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In this paper, we investigate a pursuit problem with multi-pursuer and single evader in a
two-dimensional grid space with obstacles. Taking a different approach to previous
studies, this paper aims to address a pursuit problem in which only some pursuers
can directly access the evader’s position. It also proposes using a hierarchical Q(λ)-
learning with improved reward, with simulation results indicating that the proposedmethod
outperforms Q-learning.
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1 INTRODUCTION

Interest in pursuit problems and their applications has increased in recent years, facilitated by recent
technological and computational advances. As a significant branch of the pursuit problem, multi-agent
coordination pursuit has received much attention for its broad applications in military (Eklund et al.,
2012), aerospace (Ye et al., 2020), autonomous vehicle fields (Vidal and Sastry, 2002), underwater vehicles
(Qi and Cai, 2021), artificial intelligence (Haynes and Sen, 2006) and so on in the past decade.

In 1965, Isaacs first proposed the pursuit problem in a paper about differential games (Isaacs,
1965). From the view of control, the pursuit problem is an optimization problem with the minimum
cost as the goal. In recent years, researchers have proposed many solutions to pursuit problems.
Under the known agents’ dynamics or environments’ dynamics, pursuit problems have been
addressed by finding analytical solutions (Shinar et al., 2009; Yan and Li, 2013; Beke and
Kumbasar, 2018; Casini et al., 2019; Mejia et al., 2019). However, in practical engineering
applications, it is hard to obtain an analytical solution of the pursuit problem. Hence, many learning
algorithms, especially reinforcement learning, have been introduced into pursuit problems. Ishiwaka et al.
(2003) studied a pursuit problem with four pursuers and one evader and employed reinforcement
learning to complete the capture. Bilgin and Kadioglu-Urtis (2015) solved a pursuit problem with two
pursuers and one stationary evader by employingQ(λ)-learning and verified the influence of learning rate
and decay rate on simulation results. A pursuit problem with one evader whose goal is to reach its target
while avoiding being captured by pursuers was investigated in Selvakumar and Bakolas (2020) by utilizing
Min-Max Q-learning and matrix game theory. Noro et al. (2014) proposed signal learning with messages
based on reinforcement learning to deal with amulti-agent pursuit problem. Additionally, Yu et al. (2020)
presented a fully decentralized multi-agent reinforcement learning approach and applied it to the
cooperative multi-robot pursuit problem successfully.

Pursuit problems can be divided into two categories. The first is a pursuit problem with a single
evader, the other is a pursuit problem with multiple evaders. This paper focuses on a pursuit problem

Edited by:
Kim-Doang Nguyen,

South Dakota State University,
United States

Reviewed by:
Alexander Von Moll,

Air Force Research Laboratory,
United States

Peng Liu,
North University of China, China

*Correspondence:
Cheng-Lin Liu

liucl@jiangnan.edu.cn

Specialty section:
This article was submitted to

Nonlinear Control,
a section of the journal

Frontiers in Control Engineering

Received: 07 June 2021
Accepted: 13 July 2021

Published: 17 November 2021

Citation:
Zhu Z-Y and

Liu C-L (2021) Leader-Following Multi-
Agent Coordination Control

Accompanied With Hierarchical Q(λ)-
Learning for Pursuit.

Front. Control. Eng. 2:721475.
doi: 10.3389/fcteg.2021.721475

Frontiers in Control Engineering | www.frontiersin.org November 2021 | Volume 2 | Article 7214751

ORIGINAL RESEARCH
published: 17 November 2021

doi: 10.3389/fcteg.2021.721475

http://crossmark.crossref.org/dialog/?doi=10.3389/fcteg.2021.721475&domain=pdf&date_stamp=2021-11-17
https://www.frontiersin.org/articles/10.3389/fcteg.2021.721475/full
https://www.frontiersin.org/articles/10.3389/fcteg.2021.721475/full
https://www.frontiersin.org/articles/10.3389/fcteg.2021.721475/full
https://www.frontiersin.org/articles/10.3389/fcteg.2021.721475/full
https://www.frontiersin.org/articles/10.3389/fcteg.2021.721475/full
http://creativecommons.org/licenses/by/4.0/
mailto:liucl@jiangnan.edu.cn
https://doi.org/10.3389/fcteg.2021.721475
https://www.frontiersin.org/journals/control-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/control-engineering#articles
https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org/journals/control-engineering#editorial-board
https://doi.org/10.3389/fcteg.2021.721475


with a single evader in the presence of obstacles. In a typical
pursuit problem, agents can be divided into evaders and
pursuers. In most literature, researchers assume that all
pursuers can obtain the position of the evader independently,
so some effective and expensive detectors are needed for
practical application. In this work, based on leader-following
control, we divided the pursuers into leader pursuers and
follower pursuers. Only leader pursuers can directly detect
the position of the evader. We addressed the pursuit problem
with reinforcement learning under the assumption that partial
pursuers know the evader’s position. The contributions of this
paper are summarized as follows:

• Leader-following control thought is adopted to solve the
pursuit problem since it can reduce the cost of detectors.

