continuous flows and the discrete jumps. As thus, the derived stability
results are less conservative compared to the earlier results in the related literature,
and in effect allow the hybrid system to have unstable modes.
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1 INTRODUCTION

Stability of the equilibrium point or equilibrium set of switched and hybrid systems has been studied
extensively in the literature. In Branicky (1998), the author introduces the concept of multiple
Lyapunov functions to analyze stability of switched systems; since then, a lot of work has been done
on the topic, see e.g., (Zhao and Hill, 2008); Zhao et al., 2012). In Zhao and Hill (2008), the authors
relax the non-increasing condition on the Lyapunov functions used in (Branicky, 1998), by
introducing the notion of generalized Lyapunov functions. They present necessary and sufficient
conditions for Lyapunov and asymptotic stability (AS) of switched systems under arbitrary
switching. Inspired by the results in (Branicky, 1998; Zhao and Hill, 2008), we study conditions
for finite-time stability (FTS)1 of a class of hybrid systems, using multiple generalized Lyapunov
functions. In contrast to AS, which pertains to convergence as time tends to infinity, FTS is a concept
that requires convergence of solutions in finite time. FTS is a well-studied concept, motivated in part
from a practical viewpoint due to properties such as convergence in finite time, as well as robustness
with respect to disturbances (Ryan, 1991). In the seminal work (Bhat and Bernstein, 2000), the
authors introduce necessary and sufficient conditions in terms of Lyapunov functions for
continuous, autonomous systems to exhibit FTS.
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FTS of switched and hybrid systems has gained popularity in
the last few years. The authors in Liu et al. (2017) consider the
problem of designing a controller for a linear switched system
under delay and external disturbance with finite-time
convergence. The authors in Li and Sanfelice (2019) present
conditions in terms of a common Lyapunov function for FTS
of hybrid systems. They require the value of the Lyapunov
function to be decreasing during the continuous flow and
non-increasing at the discrete jumps. The authors in Ríos
et al. (2015) design an FTS state observer for switched systems
via a sliding-mode technique under the assumption that each
individual subsystem is observable on a domain. More recently,
the authors in Zhang (2018) study FTS of homogeneous switched
systems by introducing the concept of hybrid homogeneous
degree, and relating negative homogeneity with FTS. They
consider switched systems with an assumption that each
subsystem possess a homogeneous Lyapunov function, and
that the switching-intervals are constant.

In this paper, we develop sufficient conditions for FTS of a
class of hybrid systems in terms of multiple Lyapunov functions.
To the best of authors’ knowledge, this is the first work considering
FTS of hybrid systems using multiple Lyapunov functions. We first
define the notion of FTS for hybrid systems in a way that does not
restrict each mode of the hybrid system to be FTS in itself. More
specifically, we relax the requirement in (Zhao and Hill, 2008; Li
and Sanfelice, 2019) that each Lyapunov function is non-
increasing at the discrete jumps, and strictly decreasing during
the continuous flow; instead, we allow the Lyapunov functions to
increase both during the continuous flow and at the discrete
jumps, and require that these increments are bounded. In this
respect, we allow the hybrid system to have unstable modes while
still guaranteeing FTS. In addition, we present a novel proof on
the stability of the origin using multiple Lyapunov functions
under the aforementioned relaxed conditions. As compared to
Zhang (2018), in the current paper we do not assume that the
subsystems are homogeneous or in strict feedback form. The
main result is that if the origin is stable under arbitrary switching,
and if there exists an FTS mode that is active for a sufficient
cumulative time, then the origin of the resulting hybrid system is
FTS. As thus, the results in Bhat and Bernstein (2000) on FTS of
continuous systems are a special case of the proposed results. The
paper also extends and generalizes the results of the authors’ prior
work in (Garg and Panagou, 2021) where FTS of a class of
switched system is studied.

