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The paper presents the design conditions adequate in design of virtual actuators and
utilizable by nominal static output control structures in fault-tolerant control for strictly
Metzler systems. The positive stabilization with H∞ norm performance is also addressed
for virtual actuator design for strictly Metzler systems with interval uncertainty matrix
representations of single actuator faults. Taking into account disturbance conditions and
changes of values of variables after the virtual actuator activation, the design conditions are
outlined in the terms of linear matrix inequalities. The approach provides a way to obtain
acceptable dynamics of the closed loop system after virtual actuator activation.
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1 INTRODUCTION

To increase the reliability of systems, fault-tolerant control structures (FTC) usually fix a system with
faults so that it can continue its mission with certain limitations of functionality and quality.
Considering this, the different approaches were studied in FTC design (see, e.g., Huang et al. (2020);
Ding (2021); Du et al. (2021); Lan and Patton (2021) and the references therein).

To eliminate any disconnection of the nominal controller from the control loop and its replacing
with a new one, adapted to the really occurred fault conditions, the virtual approach keeps the
nominal controller in the reconfigured closed-loop system and “virtually adapts” the faulty plant to
the nominal controller. This is done in such a way that the activated virtual reconfiguration block
signals, in coincidence with the faulty plant measurements, imitate the fault-free system controller
input. Since in healthy conditions the virtual block is not active, the design of the virtual
reconfiguration block signals may seem to be independent of the nominal controller. Designated
to sensor faults the reconfiguration block is termed virtual sensor (VS), while in the case of actuator
faults is named virtual actuator (VA) (Steffen (2005); Richter (2011)). Bearing in mind that
reconfiguration after occurrence of an actuator fault can be related to disturbance decoupling,
the trend using the terms of a finite set of linear matrix inequalities (LMI) in VA design condition
formulation is rather natural (Tabatabaeipour et al. (2015); Krokavec et al. (2016); Bessa et al. (2021);
Hu et al. (2021)).

In many control problems exist system parameter limitations. Typical are positive systems, whose
state variables are strictly positive quantities (Nikaido (1968); Smith (1995)). Restricting to Metzler
structure of the system matrix when dealing with continuous-time positive systems (Berman and
Plemmons (1979); Berman et al. (1989); Metzler (2016)), such systems are often denoted as Metzler
systems. Most modes for stabilization of Metzler systems use linear memory-free controllers,
maintaining its positivity within specific system parameter constraints (De Leenheer and Aeyels
(2001); Shen and Lam (2015); Bhattacharyya and Patra (2018)). Although the principle of diagonal
stabilization for positive linear systems provides a way to solve partly the considered problems using
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iteration methods (Shen, 2017), the new approaches mean the
constraints representation by LMIs (Krokavec and Filasová,
2018).

Using the concept related to an interval system of equations or
inequalities (Moore et al., 2009), then interval observers can be
designed for uncertain linear systems, providing intervals to
which estimated states are belonging at the evolution time
(Gouzé et al., 2000), and specifically in the presence of non-
stationary disturbances and uncertainties (Bolajraf et al. (2011);
Mazenc and Bernard (2011); Raissi and Efimov (2018)).
Unfortunately, the interval representation of the single
actuator fault as a loss of gain must be interpreted as a system
with polytopic region of uncertainty and the related methods
(Prempain and Postlethwaite (2007); Krokavec and Filasová
(2021b)) have to be applied with explicit constraint
representation in the form of LMIs for this problem.

From the previous overview of methods and principles it
can be seen how many different aspects have to be covered in
VA design for uncertain Metzler systems. Since the parametric
constraints representation is conditioned by the principle of
diagonal stabilization, the approach is established to give
explicit design conditions in the form of LMIs. This
guarantees the strictly positive nominal closed-loop system
if the uncertain system model takes the strictly positive VA.
Note, the proposed LMI structures cover the system’s
structural constraints, the parameter uncertainties, and the
diagonal stabilisation principle. The primary goal is to find the
stabilizing nominal controller for the Metzler system, being
consistent with the positive configuration, as well as to design
the VA parameters to retain that the positive continuous-time
system properties will be preserved also in the faulty regime
after VA activating, when a single actuator fault occurs.
Although such defined class of systems prescribes the set of
strong structural parametric constraints, the proposed design
conditions allow obtaining numerical solutions in the
straightforward access. The main contribution is a strict
feasibility assumption, mainly for convenience that there
will be only modified structural variable constraints in the
non-negative formulation of the problem. It is the authors’
belief that further extensions can be done through the given
theoretical framework.

The paper is organized as follows. In Section 2 linear Metzler
systems formalism and control system strategies are presented. A
key theme of Section 3 are the H∞ norm based methods for
nominal controller and VA synthesis. In Section 4 the concept of
positive stabilization problem with H∞ norm characterization
analysis is discussed for single actuator fault interpreted as a gain
loss. The illustrative numerical example and some concluding
remarks are given in Section 5 and Section 6, respectively.