• We propose the use of a hierarchical Q(λ)-learning with
improved reward, as it has shown good performance for
pursuit problems.

This paper is organized by defining the pursuit problem in
Section 2. We then introduce Q(λ)-learning in Section 3. The
proposed algorithm is described in Section 4 and the simulation
experiments and results are shown in Section 5. Finally, Section 6
presents the conclusions of this study.

2 OUR PURSUIT PROBLEM SETTING

In this article, we mainly focus on a pursuit problem with a single
evader. The environment of our pursuit problem is represented
by a bounded two-dimensional grid map with obstacles, which
are randomly distributed in the map and each obstacle occupies a
cell. Obstacles cannot be occupied by agents.

Assuming that there are 2n pursuers, which include n leader
pursuers and n follower pursuers in our map, each agent executes
an action at each time step and moves in four main directions or
remains in its current cell. Additionally, agents cannot cross the

boundaries. For example, an agent can execute the 4 possible
actions or remain in the current cell, when the agent in cell 5 of
the simple map, as illustrated in Figure 1. Each cell can only be
occupied by an agent or an obstacle. When several agents try to
move to the same cell as part of the time step t + 1, the actions of
these agents are canceled and the agents remain in the cell they
inhabited at time step t.

This pursuit problem assumes that only leader pursuers can
directly detect the position of the evader. Leader pursuers can
communicate with each other, and follower pursuers can also
communicate with each other. Each leader pursuer sends its real-
time position to all follower pursuers, so each follower pursuer
knows all leader pursuers’ positions. The communication of a
pursuit problem with two leader pursuers and two follower
pursuers is illustrated in Figure 2.

2.1 Pursuit Groups
In this article, we assume that a leader pursuer can only be
followed by one follower pursuer at the same time, and a follower
pursuer can only choose one leader pursuer as its target to follow.
Therefore, as illustrated in Figure 3, 2n pursuers can be divided
into n pursuit groups, and each pursuit group has a leader pursuer

FIGURE 1 | Possible actions (black arrows) for an agent in cell 5 of a
sample map (cell 8 is an obstacle).

FIGURE 2 | Communication of a pursuit problem with two leader
pursuers and two follower pursuers.

FIGURE 3 | Pursuit groups.
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and a follower pursuer. Furthermore, in Figure 3, Li(i ∈ {1, 2, . . .,
n}) is the target that Fi follows.

In nature, small carnivores hunt large prey collectively. They
usually encircle the prey first to prevent the prey from escaping.
Then, when a large number of companions arrive, they hunt the
prey together to ensure success. Similarly, in this paper, to ensure
the success of the pursuit, we divided the pursuit into two stages:
encirclement and capture.

2.2 Definition of Encirclement
We found that when the northwest cell and the southeast
cell of the evader are occupied by the pursuers
simultaneously, as shown in Figure 4A, or the northeast
cell and the southwest cell are occupied by the pursuer
simultaneously, for example, in the case of Figure 4B. We
think the evader has been encircled. In our pursuit problem,
at least two pursuers are required to encircle an evader.
When the evader is encircled by the pursuers, it will always
remain in its current cell.

2.3 Definition of Capture
When the evader has been encircled and at least two cells of the
evader’s north cell, the evader’s south cell, the evader’s east cell,
and the evader’s west cell are occupied by the pursuers, the evader
has been successfully captured. For example, in Figure 5, the
evader in cell 5 has been encircled. The evader has been captured
because cell 4 and cell 8 are also occupied by pursuers. Therefore,
in our pursuit problem, at least four pursuers are required to
capture an evader.

3 Q(λ)-LEARNING

Q(λ)-learning is an improved Q-learning algorithm. As the
foundation of Q(λ)-learning, Q-learning was first proposed by
Watkins et al. (1992) and it is also known as single-step
Q-learning. Due to its simple structure, single-step Q-learning
has become a popular topic in reinforcement learning. Yet,
Q-learning exhibits slow convergence. In order to accelerate
convergence, Peng and Williams (1998) proposed Q(λ)-learning.