The motivation of studying FTS using multiple Lyapunov
functions comes from applications where the switching law is not
under the user’s control authority, or where keeping the FTS
mode active for a long period leads to undesirable behavior. As an
example, consider a spacecraft that tracks a desired trajectory,
with the on-board communication and the controller module
requiring a certain minimum energy threshold to function. The
charge-level of the spacecraft battery can be modeled as a hybrid
system, where being in the path of sunlight would be an FTS
mode, leading to increase in the charging level, and tracking the
desired trajectory an unstable mode since it depletes the charge.
Now, keeping the FTS mode active for a long duration might lead
to the spacecraft losing track of its desired trajectory, and thus, the

switching signal between the two modes cannot be designed
arbitrarily. At the same time, FTS is desired so that the
spacecraft can activate its communication module for crucial
communications with the ground station and/or the control
module to compute inputs for the next part of the journey.
Thus, for the applications where the FTS mode cannot be kept
active for all times, or the switching signal is not under user’s
control, it is essential to study FTS under switching laws that
allow the FTS mode to become inactive, and unstable modes to
become active.

2 FINITE-TIME STABILITY OF HYBRID
SYSTEMS

2.1 Preliminaries
We denote by ‖ · ‖ the Euclidean norm of vector (·), |·| the absolute
value if (·) is scalar and the length if (·) is a time interval. The set of
non-negative reals is denoted by R+, set of non-negative integers
by Z+ and set of positive integers by N. We denote by int(S) the
interior of the set S. The right and left limits of the function x :
R→Rn are given by x (t−) � limτbtx(τ) and x (t+) � limτatx(τ)
respectively.

DEFINITION: A continuous function α : R+ →R+ is called.

• Class-K function: if it is increasing, i.e., for all x > y ≥ 0, α(x)
> α(y);

• Class-K∞ function: if it is a class-K function, and
limr→∞α(r) � ∞.

Next, we review the notion of FTS. Consider the system:

.
x(t) � f (x(t)), (1)

where x ∈ Rn, f : D→Rn is continuous on an open
neighborhood D4Rn of the origin and f (0) � 0. Assume that
the solution of Eq. 1 exists and is unique. The origin is said to be
an FTS equilibrium of Eq. 1 if it is Lyapunov stable and for all
x(0) ∈ N \{0}, where N ⊂ D is some open neighborhood of the
origin, limt→T x(t) � 0, where T � T (x (0)) < ∞ [see (Bhat and
Bernstein, 2000)]. The authors also presented Lyapunov
conditions for FTS of the origin of Eq. 1:

Theorem 1: [Bhat and Bernstein (2000)]. Suppose there exist a
continuously differentiable, positive definite function V : D→R

for Eq. 1, real numbers c > 0 and α ∈ (0, 1), and an open
neighborhood V4D ⊂ Rn of the origin such that

.
V(x)≤ − cV(x)α, x ∈ V \{0}. (2)

Then the origin is an FTS equilibrium.
We state the following Lemma before we proceed to the main

results, which follows from (Zuo and Tie, 2016, Lemma 3.3).
Lemma 1: Let ai ≥ bi ≥ 0 for all i ∈{1, 2, . . . , K} for some K ∈ N.

Then, for any 0 < r < 1, we have

∑K
i�1
(ari − bri )≤ ∑K

i�1
(ai − bi)r. (3)
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2.2 Main Results
We consider the class of hybrid systems H � {C,F ,D,G}
described as

.
x(t) � fσ f (t,x)(x(t)), x(t) ∈ C,
x(t+) � g(x(t−)), x(t) ∈ D,

(4)

where x ∈ Rn is the state vector with x (t0) � x0, fi ∈ Fb{fk :
Rn →Rn} for k ∈Σfb{1, 2, . . . ,Nf} is the continuous flow (called
thereafter, subsystem, or mode) allowed on the subset of the state
space C ⊂ Rn, and G � {g} where g : Rn →Rn defines the discrete
behavior (called thereafter discrete-jump dynamics), which is
allowed on the subset D ⊂ Rn. Note that at the jump instant
t ∈ R+, the state x(t) is characterized by multiple values, namely
the value just before the jump at time t, which we denote as x (t−),
and the value just after the jump at time t, which we denote as x
(t+) (satisfying x (t+) � g (x (t−))). The switching signal σ f : R+ ×
Rn →Σf is assumed to be continuous in x and piecewise
continuous (from the right) in t. We omit the argument (t, x)
from σf for the sake of brevity. Systems of the form Eq. 4 have
been studied in (Branicky, 1998), while Zhao and Hill (2008)
considers the form Eq. 4 without the discrete-jump dynamics.