For sake of convenience, throughout the paper used notations
reflect usual conventionality so that xT, XT denotes the transpose
of the vector x, and the matrix X, respectively, X−1, ρ(X) signifies
the inverse and the eigenvalue spectrum of a square matrix X,
respectively, for a symmetric square matrix X3 0means thatX is
negative definite matrix, diag [ · ] marks the elements of a (block)
diagonal matrix, p represents the block in a square symmetric
matrix that is readily inferred by thematrix symmetry, the symbol

In indicates the n-th order unit matrix, R (R+) qualifies the set of
(nonnegative) real numbers, Rn×r

++ (Rn×r
+ ) refers to the set of n × r

strictly positive (nonnegative) real matrices and Mn×n
−+ , (Mn×n

−+◦) is
the set of strictly (purely) Metzler matrices.

2 LINEAR METZLER SYSTEMS
FORMALISM AND CONTROL STRATEGIES

To describe a linear, time-invariant continuous-time MIMO
Metzler system the state equations of the form

_q(t) � Aq(t) + Bu(t) + Dd(t), (1)

y(t) � Cq(t), (2)

can be used, where q(t) ∈ Rn
+, u(t) ∈ Rr, y(t) ∈ Rm

+ are the
system state vector, control input and measurable output,
respectively and d(t) ∈ Rrd+ is the system disturbance.

Since there exist different techniques to preserve properties of
the continuous-time Metzler linear systems, it is considered that
B ∈ Rn×m

+ , C ∈ Rm×n
+ , D ∈ Rn×p

+ are non-negative matrices and
A ∈ Mn×n

−+ is strictly Metzler.
Exploiting the Metzler matrix structure notation in the

efficient and flexible modeling of positive continuous-time
systems, the key features have to be highlighted in the following.

Definition 1. (Cvetković_2020) A square matrix A ∈ Mn×n
−+◦ is

purely Metzler if its diagonal elements are negative and its off-
diagonal elements are nonnegative. A square matrix A ∈ Mn×n

−+ is
strictly Metzler if its diagonal elements are negative and its off-
diagonal elements are positive. A Metzler matrix is stable if it is
Hurwitz. From a strictly Metzler matrix A ∈ Mn×n

−+ imply n2

structural constraints

aii < 0 ∀ i � 1, . . . n, aij, i≠j > 0 ∀ i, j � 1, . . . n. (3)

The problem gets even significantly more complex if purely
Metzler matrices in the control loops are considered.

Remark 1. Since B ∈ Rn×r
+ , C ∈ Rm×n

+ are non-negative, a negative
feedback makes smaller (nonnegative or positive) off-diagonal
elements and it could destroy theMetzler structure setting one (or
more) of the off-diagonal elements to a negative value. This fact
also highlights that structural constraints must be included in the
synthesis conditions to keep the desired structure Metzler.

While for general linear systems it is possible to work with sign
indefinite elements in the matrix inversion of a square system
matrix, for Metzler systems it may be difficult, or impossible, to
provide general statements if this matrix operation has to be done.
Since a square matrix X and its inverse have nonnegative structure
if X is positively definite diagonal, to guarantee structural
constraints the LMI based design conditions for Metzler
systems are formulated using positive definite diagonal matrix
variables and the term “diagonal stability” is used (Berman and
Hershkowitz, 1983), (Krokavec and Filasová, 2018). If A ∈ Rn×n

−+ is
only purelyMetzler, the synthesis conditions have to reflect further
structural constraints, includable in design by related structured
diagonal matrix variables (Krokavec and Filasová, 2019).
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Proposition 1. (Farina_and_Rinaldi_2000) A solution q(t) of
the disturbance-free state model (1) for t ≥ 0 is asymptotically
stable and positive if A ∈ Mn×n

−+ is a stable Metzler matrix,
B ∈ Rn×r

+ is a nonnegative matrix and the state vector
q(t) ∈ Rn

+ for given u(t) ∈ Rr
+ and q(0) ∈ Rn

+. The linear
disturbance free system (1), (2) is asymptotically stable and
positive if A ∈ Mn×n

−+ is a stable Metzler matrix, B ∈ Rn×r
+ ,

C ∈ Rm×n
+ are non-negative matrices and both the state

vector q(t) ∈ Rn
+ and the output vector y(t) ∈ Rm

+ for all
u(t) ∈ Rr

+ and q(0) ∈ Rn
+.

Definition 2. (Horn and Johnson, 1995) A matrix L ∈ Rn×n is a
permutation matrix if exactly one item in each column and row is
equal to 1 and all other elements are equal to 0.

Keeping into account Definition 2 and envisaging a diagonal
Y ∈ Rn×n such that

Y � diag y1 y2 / yn[ ], (4)

then it yields

LTYL � diag y2 / yn y1[ ], (5)

if LT ∈ Rn×n takes the circulant form

LT � 0 In−1
1 0
[ ]. (6)

Remark 2. (Krokavec and Filasová, 2021a) The diagonal
stabilization problem can be reformulated using a rhombic
mapping of the square strictly Metzler matrix A ∈ Mn×n

−+ of the
form

A �

a11 a12 a13 / a1n
a21 a22 a23 / a2n
a31 a32 a33 / a3n
« « « « «
an1 an2 an3 / ann

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (7)

where the rhombic mapping is constructed using circular shifts of
rows of A ∈ Mn×n

−+ as

AΘ �

a11 a12 a13 / a1n
a22 a23 / a2n a21

a33 / a3n a31 a32
1 « « « 1

ann an1 an2 / an,n−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (8)

It is evident that generally n2 parametric constraints (3) can be
defined by the negativeness ofAΘ(i, i + h) ∈ Rn×n

+ for h � 0 and by
positiveness of (n − 1) diagonal matrices AΘ(i, i + h) ∈ Rn×n

+ for
h � 1, . . ., n − 1 with

AΘ(i, i + h) � diag a1,1+h / an−h,n an−h+1,1 / an,h[ ], (9)

related to the diagonals of (8).