For accelerating the convergence, the eligibility trace is
introduced into Q(λ)-learning. With the eligibility trace, Q(λ)-
learning will look back further in time. For example, if the current
reward is good, Q(λ)-learning not only updates the current state
but also assigns some of the rewards to some of the previous states
which drove the agent to be in a current state (Schwartz, 2014).
The eligibility trace tracks a particular state that has been visited
at last time and then assigns the current reward to recently visited
states. A state that has not been visited for a long time is not
eligible to get some of the current rewards. These requirements
will greatly accelerate the convergence.

The eligibility trace of each state s (s ∈ S, s is the state of the
agent and S is state space of the agent) at time step t is defined as
et(s) and decays as λc (0 ≤ λ ≤ 1, 0 ≤ c ≤ 1). For the state that has
just been accessed, its eligibility trace will increase by 1, so the
eligibility trace is updated as (Schwartz, 2014)

et(s) � cλet−1(s), if s≠ st,
cλet−1(s) + 1, if s � st.

{ (1)

FIGURE 4 | Definition of encirclement (red circles represent the pursuers and blue circles represents the evaders).

FIGURE 5 | A simple case of capture (the evader in cell 5 has been
encircled and cell 1, cell 4, cell 8, and cell 9 are occupied by pursuers).
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In Q(λ)-learning algorithm, the eligibility trace function
becomes e(s, a), a is the action that was executed by agent.
The eligibility trace of Q(λ)-learning is updated as

et(s, a) � cλet−1(s, a), if s≠ st,
cλet−1(s, a) + 1, if s � st,

{ (2)

and the prediction error is defined as

δt � Rt+1 + cmaxQ st+1, at+1( ) − Q st, at( ), (3)

where Rt+1 represents the immediate reward, c is the discount
factor, at ∈ Ast and Ast is an action set of the agent for the given
state. In conventional Q-learning, we usually define the
evaluation for each action at a given state as Q-value, and
Q-values are stored in a state-action table, which is termed as
Q-table. In Eq. 3, when the agent executes action at at a given state
st, the Q-value of at is Q(st, at). The iterative equation for the
Q-value takes as

Q st, at( ) � Q st, at( ) + αδtet st, at( ), (4)

where α (0 ≤ α ≤ 1) is the learning rate. The Q(λ)-learning
algorithm is described in Algorithm 1 (Schwartz, 2014).

Algorithm 1.

4 THE PROPOSED ALGORITHM

4.1 Coordination Multi-Agent Pursuit
In our research, since only partial pursuers can access the
position of the evader, we assign different tasks to the pursuers
according to their abilities. For the leader pursuers, because
they can access the position of the evader, they are mainly
responsible for encircling the evader to prevent the evader
from escaping. For the follower pursuers, since the follower
pursuers do not know the evader’s position, the follower
pursuers are responsible for following the leader pursuers
and assisting the leader pursuers to capture the evader after
the evader is encircled.

4.1.1 Pursuit Groups Creation
In our pursuit problem, at least two leader pursuers are required
to encircle an evader, and at least four pursuers are required to
capture an evader. To minimize the total cost of the pursuit,

in this article, two leader pursuers and two follower pursuers
are selected to form two pursuit groups to participate in
pursuit. The specific steps of pursuit groups creation are as
follows.

Step 1. Initialize the position of evader xe.
Step 2. Initialize the positions of leader pursuers

xli(i ∈ {1, 2, . . . , n}) and the positions of follower
pursuers xfj(j ∈ {1, 2, . . . , n}).

Step 3. Calculate the Euclidean distance dlie between the leader
pursuer li and the evader and the distance matrix Dle

Dle �
dl1e

dl2e

«
dlne

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

Step 4. Select two leader pursuers closest to the evader as L1, L2 to
participate in the pursuit according to Dle.

Step 5. Calculate the Euclidean distance dfjLk(k ∈ {1, 2}) between
the follower pursuer fj and the selected leader pursuer Lk
and the distance matrix DfL

DfL �
df1L1 df1L2

df2L1 df2L2

« «
dfnL1 dfnL2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

Step 6. Select a follower pursuer closest to L1 as F1 and select a
follower pursuer closest to L2 as F2 according to DfL.

Step 7. Solve the contradictions in the follower pursuers task
assignment through negotiation, for example, if F1 and F2
are the same follower pursuer.