Denote by Tik � [tik, tik+1) ⊂ R+, with tik+1≥ tik ≥ t0, the interval
in which the flow fi is active for the k−th time for i ∈Σf and k ∈ N,
and t � tdm the time when discrete jump x (t+) � g (x (t−)) takes
place for the m−th time, m ∈ N. Define Ji �
{tdm | tdm ∈ Tik,m ∈ N} as the set of all time instances when a
discrete jump takes place when the continuous flow fi is active,
and J � ∪

i∈Σf

Ji as the set of all times when the state of Eq.4
undergoes a discrete jump. Without loss of generality, we assume
that the switching signal σ f is minimal, i.e., for any i ∈ Σf, tik+1 ≠ tik+1
for all k ∈ N, and that there are no two discrete jumps at the same
time instant. We also make the following assumption.

Assumption 1. The functions fi are continuous for all i ∈Σf and
the origin is the unique equilibrium point of Eq. 4.

The case when there exists a closed set
−
D≠ {0} such that g(x) �

0 for all x ∈ −
D ⊂ D can be treated by studying stability of closed

sets; see (Li and Sanfelice, 2019). The solution of the hybrid
system Eq. 4 can be defined as follows: a function x : R+ →Rn is a
solution of Eq. 4 if.

• it is absolutely continuous between any two jump instants
and satisfies .

x(t) � fk(t, x) for almost all t ∈ R+ \J such
that x(t) ∈ C, where k � σ(t, x);

• it satisfies x (t+) � g (x(t)), for all t ∈ J such that x(t) ∈ D.

Interested reader is referred to (Goebel et al., 2012, Chapter 2)
for a detailed presentation on solution notion of hybrid systems.
We assume that the solution of Eq. 4 exists for all t ≥ 0, and is non-
Zeno2. Similar assumptions have been used in literature (e.g., Zhao
andHill, 2008; Li and Sanfelice, 2019; Sanfelice et al., 2007) in order to
analyze stability properties of the origin of hybrid systems.

Next, we define the notion of FTS for hybrid systems. Note
that a mode F ∈Σf is called an FTS subsystem or FTS mode if the
origin of y

̇ � fF(y) is FTS. The notion of stability for switched
systems under arbitrary switching, as employed in (Liberzon,
2003; Branicky, 1998; Zhao and Hill, 2008; Lin and Antsaklis,
2009; Fu et al., 2015), is restrictive in the following sense. The
conditions therein require every single mode of the system Eq. 4
to be Lyapunov Stable (LS or simply, stable), AS, or FTS for the
origin of the system Eq. 4 to be LS, AS, or FTS, respectively. We
overcome this restriction by defining the corresponding notions
of stability for hybrid system [inspired in part, from (Peleties and
DeCarlo, 1991, Theorem 1)] as following. Let Π ⊂ PWC(R+ ×
Rn,Σf ) denote the set of all possible switching signals, where
PWC is the set of all piecewise constant functions mapping from
R+ × Rn to Σf.

Definition 1. The origin of the hybrid system Eq. 4 is called LS,
AS or FTS if there exists an open neighborhood X ⊂ Rn such that
for all ybx(0) ∈ X , there exists a subset of switching signals Πy

⊂Π such that the origin of the system 4) is LS, AS or FTS,
respectively, with respect to all σ f ∈Πy. The origin is called
globally AS or FTS if X � Rn.

Before presenting the main result, we define the necessary
notation. For each interval Tik, define the largest connected sub-
interval

−
Tik ⊂ Tik, such that there is no discrete jump in

−
Tik,

i.e., int(−Tik)∩Ji � ∅. For example, if Ti1 � [0, 1) and Ji � {0.2,
0.4, 0.75}, then

−
Ti1 � [0.4, 0.75). Let −TFk � [−tFk,−tFk+1) with −tFk+1 −−tFk ≥ td for some td > 0, and {−VF1,

−
VF2, . . . ,

−
VFp} and

{−VF1+1,
−
VF2+1, . . . ,

−
VFp+1} be the sequence of the values of the

Lyapunov function VF at the beginning and at end of the
intervals

−
Tik for k � {1, 2, . . . , p}, respectively,

i.e.,
−
VFkbVF(x(−tFk)) and −

VFk+1bVF(x(−tFk+1)). Let {i0, i1, . . . , il,
. . . }∈Σf be the sequence ofmodes that are active during the intervals
[t0, t1) [t1, t2), . . ., [tl, tl+1), . . ., respectively, where tk denotes the time
instant when the continuous-time dynamics switch from fik to fik+1 .
We now present our main result on FTS of hybrid systems.