Definition 3. (Bellman, 1970) Let U ∈ Rm×m, O ∈ Rn×n then the
(mn)-dimensional matrix, called the Kronecker product of U and
O, is constructed as

U⊗O � uijO{ }m
i,j�1[ ], U � uij{ }m

i,j�1[ ]. (10)

It can be underlined at this point that the following Kronecker
product properties (Brewer, 1978) will be exploited

(In ⊗U)(O⊗ Im) � (O⊗ Im)(In ⊗U), (11)

(U ⊗O)−1 � U−1 ⊗O−1, (12)

(U ⊗O)T � UT ⊗OT. (13)

Consider the system (Eqs 1, 2), and the properties of diagonals
of the mapping (Eqs 8, 9), with the specific relation to Metzler
system diagonal stabilization principle. To keep the notation
simple, without loss of generality, this principle is briefly
formulated in these lemmas.

Lemma 1. (Krokavec and Filasová, 2018) Let the matrix
A ∈ Mn×n

−+ be strictly Metzler then it is Hurwitz if and only if
there exists a positive definite diagonal matrixQ ∈ Rn×n

+ such that
for h � 1, . . ., n − 1 and the circulant L ∈ Rn×n

+ the following sets of
LMIs is feasible

Q_ 0, QAT + AQ3 0, (14)

AΘ(l, l)Q3 0, LhAΘ(l, l+h)LhTQ_ 0. (15)

Note, in the context of Lyapunov stability analysis by using the
Lyapunov technique, (Eq. 14) results from a quadratic Lyapunov
function candidate.

Lemma 2. (Krokavec and Filasová, 2020) Let a square real n × n
matrix Λ is partitioned as

Λ � A − BKC, (16)

where A ∈ Mn×n
−+ , B ∈ Rn×m

+ , C ∈ Rm×n
+ , K ∈ Rm×m

+ , while A is
strictly Metzler. Then Λ is strictly Metzler if, equivalently,

(i)

aii − bTi Kci < 0 for all i � 1, . . . , n,
aij − bTi Kcj > 0 for all i, j � 1, . . . n, i≠ j, (17)

(ii)

AΘ(i, i) − BdKdCd30,
AΘ(i, i + h) − BdKdCdh_0,

(18)

where

B �
bT1
«
bTn

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦, Bd � diag bT1 / bTn[ ], (19)

C � c1 / cn[ ], Cd � diag c1 / cn[ ], (20)

Kd � In ⊗K , Cdh � ShTCdL
h, S � L⊗ Im. (21)

while B is separated by its rows and C by its columns.
Moreover, the square matrix representation related to its

rhombic diagonals is given as

Λ �∑n−1
h�0

(AΘ(i, i + h) − BdDdCdh)LhT. (22)
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Since the positivity of the systems is defined by a nonnegative
system state, nonnegative system input and output matrix
parameters and by a Metzler system matrix structure, it is
necessary to proceed from these facts also in the synthesis of
the static output controller.

Within the main goal of this paper it is necessary to define
primarily the problem performed on positiveness base to
control the Metzler system in the faulty-free mode and, in
particular, to use of the LMI criteria form in the stability
guarantee.

The stabilizing approach, referred to as the static output
control (Zhang et al. (2020); Gritli et al. (2021)) has to be also
adapted in the control law gain computing for positive
continuous-time systems. Supposing that the square
Metzler system (Eqs 1, 2), is stabilizable by the static
output control

u(t) � −Ky(t) � −KCq(t), (23)

with strictly positive gain K ∈ Rm×m
++ , this multi-variable problem

subject to given parametric constraints can be solved as follows:

Theorem 1. The closed-loop constructed on the square linear
Metzler system (Eqs 1, 2), under static output control (Eq. 23) is
stable if there exist positive definite diagonal matrices Q ∈ Rn×n

+ ,
V ∈ Rm×m

+ , a strictly positive matrix R ∈ Rm×m
++ and a positive

scalar c ∈ I R+ such that for h � 1, 2, . . .n − 1

Q_0, V_0, c> 0, (24)

AQ + QAT − BRC − CTRTBT p p

DT −cIrd p

CQ 0 −cIm
⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦< 0, (25)

AΘ(i, i)Q − BdRdCd30, (26)

LhAΘ(i, i + h)LhTQ − LhBdS
ThRdCd_0, (27)

CdQ � VdCd, (28)

with the structured matrix variables

R, Rd � In ⊗R, Vd � In ⊗V (29)

and with the enhanced design parameters given in (Eqs 9,
19, 20).

When the above conditions hold the strictly positive K is
constructed by using R, V as

K � RV−1. (30)

Hereafter, p denotes the symmetric item in a symmetric
matrix.