Step 8. The selected 2 leader pursuers and 2 follower pursuers
form two pursuit groups.

FIGURE 6 | Possible target cells for the follower pursuer (red circles
represent the leader pursuers, blue circle represents the evader and possible
target cells are printed yellow).
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4.1.2 Specific Task Assignment
The selected leader pursuers choose an encirclement pattern with
the shortest distance from Figures 4A,B to encircle the evader
and assign specific tasks through negotiation.

For the follower pursuers, they need to select a target cell to
realize capture when the evader is encircled. According to the
definition of capture, for each follower pursuer, we define a cell
that has a common side with the follower pursuer’s target leader
pursuers and is closest to the other leader pursuer as the possible
target cell under the assumption that the evader is encircled. For
example, in the case of Figure 6, the evader is encircled, if L1 in
cell 9, only cell 4, cell 8, cell 10, and cell 14 have a common side
with L1. For F1, cell 8 and cell 14 are possible target cells, since cell
8 and cell 14 are closest to the other leader pursuers. The follower
pursuer will select the nearest possible target cell as its final
target cell.

4.2 Hierarchical Reinforcement Learning for
Pursuit Problem
Hierarchical reinforcement learning is a widely utilized algorithm
to solve the problem of “curse of dimensionality” (Botvinick,
2012). Decomposing the whole team task into some subtasks at
different levels is the core idea of hierarchical reinforcement
learning. Moreover, the policy, which is learned by an agent in
a subtask, can also be utilized by other agents, so hierarchical
reinforcement learning significantly accelerates the convergence.
Option learning (Sutton et al., 1999) is one of the most popular
hierarchical learning algorithms.

In option learning, option means closed-loop policies for
taking action over a period of time. The option is a term for
generalizing primitive actions and it consists of three elements:
policy π, termination condition β and an initiation set ζ . Only if
current state s ∈ ζ , an option < π, β, ζ > is available. While an
option is adopted, actions are chosen according to policy π until
the option ends. When the current option terminates, agents have
the opportunity to select other options (Sutton et al., 1999).

In our research, we apply option learning to leader pursuers.
We abstract each leader pursuer’s task into two options: O1 and
O2. O1 and O2 are defined as follows.

• In O1, approaching the evader quickly is the aim of the
leader pursuer.

• In O2, encircling the evader is the aim of the leader pursuer.

In this paper, there is only one evader in our pursuit problem,
so leader pursuers can share learning experiences and update the
policy together during O1. When the leader pursuers in O2, each
leader pursuer will learn its policy separately. The internal policy
π of O1 and O2 are unknown, and the internal policy of each
option is learned with reinforcement learning respectively. By
introducing hierarchical reinforcement learning, we have greatly
improved the learning efficiency of leader pursuers.

4.3 Reward Improving
Q(λ)-learning and Q-Learning are all typical reward-guidance
learning algorithms. Therefore, it is very significant to define
rewards and penalties. The sparse reward is one of the most
popular rewards nowadays due to its simple structure. Generally,
the sparse reward is defined as follows

R �
r1, Situation 1,
r2, Situation 2,
−r3, Situation 3,
. . . , . . . ,

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (5)

where rnP0 (n ∈ 1, 2, 3, . . .) and all rewards are constants. When
dealing with some simple tasks, sparse reward exhibits a good
performance. However, when the task is complex, the agent may
achieve more penalties than rewards during training with sparse
reward, which will reduce the learning efficiency and even hinder
the agent from learning. In order to solve this problem, we alter
the reward function. Different from the sparse reward, we
designed an additional reward. The proposed reward is
defined as follows

R � rc + ra, (6)

where rc refers to sparse reward. rc is defined as follows

rc �
rc1, Situation 1,
rc2, Situation 2,
−rc3, Situation 3,
. . . , . . . ,

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (7)

where rcnP0 (n ∈ 1, 2, 3, . . .) and all rewards are constants.
Besides, ra in Eq. 6 represents the additional reward and it is
given by

ra � f(x), (8)

where f(x) is a continuous function related to the distance x
between agents.

4.4 Complete Algorithm
The complete algorithm is described in Algorithm 2.

Algorithm 2.
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5 SIMULATION EXPERIMENTS AND
RESULTS

5.1 Configuration of the Simulation
Experiment Environment
In our simulation experiment, we consider a bounded grid
map of 15 × 15 cells with obstacles, which are randomly
distributed in the map and each obstacle occupies a cell.
There are 3 leader pursuers, 3 follower pursuers, and 1 evader
on the map. The map is illustrated in Figure 7, where the red
circles represent leader pursuers, the black stars represent
follower pursuers, the blue circle represents the evader, and
obstacles are printed grey.