Theorem 2. If there exist positive definite, continuous functions
Vi for each i ∈Σf satisfying Vi(x) ≤ α0 (‖x‖) for all i ∈Σf, where
α0 ∈ K, and a switching signal σf such that the following hold:

1) There exists α1 ∈ K, such that

∑p
k�0

Vik+1(x(t+k+1)) − Vik(x(t+k+1))( )≤ α1(‖x0‖), ∀p ∈ Z+; (5)

2) There exists α2 ∈ K such that

∑p
k�0

Vik(x(t−k+1)) − Vik(x(t+k ))( )≤ α2(‖x0‖), ∀p ∈ Z+; (6)

3) There exists α3 ∈ K such that

∑
tk+1∈Jik+1

Vik(x(t+k+1)) − Vik(x(t−k+1))( )≤ α3(‖x0‖), ∀k ∈ Z+; (7)

4) There exist an FTS mode F ∈Σf, a positive definite, continuously
differentiable Lyapunov function VF and constants c > 0, 0 < β
< 1 such that

2A sufficient condition for the solutions of a switched or hybrid to exhibit
non-Zeno behavior is that there is a non-zero dwell-time τ > 0 between any
two switching instants [see (Liberzon, 2003)].
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.
VF(x)≤ − c VF(x)β, ∀x ∈ Rn \{0}; (8)

5) The accumulated duration |−TF |b∑k|−TFk| corresponding to the
period of time during which the mode F is active without any
discrete jumps, satisfies

|−TF | � c(‖x0‖)bα(‖x0‖)1−β
c(1 − β) +M−β−α(‖x0‖)1−β

c(1 − β) ,

where α � α0 + α1 + α2 +Nfα3,
−α � 2Mα, andM ∈ Z+ is the number

of times the mode F is activated,then, the origin of Eq. 4 is FTS with
respect to the switching signal σ f. Moreover, if all the conditions
hold globally, the functions Vi are radially unbounded for all i ∈Σf,
and α1, α2, α3 ∈ K∞, then the origin of Eq. 4 is globally FTS.

Before presenting the proof, we provide an intuitive
explanation of the conditions of Theorem 2 (see Figure 1).

• Note that since Vi’s are positive definite functions, there
exists a class-K function α0 such that Vi(x) ≤ α0 (‖x‖) for all
x ∈ Rn [see (Khalil and Grizzle, 2002, Lemma 4.3)].

• Condition 1) means that the cumulative value of the differences
between the consecutive Lyapunov functions at the switching
instants of the dynamics of continuous flows (i.e., at switches of
the signal σf) is bounded by a class-K function. The functions
are evaluated at the post-jump value of the state to include the
casewhen a discrete-jumphappens to occur at t� tk+1. If there is
no discrete-jump at t � tk+1, then simply Vik+1(x(t+k+1)) −
Vik(x(t+k+1)) � Vik+1(x(tk+1)) − Vik(x(tk+1)).

• Condition 2) means that the cumulative increment in the values
of the individual Lyapunov functions when the respectivemodes
are active (evaluated before and after a discrete-jump at tk+1 and
tk, respectively, if any) is bounded by a class-K function3

• Eq. 7 in condition 3) means that the cumulative increment
in the value of the Lyapunov function Vi is bounded by a
class-K function at the discrete jumps occurring at the switching

instants, i.e., tk+1 ∈ Ji. Condition Eq. 6 inherently accommodates
any discrete jumps occurring in the interior of the time interval
(tk, tk+1), i.e., in between two switching instants, for anymode i ≠
F. Thus, we only need to account for the discrete jumps
occurring at the boundaries of these intervals through (7)
[see, e.g., (Wang et al., 2018)].