Proof. According to the condition (Eq. 14) it must be applied for
a positive definite diagonal matrix Q ∈ Rn×n

+ that

AcQ + QAT
c30, (31)

where

Ac � A − BKC, (32)

Hence, upon inserting (Eqs 22, 32), it can be obtained an
explicit expression

AcQ + QAT
c

� ∑n−1
h�0

(AΘ(i, i + h)LhT − BdKdCdhL
hT)Q +∑n−1

h�0
Q(AΘ(i, i + h)LhT

−BdKdCdhL
hT)T. (33)

Substituting (Eq. 21) and using (Eq. 11) it can be solved for the
above defined specific matrix element (since LhLhT � In)

BdKdCdhL
hTQ � BdKdS

hTCdhL
hLhTQ

� Bd(In ⊗K)(LhT ⊗ Im)CdQ
� Bd(LhT ⊗ Im)(In ⊗K)CdQ
� BdS

hTKdCdQ

(34)

and the product KdCdQ can be rewritten as follows

KdCdQ �
K

1
K

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦CdQ

�
KV

1
KV

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ V−1

1
V−1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦CdQ

� RdV
−1
d CdQ,

(35)

where Rd, Vd are the structured matrix variables defined in (Eq.
29), V ∈ IRm×m

+ is a positive definite diagonal matrix, R ∈ Rm×m
+ is

strictly positive structured matrix variable and

R � KV . (36)

Thus, Prescribing That

V−1
d Cd � CdQ

−10CdQ � VdCd, (37)

then

KdCdQ � RdCd (38)

and (Eq. 37) gives the matrix equality (Eq. 28).
Multiplying the right side of (Eq. 18) by Q and using (Eq. 38)

then (Eq. 18) implies

(AΘ(i, i) − BdKdCd)Q � AΘ(i, i)Q − BdRdCd30, (39)

which forces (Eq. 26).
Analogously, pre-multiplying the left side by Lh and

post-multiplying the right side by LhTQ it results from
(Eq. 18) that

LhAΘ(l, l+h)LhTQ − LhBdKdCdL
hTQ_0 (40)

and using (Eqs 34, 38), (38) then (Eq. 40) implies (Eq. 27).
If the matrix T ∈ Rm×mn

+ is defined as

T � In / In[ ] (41)

then, multiplying the left side of (Eq. 38) by T,

TKdCdQ � KCQ � TRdCd � RC (42)

and using (Eq. 42) it will be

AcQ � (A − BKC)Q � AQ − BRC (43)

In the context of Lyapunov stability analysis by using the
Lyapunov technique, a Lyapunov function candidate of the form
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v(q(t)) � qT(t)Pq(t) + c−1 ∫t

0
(yT(τ)y(τ) − c2dT(τ)d(τ))dτ > 0

(44)

is chosen, where a positive definite diagonal matrix P ∈ Rn×n
+ is

prescribed and c > 0 is considered as an upper bound ofH∞ norm
of the disturbance transfer function matrix (see, e.g., Filasová and
Krokavec (2012) for more details).

Simple computations show that the time derivative of this
Lyapunov function is defined by

_v(q(t)) � _qT(t)Pq(t) + qT(t)P _q(t) + c−1yT(t)y(t) − cdT(t)d(t)
� qT(t)(AT

c P + PAc + c−1CTC)q(t)+
+dT(t)DTPq(t) + qT(t)PDd(t) − cdT(t)d(t)
< 0

(45)

and Lyapunov’s method states that if such a function exists, then
the equilibrium of the system is stable.

Thus, defining

qT◇(t) � qT(t) dT(t)[ ], (46)

(Eq. 45) can be written as

_v(q◇(t)) � qT◇(t)P◇ q◇(t)< 0, (47)

where, because P is diagonal,

P◇ � AT
c P + PAc + c−1CTC PD

DTP −cIp[ ]30. (48)

Therefore, in the sense of Schur complement, (Eq. 48)
admits

AT
c P + PAc PD CT

DTP −cIrd 0
C 0 −cIm

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦30, (49)

where (Eq. 49) takes the form by sense of the Bounded Real
Lemma (Scherer et al. (1997).

Thus, with

X � diag Q Ird Im[ ], Q � P−1, (50)

it can obtain from (Eq. 49), when pre-multiplying the left side
and post-multiplying the right side by X,

AcQ + QAT
c D QCT

DT −cIrd 0
CQ 0 −cIm

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦30. (51)

Hence, substituting (Eq. 43), then (Eq. 51) implies (Eq. 25).
This concludes the proof.

3 SYNTHESIS OF NOMINAL CONTROLLER
AND VA

In a faulty case with a single actuator fault the control structure
is modified by adding the associated VA block that masks the
actuator fault, and allows the controller to perceive the system

as it was before the fault, i.e., the nominal controller may still
be used without it being necessarily readjusted. The synthesis
methodology assumes a known system model and its
parameters for working in nominal mode and a system
model and its parameters for faulty mode. In addition, it is
assumed that the active FTC structure contains a part of fault
detection and localization (FDI) that will allow the correct
activation of the control structure reconfiguration after the
fault has occurred.