5.2 Experimental Results and Analysis
5.2.1 Q-Learning and Hierarchical Q(λ)-Learning
In this section, Q-learning, Q(λ)-learning, hierarchical
Q-learning, and hierarchical Q(λ)-learning are utilized to solve
our pursuit problem respectively. In our experiment, Q-learning
and Q(λ)-learning takes ϵ-greedy strategy as their action-
selection strategy. The parameters are set in Table 1.

For leader pursuers, entering within 5 × 5 cells centered on the
evader is defined asO1. For example, in the case of Figure 7, when
the evader in the current cell, entering within the yellow area is
defined as O1. In this section, the reward is defined as follows

R � rm + rd + rb, (9)

where rm is defined as follows

rm �
−3, The distance between the leader pursuer(the

follower pursuer) and the evader (its target
leader pursuer) becomes longer,

0, Other conditions,

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (10)

rd is given by

rd �
100, The evader is captured successfully,
50, If the pursuer completes its own individual

task,
0, Other conditions,

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (11)

rb can be obtained by

rb �
−5, If the pursuer attempts to cross boundary

or collide with obstacle,
0, Other conditions.

⎧⎪⎨⎪⎩ (12)

Every 1,000 episode, we record the average time steps it takes the
pursuers to successfully capture the evader. The simulation results
are illustrated in Figure 8 and Table 2 shows the average time steps
for 100,000 episodes. By introducing the eligibility trace, learning
results at any time step can immediately influence the policy and
improve the learning efficiency. Compared with Q-learning, Q(λ)-
learning greatly accelerates the convergence. Yet, Q(λ)-learning
cannot significantly improve the convergence results. Because the
hierarchical reinforcement learning greatly reduces the state set of
the algorithm, the average time steps for the pursuers to capture the
evader are significantly reduced. From Table 2, we can intuitively
conclude that compared with Q-learning, hierarchical Q(λ)-learning
can save 56.1% of average time steps.

5.2.2 The Improved Reward
In this section, we verify the effectiveness of the improved
reward and hierarchical Q(λ)-learning approach to
solve our pursuit problem. Compared with the above
simulation, we only replace rm with ra. ra is defined as follows

ra � −3ed2le−d2max , If the pursuer is a leader pursuer,

−3ed2fl−d2max , If the pursuer is a follower pursuer,
{ (13)

where the theoretical maximum distance between two agents in our
map is defined as dmax, dle(1#dle#dmax) is the distance between the
leader pursuer and the evader, and dfl(1#dfl#dmax) refers to the
distance between the follower pursuer and its target leader pursuer.

We also record the average time steps every 1, 000 episodes.
Figure 9 shows the simulation results and Table 3 exhibits the
average time steps for 100,000 episodes. Compared with sparse
reward, the improved reward provides more reward signals for
the pursuers during training and improves the learning efficiency
of the pursuers. It can be seen from Table 3 that the improved
reward can save 17.5% of average time steps in our pursuit
problem.

6 CONCLUSION

In this paper, we address a pursuit problem in a two-dimensional
environmentwith obstacles. Different fromprevious literature, in the

FIGURE 7 | Our pursuit problem environment.

TABLE 1 | Parameters setting.

α 0.1 c 0.9
ϵ 0.9 λ 0.5
episodemax 100,000 stepmax 500
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FIGURE 8 | Average time steps of four learning algorithms.

TABLE 2 | Average time steps for 100,000 episodes.

Q-learning 164.4
Q(λ)-learning 150.2
hierarchical Q-learning 80.1
hierarchical Q(λ)-learning 72.2

FIGURE 9 | Average time steps of hierarchical Q(λ)-learning and hierarchical Q(λ)-learning with improved reward.

TABLE 3 | Average time steps for 100,000 episodes.

Hierarchical Q(λ)-learning 72.2
hierarchical Q(λ)-learning with improved reward 59.6
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present study only a partial number of the pursuers know the evader’s
position. We combine the thought of leader-following control and
reinforcement learning to address the pursuit problem and present a
hierarchical Q(λ)-learning with improved reward to accelerate the
convergence. Our proposed method demonstrates better
performance than Q-learning in the pursuit problem.
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