• Condition 4) means that there exists an FTS mode F ∈Σ and
a Lyapunov function VF satisfying Eq. 2 for

.
x(t) � fF(x(t))

on [tFk, tFk+1) \JF for all k ∈ Z+.
• Condition 5) means that the FTS mode F is active for a
sufficiently long cumulative time c(‖x0‖) without any
discrete jump occurring in that cumulative period.

Now we provide the proof of Theorem 2.
Proof. First we prove the stability of the origin under

conditions (1–3). Let x0 ∈ D, where D is some open
neighborhood of the origin. For all p ∈ Z+, we have that

Vip(x(t+p )) � Vi0(x(t0)) + ∑p
k�1

Vik(x(t+k )) − Vik−1(x(t+k ))( )
+ ∑p−1

k�0
Vik(x(t−k+1)) − Vik(x(t+k ))( )

+ ∑Nf

i�1
∑
t∈Ji

Vi(x(t+)) − Vik(x(t−))( )

≤
(5),(6),(7)

α0(‖x0‖) + α1(‖x0‖) + α2(‖x0‖) + Nf α3(‖x0‖)

� α(‖x0‖)

where α � α0 + α1 + α2 + Nf α3 ∈ K with α0(r) � max
i∈Σf , ‖x‖≤ r

Vi(x).
Thus, we have:

Vip(x(t+p ))≤ α(‖x0‖), (9)

for all p ∈ Z+. Let di (c) � {x | Vi(x) ≤ c} denote the c sub-level set
of the Lyapunov function Vi, i ∈Σf, and Bρ � {x | ‖x‖ ≤ ρ} denote a
ball centered at the origin with radius ρ ∈ R+. Define r (c) � inf{ρ
≥ 0 | di(c) ⊂ Bρ} as the radius of the smallest ball centered at the
origin that encloses the c sub-level sets di (c), for all i ∈Σf.

Since the functions Vi are positive definite, the sub-level sets di
(c) are bounded for small c > 0, and hence, the function r is
invertible. The inverse function cϵ � r−1 (ϵ) maps the radius ϵ > 0
to the value cϵ such that the sub-level sets di (cϵ) are contained in
Bϵ for all i ∈Σf. For any given ϵ > 0, choose δ such that α(δ) ≤ (r−1

(ϵ)) > 0 so that Eq. 9 implies that for ‖x0‖ ≤ δ, we have
Vip(x(t+p ))≤ α(‖x0‖)≤ α(δ)≤ r−1(ϵ), which implies that
‖x(t+p )‖≤ ϵ for all p ∈ Z+, i.e., the origin is LS.

Next, we prove FTS of the origin when conditions (4–5) also
hold. From Eq. 9, we have that

VF(x(tFi))≤ α(‖x0‖), (10)

for all i ∈ N. By definition, we have that there is no discrete jump
during

−
TFk, for all k ∈ N. Let M ∈ N denote the total number of

times the mode F is activated. From condition 4), we have

.
VF(x(t))≤ − c VF(x(t))β. (11)

for all t ∈∪−TFk ⊂ ∪[tFk, tFk+1) \JF( ). Using the fact there is no
discrete jump in

−
TFk, we can integrate Eq. 11 to obtain

FIGURE 1 | Conditions 1), 2) and 3) of Theorem 2 regarding the
allowable changes in the values of the Lyapunov functions. The increments
shown by blue, red and black double-arrows pertain to condition 1), 2) and 3),
respectively.

3Note that some authors use the time derivative condition, i.e., $\dot{V}_{i}\leq
{\lambda} V_{i}$ with λ > 0, in place of condition 2), to allow growth of Vi, hence,
requiring each Vi to be continuously differentiable.
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−
TFk|≤

−
V

1−β
Fk

c(1−β) −
−
V

1−β
Fk+1

c(1−β), where |−TFk| � −tFk+1 − −tFk. Thus, for any

M ∈ N, we have that

∑M
k�1

|−TFk|≤ ∑M
k�1

−
V

1−β
Fk

c(1 − β) −
−
V

1−β
Fk+1

c(1 − β)⎛⎝ ⎞⎠

�
−
V

1−β
F1

c(1 − β) + ∑M−1

i�1

−
V

1−β
Fi+1 −

−
V

1−β
Fi+1

c(1 − β) −
−
V

1−β
FM+1

c(1 − β).