The state-space description of the systemwith a single actuator
fault is considered as follows

_qfa(t) � Aqfa(t) + Bfufa(t) + Vd(t), (52)

yfa(t) � Cqfa(t), (53)

where qfa(t) ∈ Rn denotes the faulty system state variables
vector, ufa(t) ∈ Rr labels the vector of acting control input
variables in the faulty regime, yfa(t) ∈ Rm identifies the
vector of output variables in the faulty regime, while the
matrix Bf ∈ Rn×r and rank(Bf) ≤ rank(B). Moreover, it is
supposed that the pair (A, Bf) is controllable and the input
vector ufa(t) is available for reconfiguration (all inputs to
the plant are available as they use the nominal controller,
but one associated with the faulty actuator is broken)
and the covering of the faulty control input is defined as
follows

ufa(t) � −Gefa(t), (54)

where G ∈ Rr×n. To obtain the VA state-space description, the
following lemma is proven.

Lemma 3. The system dynamics of VA for the system (Eqs 52,
53), with a single actuator fault is given as

_efa(t) � Acfefa(t) − Buc(t), (55)

where

Acf � A − BfG, (56)

efa(t) � qfa(t) − q(t) (57)

and efa(t) ∈ Rn, Acf ∈ Rn×n.

Proof. Writing (Eq. 1) and (Eq. 52) compactly as

_qfa(t)
_q(t)[ ] � A 0

0 A
[ ] qfa(t)

q(t)[ ] + Bf 0
0 B

[ ] ufa(t)
uc(t)[ ]

+ D
D
[ ]d(t), (58)

then the behavior of the extended system can be fully
described also by using qfa(t) and by the error vector efa(t)
(Eq. 57). Then, to perform the system coordinate change, the
transform matrix T can be defined with respect to (Eq. 57) as
follows

T � I 0
I −I[ ], T−1 � I 0

I −I[ ] (59)

and, accordingly, it can be obtained
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T
qfa(t)
q(t)[ ] � I 0

I −I[ ] qfa(t)
q(t)[ ] � qfa(t)

efa(t)[ ], (60)

I 0
I −I[ ] Bf 0

0 B
[ ] � Bf 0

Bf −B[ ], (61)

I 0
I −I[ ] D

D
[ ] � D

0
[ ], (62)

I 0
I −I[ ] A 0

0 A
[ ] I 0

I −I[ ] � A 0
0 A

[ ]. (63)

Moreover, consistently with these notations, (Eq. 58) can be
rewritten in the following form

_qfa(t)
_efa(t)[ ] � A 0

0 A
[ ] qfa(t)

efa(t)[ ] + Bf 0
Bf −B[ ] ufa(t)

uc(t)[ ]
+ D

0
[ ]d(t). (64)

The choice of the faulty control input covering, defined by (Eq.
54), solves the problem and provides that the substitution of (Eq.
54) in (Eq. 64) leads to

_qfa(t)
_efa(t)[ ] � A −BfG

0 A − BfG
[ ] qfa(t)

efa(t)[ ] − 0
B
[ ]uc(t) + D

0
[ ]d(t).

(65)

Using the above argumentations it is possible to state that the
second row of the equation (Eq. 65) implies the VA equation (Eq.
55). This concludes the proof.

Corollary 1. Using the nominal controller, defined in analogy
with (Eq. 23) as

uc(t) � −Ky(t) � −KCq(t), (66)

where K ∈ Rm×m
++ , then

_q(t) � Acq(t) + Vd(t), (67)

y(t) � Cq(t), (68)

Ac � A − BKC (69)

and it is evident that K can be designed using Theorem 1.
The first row of the equation (Eq. 65) implies

_qfa(t) � Aqfa(t) − BfGefa(t) + Dd(t)
� Aqfa(t) − BfG(qfa(t) − q(t)) + Dd(t)
� (A − BfG)qfa(t) + D Bf[ ] d(t)

Gq(t)[ ]. (70)

Thus, denoting

Df � D Bf[ ], dT
fa(t) � dT(t) qT(t)GT[ ], (71)

the state-space description of the faulty closed-loop system with
activated VA is as follows

_qfa(t) � Acfqfa(t) + Dfdfa(t), (72)

yfa(t) � Cqfa(t), (73)

where Dfa ∈ Rn×rfa , dfa(t) ∈ Rrfa , rfa � r + rd

When comparing (Eq. 55) and (Eq. 72) it is necessary to
emphasize that with such defined structures, the dynamics
of the VA and the dynamics of the faulty system will be
the same.

Remark 3. Writing (Eq. 66) as

uc(t) � −KC(qfa(t) − efa(t)) � −K(yfa(t) − Cefa(t)) (74)

it is evident that the measured faulty output yfa(t) can be masked
on the input of the controller by the value − Cefa(t), where efa(t) is
obtained from the VA equation (Eq. 55).

Practically it means to start reconfiguration regime by
including the virtual block (Eq. 55) into the control loop and
to initialize it with efa(0).

Remark 4. The possible question to ask is whether (Eq. 65)
happens to constitute the classical separation principle invalidity,
if the single actuator faults are projected onto the uncertainty of
input system matrix Bf, see, e.g., the accompanying tasks in Do
et al. (2021); Rauh et al. (2021).

Since, substituting (Eqs 69–71) Into (Eq. 65), it can be
obtained

_qfa(t)
_efa(t)[ ] � Acf 0

0 Acf
[ ] qfa(t)

efa(t)[ ] − 0
B
[ ]uc(t) + Df

0
[ ]dfa(t),

(75)

the closed-loop structure with VA should not have such
unfavorable response.