Using Eq. 10, we obtain that

V1−β
F1

c(1 − β) ≤
α(‖x0‖)1−β
c(1 − β) . (12)

Define c1(‖x0‖)b(α(‖x0‖))1−β
c(1−β) and note that c1 ∈ K. Now, letQ �

{q1, q2, . . . , qk}, 0 ≤ ql ≤ M, be the set of indices such that−
VFi+1 ≥

−
VFi+1 for i ∈Q. We know that for a ≥ b ≥ 0, ar ≥ br for any r >

0. Hence, we have that

∑M−1

i�1

−
V

1−β
Fi+1 −

−
V

1−β
Fi+1

c(1 − β) ≤∑
i∈Q

−
V

1−β
Fi+1 −

−
V

1−β
Fi+1

c(1 − β) (13)

Using Lemma 1, we obtain that

∑
i∈Q

−
V

1−β
Fi+1 −

−
V

1−β
Fi+1

c(1 − β) ≤∑
i∈Q

(−VFi+1 − −
VFi+1)1−β

c(1 − β) . (14)

From the analysis in the first part of the proof, we know thatVF

(x (t)) ≤ α (‖x0‖). Define −α � 2Mα so that we have

∑
i∈Q

−
VFi+1 − −

VFi+1( )≤∑
i∈Q

−
VFi+1 + −

VFi+1( )≤ 2Mα(‖x0‖) � −α(‖x0‖). (15)

Hence, we have that

∑M−1

i�1

−
V

1−β
Fi+1 −

−
V

1−β
Fi+1

c(1 − β) ≤ (14)
∑
i∈Q

−
VFi+1 − −

VFi+1( )1−β
c(1 − β)

≤
M−β ∑

i ∈ Q

−
VFi+1 − −

VFi+1( )1−β

c(1 − β) ≤ (15) M
−β(−α(‖x0‖))1−β
c(1 − β) , (16)

where the second inequality follows from (Zuo and Tie, 2016,

Lemma 3.4). Define c(‖x0‖)bc1(‖x0‖) + M−β(−α(‖x0‖))1−β
c(1−β) and |−TF | �∑M

k�1|−TFk| so that we obtain:

|−TF | +
−
V

1−β
FM+1

c(1 − β)≤
−
V

1−β
F1

c(1 − β) + ∑M−1

i�1

−
V

1−β
Fi+1 −

−
V

1−β
Fi+1

c(1 − β) ≤ c(‖x0‖).

Clearly, c ∈ K. Now, with |−TF | � c(‖x0‖), we obtain

|−TF | +
−
V

1−β
FM+1

c(1 − β) ≤ c(‖x0‖) � |−TF |,

which implies that
−
V

1−β
FM+1

c(1−β)≤ 0. However,
−
VF ≥ 0, which further

implies that
−
VFM+1 � 0. Hence, if mode F is active for the

accumulated time |−TF | � c(‖x0‖) without any discrete jump in

the system state, the value of the function VF converges to 0 as
t→−tFM+1, and thus, the origin of Eq. 4 is FTS. Finally, if all the
conditions (1–5) hold globally and the functions Vi are radially
unbounded, we have that α0 is also radially unbounded and
α1, α2, α3 ∈ K∞. Thus, we have that α(‖x0‖) <∞ and −α(‖x0‖)<∞
for all ‖x0‖ <∞, and hence, c(‖x0‖) <∞ for all ‖x0‖ <∞, which
implies global FTS of the origin.

Estimation of time of activation |−TF |: Note that the
expression of |−TF | in condition 5) of Theorem 2 depends on
M, the number of times the mode F is activated. In practice, the
number M might not be know beforehand. However, an upper
bound on the cumulative time of activation |−TF | can still be
computed as follows. For the origin of the hybrid system Eq. 4 to
be FTS, it is necessary that the mode F is active at least once.
Furthermore, under the assumption that there is a dwell-time τ >
0 so that system solutions are non-Zeno, we know that |−TFk|≥ τ.
Using these two arguments, we can find an upper bound on |−TF |
in Theorem 2. In particular, the upper bound is given as:

|−TF |≤max
α(‖x0‖)1−β
c(1 − β) + 2α(‖x0‖)1−β

c(1 − β) , ⌈M*⌉τF{ } (17)

where M* is the solution of

α(‖x0‖)1−β
c(1 − β) +M1−2β21−βα(‖x0‖)1−β

c(1 − β) � MτF . (18)

Activation of the FTS mode: Intuitively, Theorem 2 can be
interpreted as follows: if Lyapunov stability of the origin can be
established for a given switching signal σf, then the presence of a
switching signal and an FTS mode such that the latter is active for
a sufficient amount of time |−TF(‖x0‖)| without any discrete jump
guarantees FTS of the origin for the overall system. Depending
upon the application at hand, and available authority on the
design of the switching signal, the FTS mode can be made active
for the required cumulative duration in one activation period, or
in multiple activation periods. For the cases when designing the
switching signal is not under user’s control, it is possible that the
dynamics switches between the FTS and the non-FTS modes, and
in such a case, Theorem 2 guarantees FTS when the FTS mode is
active for a sufficient amount of cumulative time.

Comparison with earlier results: In contrast to (Zhao and
Hill, 2008, Proposition 3.8), where the authors provided
necessary and sufficient conditions for stability of switched
system under Eq. 9 and non-increasing condition on the
Lyapunov functions Vi during activation period, we proved
stability of the origin with just Eq. 9. Compared to Li and
Sanfelice (2019), our results are less conservative in the sense
that the Lyapunov functions are allowed to increase during the
continuous flows (per Eq. 6), as well as at the discrete jumps (per
Eq. 7). In other words, we allow unstable modes to be present in
the hybrid system while still guaranteeing FTS of the origin.

A note on construction of functions Vi: In practice, the
conditions (1–3) in Theorem 2, or those presented in Zhao and
Hill (2008) can be difficult to verify for a general class of hybrid
systems involving non-linear subsystems. For a class of switched
systems consisting of N − 1 linear modes and one FTS mode F,
one can follow a procedure similar to (Zhao and Hill, 2008,

Frontiers in Control Engineering | www.frontiersin.org August 2021 | Volume 2 | Article 7077295

Garg and Panagou FTS of Hybrid Systems

https://www.frontiersin.org/journals/control-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/control-engineering#articles


Remark 3.21) to construct the functions μij to design the switching
signal σf, as well as the Lyapunov candidates Vi for i ≠ F. The design
procedure includes choosing quadratic functions μij � xTPijx and Vi �
xTRix with Ri as positive definite matrices to formulate a linear matrix
inequality (LMI) problem. For systems consisting of polynomial
dynamics fi, one can formulate a sum-of-square (SOS) problem to
find polynomial functionsVi, μij [see Parrilo (2000) for an overview of
SOS programming and (Prajna et al., 2002) for methods of solving
SOS problems]. The study of finding Lyapunov functions to assess
stability for a general class of hybrid systems with nonlinear modes is
an open field of research, and is out of scope of this work.

3 SIMULATIONS

We present an instance of the hybrid system Eq. 4 with five
modes, where one mode is FTS, one is AS, and three are unstable.
The simulation results have been obtained by discretizing the
continuous-time dynamics using Euler discretization. We use a
step size of dt � 10–3, and run the simulations till the norm of the

states drops below 10–10. At this point we wish to emphasize that
while the theoretical results hold for the continuous-time
dynamics, and not for the implemented discretized dynamics,
still the simulations reflect stable behavior that meets the
theoretical bounds on the sufficiently long active time of the
finite-time stable mode. Consider the hybrid system H �
{C,F ,D,G} where