To give the design conditions for VA for strictly Metzler
systems, it is necessary to repeat a few results on diagonal
parameterisations with relation to state control problem.

Remark 5. (compare Krokavec and Filasová (2020)) In contrast
to the diagonal representation of the system parameters
according to (Eqs 19, 20) in the static output control design,
the state control form of (Eq. 56) requires separation of the
matrix Bf by its columns and the matrix G by its rows to obtain
different structure of the diagonal representation, defined as
follows for j � 1, . . ., r

Bf � b1 / bif/ br[ ], Bfdj � diag bj1 / bjn[ ], j≠ i,
Bfdi � diag 0 / 0[ ], (76)

G �
gT1
«
gTn

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦, Gdj � diag gj1 / gjn[ ]. (77)

The square matrix representation of Acf from its rhombic
diagonals is now given as

Acf �∑n−1
h�0

AΘ(i, i + h) −∑rj
j�1

BfdjGdjh
⎛⎝ ⎞⎠LhT, (78)

where

Gdjh � LhTGdjL
h, (79)

while the open form representation of Acf is
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Acf � A − ∑rj
j�1

bfjg
T
j

� A − ∑rj
j�1

Bfdjlnl
T
nGdj,

(80)

where

ln � 1 1 / 1[ ]T ∈ Rn. (81)

The use of these relationships eliminates introduction of
additional structured matrix variables into LMI formulation.

The control structure with VA is standard (see, e.g., Richter
(2011), Fig. 4.8fig48, p. 73).

To the above given faulty system model, and persisted
parametric constraints, the design condition are imposed in
the following form:

Theorem 2. VA (Eq. 55) is Metzler and stable if the faulty system
(Eqs 52, 53) is Metzler and there exist positive definite diagonal
matrices U ,Vj ∈ Rn×n

+ and a positive scalar δ ∈ R+ such that for
h � 1, . . ., n − 1, j � 1, . . ., r,

U_0, Vj,_0, δ > 0, (82)

AU + UAT −∑r
j�1
(Bfdjlnl

T
nVj + V jlnl

T
nBfdj) p p

DT
f −δIr p

CU 0 −δIm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦< 0,
(83)

AΘ(i, i)U −∑r
j�1

BfdjV j30, (84)

LTAΘ(i, i + h)LhTU −∑r
j�1

LhBfdjT
hTV j_0. (85)

With a feasible solution, the nonnegative VA gain G ∈ Rr×n
+ that

solves the design task is

Gdj � VjU
−1, gTj � lTGdj, G �

gT1
«
gTr

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦, (86)

only implicitly defining the gain non-negativeness.

Proof. If h � 0, then (Eq. 78) impliesr

AΘ(i, i + h) −∑r
j�1

BfdjGdj30. (87)

Since U ∈ Rn×n
+ is a positive definite diagonal matrix,

multiplying the right side of (Eq. 88) by U gives

AΘ(i, i + h)U −∑r
j�1

BfdjGdjU30 (88)

and with

V j � GdjU , (89)

then (Eq. 88) forces (Eq. 84).

Analogously, for an arbitrary h ∈ 〈1, n − 1〉,

AΘ(i, i + h) −∑r
j�1

BfdjGdjh
⎛⎝ ⎞⎠LhT � AΘ(i, i + h)LhT −∑r

j�1
BfdjL

hTGdjL
hLhT_0

(90)

and, pre-multiplying the left side by Lh and post- multiplying the
right side by U, then (Eq. 90) implies

LhAΘ(i, i + h)LhTU −∑r
j�1

LhBfdjL
hTGdjU_0. (91)

Therefore, using (Eq. 89), it comes out that (Eq. 91) gives
(Eq. 85).

When considering a positive definite diagonal matrix
W ∈ Rn×n

+ , in the Lyapunov sense it can be set

v(qfa(t)) � qTfa(t)Wqfa(t) + δ−1 ∫t

0
(yTfa(τ)yfa(τ)

− δ2dT
fa(τ)dfa(τ))dτ > 0 (92)

and, consequently, it can be expressed the time derivative of (Eq.
91) as

_v(qfa(t)) � _qTfa(t)Wqfa(t) + qTfa(t)W _qfa(t) + δ−1yTfa
(t)yfa(t) − δdT

fa(t)dfa(t) � qTfa(t)(AT
cfW +WAcf

+ δ−1CTC)qfa(t)
+ +dT

fa(t)DT
fWqfa(t)

+ qTfa(t)WDfdfa(t)
− δdT

fa(t)dfa(t)< 0. (93)

Thus, defining

qTfa◇(t) � qTfa(t) dT
fa(t)[ ], (94)

(Eq. 93) can be written as

_v(qfa◇(t)) � qTfa◇(t)Wfa◇qfa◇(t)< 0, (95)

where, because W is diagonal,

Wfa◇ � AT
cfW +WAcf + c−1CTC PDfa

DT
fP −cIr[ ]30. (96)

Therefore, in the sense of Schur complement, (Eq. 96) admits

AT
cfW +WAcf WDf CT

DT
fW −δIr 0
C 0 −δIm

⎡⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎦30 (97)

and with

Z � diag U Ir Im[ ], U � W−1, (98)

it can be obtained from (Eq. 97), when pre-multiplying the left
side and post-multiplying the right side by Z that

AcfU + UAT
cf Df UCT

DT
f −cIr 0

CU 0 −cIm
⎡⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎦30. (99)
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Since multiplying the right side of (Eq. 80) by U gives

AcfU � AU −∑r
j�1

Bfdjlnl
T
nGdjU , (100)

then with (Eq. 89) it yields

AcfU � AU −∑r
j�1

Bfdjlnl
T
nVdj (101)

and substituting (Eq. 101) then (Eq. 99) implies (Eq. 83). This
concludes the proof.

4 UNCERTAIN REPRESENTATION OF
SINGLE ACTUATOR FAULTS

Assuming generally that A, B, C, D of (Eqs 1, 2), belong to the
polytopic uncertainty domain

Od s ∈ S, (A,B,C,D)(s) � ∑p
l�1

sl Al,Bl,Cl,Dl( ){ }, (102)

S � (s1, . . . , sp): ∑p
l�1

sl � 1; sl > 0, l � 1, . . . , p
⎧⎨⎩ ⎫⎬⎭, (103)

where S is the unit simplex, Al, Bl, Cl andDl are constant matrices
and uncertainties sl, l � 1, . . ., p are time-invariant. Since s is
constrained to (Eq. 103), matrix elements of the set
(A,B,C,D)(s) are affine functions of the associated vector
s ∈ Rp

+ of uncertain parameters. Thus, the convex combination
of the vertex matrices (Al,Bl,Cl,Dl), l � 1, . . . , p describes the
uncertain system.

To describe the i-th single actuator fault as an interval loss of
its gain, then (Eqs 71, 76, 80), have to be redefined as

�Bf � b1 / �bi/ bn[ ], B f � b1 / b i/ bn[ ], (104)

�Acf � A −∑r
j�1

B fdjlnl
T
nGdj, A cf � A −∑r

j�1
�Bfdjlnl

T
nGdj, (105)

D f � D B f[ ], �Df � D �Bf[ ] (106)

where, since bi is generally non-negative, it yields element
wise

b i ≤ �bi ≤ bi, B f ≤ �Bf ≤B, D f ≤ �Df ≤D, (107)

whilst bi is the i-th vector of the nominal matrix B. It is evident
that for Metzler systems the interval parameters have to be stated
within bi, b i, �bi ∈ Rn

+ B,B f, �Bf ∈ Rn×r
+ , Acf,A cf, �Acf ∈ Rn×n

+ ,
D,D f, �Df ∈ Rn×(r+rd)+ .

Remark 6. In practice, when creating a state-space description of
a real system, the actuator gains are included in the inputmatrix B
and the sensor gains in the output matrix C, while the gains
always being positive and the signals in front of amplifiers being
generally sign-indefinite. If the property of the system introduces
into the state description (with respect to the i-th input) the
vector b0i and the gain of the i-th actuator is κ0i, the i-th column

of the matrix B is bi � b0iκ0i. A loss of gain of the i-th
actuator generally means κi < κ0i, loss of functionality means
κi � 0, bi � 0.

Suppression of a possible increase in gain is usually done when
designing the system control. Of course, with a defined upper
allowable limit of gain increase, the presented methodology can
be generalized for this case as well.

The uncertain faulty Metzler system implies the following
modification of (Eqs 102, 103),

Od s ∈ S, A,Bf,C,Df( )(s) � ∑2
l�1

sl A,Bfl,C,Dfl( ){ }, (108)

S � (s1, . . . , sp): ∑2
l�1

sl � 1; sl > 0, l ∈ 〈1, 2〉
⎧⎨⎩ ⎫⎬⎭, (109)

where

Bf2 � B f, Bf1 � �Bf, Df1 � D f, Df2 � �Df (110)

and, consequently,

Acf1 � A cf, Acf2 � �Acf. (111)

Theorem 3. VA (Eq. 55) is strictly Metzler and stable if the faulty
system (Eqs. 52, 53) is strictly Metzler with uncertain parameters
Bf1, Bf2 and there exist positive definite diagonal matrices
U ,Vj ∈ Rn×n

+ and a positive scalar δ ∈ R+ such that for h � 1,
. . .n − 1, j � 1, . . ., r, l � 1, 2

U_0, Vj,_0, δ > 0, (112)

AU + UAT −∑r
j�1
(Bfdjllnl

T
nVj + V jlnl

T
nBfdjl) p p

DT
fl −δIr p

CU 0 −δIm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦< 0,
(113)

AΘ(i, i)U −∑r
j�1

BfdjlV j30, (114)

LTAΘ(i, i + h)LhTU −∑r
j�1

LhBfdjlT
hTV j_0. (115)

In the affirmative case, the VA gain G ∈ Rr×n
++ that solves the

design task, is

Gdj � V jU
−1, gTj � lTnGdj, G �

gT1
«
gTr

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦. (116)

Proof. Reflecting the basic property of the uncertainties in the
unit simplex (Eq. 109)