F � {f1, f2, f3, f4, f5}, G � {g1}, C � D � R2,

f1 � 0.01x21 + x2
−0.01x31 + x2

[ ], f2 � 0.01x1 − x2
−x21 + 0.01x2

[ ],
f3 � −x1 − x2

x1 − x2
[ ], f4 � 0.01x21 + 0.01x1x2

−0.01x31 + x22
[ ],

f5 � x2 − 20sign(x1)|x1|β
−10sign(x1)|x1|2−2β[ ], g1 � −1.1x1

−1.1x2[ ],
(19)

with β � 0.98, where the fifth mode is FTS, and thus F � 5. Note
that the states x1 and x2 change sign and increase in magnitude at
the discrete jumps. The Lyapunov functions are defined asVi(x) �
xTPix, for i ∈{1, 2, 3, 4}, with

P1 � 1 0
0 1

[ ], P2 � 5 2
2 4

[ ], P3 � 1 0
0 3

[ ], P4 � 6 1
1 3

[ ], and

V5(x) � 5
β|x1|2β + 1

2|x2|2. Note that this example is more general
than the examples considered in (Li and Sanfelice, 2019), as we
allow the dynamics to have unstable modes. In this example, the
switches in the continuous flows occur after 0.2 sec,
i.e., |Tik| � 0.2 sec, k ∈ Z+, and discrete jumps occur after 0.1 s
for all i ∈{1, 2, . . . , 5}.

The switching signal is designed so that the Lyapunov
candidates Vi satisfy conditions 1) and 3) of Theorem 2 (see
Garg and Panagou, 2021) for a discussion on how a finite-time
stabilizing switching signal can be designed). Mode 3 and 5, being
stable, satisfy condition 2) with α2 � 0, and modes 1, 2 and 4, being
active for a finite interval each time, satisfy condition 2) with α2 �
k‖x0‖2 for some k> 0, and so α2� k‖x0‖2 satisfy 2) for all themodes.
It can be verified that f5 is homogeneous with degree of
homogeneity d � α − 1 < 0. Thus, using (Bhat and Bernstein,
2005, Theorem 7.2), the origin is FTS under the system dynamics
f5, and there exists a V5 satisfying Eq. 8; therefore, condition 4) is
satisfied. Finally, the switching signal is designed so that mode five
is active for a sufficient amount of time that satisfies condition 5).

Figure 2 illustrates the state trajectories x1 (t) and x2 (t). Note
that the states change sign at the discrete jumps. Figure 3 depicts
the norm of the state vector x (t) on log scale; note that ‖x (t)‖ is
increasing while operating in unstable modes, and decreasing
while operating in stable modes. As seen in the figures, the system
states, starting from ‖x (0)‖ � 10, reach to a norm of ‖x (t)‖ ≤ 10–10

within first 90 s of the simulation. Finally, Figure 4 illustrates the
evolution of the Lyapunov functions Vi with respect to time; note
that the Lyapunov functions increase, as expected, at the times of
the switches in σ f, as well as during the continuous flows along the
unstable modes 1, 2, and 4. The provided example demonstrates
that the origin of the system is FTS even when one or more modes
are unstable, if the FTS mode is active for a sufficient amount
of time.

FIGURE 2 | The evolution of x1 (t) and x2 (t) for hybrid system Eq. 19. The
states can be seen switching signs during discrete jumps.

FIGURE 3 | The evolution of ‖x (t)‖ for Eq. 19. The norm of the states
reach a small neighborhood of the origin within a finite time.
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4 CONCLUSIONS AND FUTURE WORK

In this paper, we studied FTS of a class of hybrid systems. We
showed that under some mild conditions on the bounds of the
increase of the Lyapunov functions, if the FTS mode is active for a
sufficient cumulative time, then the origin of the hybrid system is
FTS. Our proposed method allows the individual Lyapunov
functions to increase both during the continuous flows as well
as at the discrete state jumps, i.e., it allows the hybrid system to
have unstable modes.

Future research focuses on incorporating input and state
constraints in the hybrid systems framework to model

safety (in the sense of invariance of a safe set of states) and
temporal requirements (in the sense of convergence to a set
or to a point within an arbitrarily chosen time, if possible).
More specifically, we would like to investigate how to
impose convergence of the system trajectories in a finite
time that can be a priori selected independent of the initial
conditions, so that the overall framework can be used for the
synthesis and analysis of controllers under spatiotemporal
specifications.
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