∑2
l�1

sl � 1 (117)

then inequality (Eq. 93), conditioned by (Eq. 109), implies the
following modification for given problem
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_v(qfa(t)) � qTfa(t)∑2
l�1

sl A
T
cflW +WAcfl + δ−1CTC( )qfa(t)+

+∑2
l�1

sl d
T
fa(t)DT

flWqfa(t) + qTfa(t)WDfldfa(t)( ) − δdT
fa(t)dfa(t)

< 0.
(118)

Following the same assumptions applied in the proof of
Theorem 2 then, in analogy with (Eq. 99), it has to be for l ∈
〈1, 2〉

AcflU + UAT
cfl Dfl UCT

DT
fl −cIr 0

CU 0 −cIm
⎡⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎦30. (119)

Multiplying the right side of (Eq. 105) by U gives

�Acf � AU −∑r
j�1

B fdjlnl
T
nGdjU , A cf � AU −∑r

j�1
�Bfdjlnl

T
nGdjU ,

(120)

then, with (Eq. 89), the relations for the latter problem can be
written as

�Acf � AU −∑r
j�1

B fdjlnl
T
nV j, A cf � AU −∑r

j�1
�Bfdjlnl

T
nV j (121)

that is, with l ∈ 〈1, 2〉,

AcflU � AU −∑r
j�1

Bfdjllnl
T
nVdj, (122)

where the same idea can be used for representation of the acting
fault on the i-th actuator

Bfl � b1 / bifl/ br[ ], l ∈ 〈1, 2〉, (123)

Bfdj1 � Bfdj2 � diag bj1 / bjn[ ], j≠ i,
Bfdjl � diag bjfl1 / bjfln[ ], j � i, l � 1, 2. (124)

Thus, substituting (Eq.122), then (Eq. 119) implies (Eq. 113).
It is evident, that all columns of Bfl, except the i-th column,

remain unchanged and equal to the associated columns of B.
Thus, when separating Bfl by columns, the diagonal
representation of a column, except the i-th column, is equal
for l � 1 and l � 2. Conversely, the i-th column has two diagonal
representations, one for its lower boundary (l � 2) and the other
for its upper boundary (l � 1).

Applying the same procedure to reformulate the inequalities
(88), (91), it can obtain the representation

AΘ(i, i + h)U −∑r
j�1

BfdjlGdjU30 (125)

LhAΘ(i, i + h)LhTU −∑r
j�1

LhBfdjlL
hTGdjU_0. (126)

Square; and using (Eq. 89), then (Eqs 125, 126) gives (Eqs 114,
115), respectively. This concludes the proof.

A key properties needed to program and initialize the design
solutions for controller and VA synthesis are illustrated in the
following section.

5 ILLUSTRATIVE EXAMPLE

The proposed design algorithms are applied to the system model,
which state-space representation is at the same time simple
enough to apply and test for static output and VA design.
Related to Eqs 1, 2 the system parameter matrices are
(Krokavec and Filasová, 2020)

A �
−3.3800 2.2080 6.7150 5.6760
0.5810 −4.2900 2.0500 0.6750
1.0670 4.2730 −6.6540 5.8930
0.0480 2.2730 1.3430 −2.3840

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

B �
0.0400 0.0189
0.0568 0.0203
0.0114 0.0315
0.0114 0.0170

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, D �
0.0140
0.0150
0.0223
0.0061

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

C � 0 1 0 0
0 0 0 1
[ ].

The design of the nominal controller is not conditional in VA
design, but based on different diagonal matrix representation of
Metzler system matrix parameter, for the sake of completeness, is
also partly illustrated at first.

The corresponding diagonal and block diagonal matrix
parameters, related with the nominal controller design, are
constructed as

AΘ(i, i) � diag −3.3800 −4.2900 −6.6540 −2.3840[ ],
bT1 � 0.0400 0.0189[ ],

AΘ(i, i + 1) � diag 2.2080 2.0500 5.8930 0.0480[ ],
bT2 � 0.0568 0.0203[ ],

AΘ(i, i + 2) � diag 6.7150 0.6750 1.0670 2.2730[ ],
bT3 � 0.0114 0.0315[ ],

AΘ(i, i + 3) � diag 5.6760 0.5810 4.2730 1.3430[ ],
bT4 � 0.0114 0.0170[ ],

c1 � 0
0
[ ], c2 � 1

0
[ ], c3 � 0

0
[ ], c4 � 0

1
[ ],

L � 0T 1
I3 0

[ ], S � L⊗ I2,

Bd �
0.0400 0.0189 0 0 0 0 0 0

0 0 0.0568 0.0203 0 0 0 0
0 0 0 0 0.0114 0.0315 0 0
0 0 0 0 0 0 0.0114 0.0170

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

CT
d �

0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
to be compatible with (Eqs 18–20).

Using the SeDuMi package (Peaucelle et al., 2002) in the Matlab
environment to solve (Eqs 24–28), the LMI variables take the forms

Q � diag 0.7950 0.1094 0.1232 0.0326[ ],
V � diag 0.1094 0.0326[ ], R � 0.1898 0.0247

12.1138 0.9881
[ ]

and the nominal control law gain matrix K is calculated as
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K � 1.7346 0.7576
110.7035 30.3549
[ ].

The nominal closed-loop system matrix is strictly Metzler and
Hurwitz, with the following structure and the eigenvalue
spectrum

Ac �
−3.3800 0.0463 6.7150 5.0720
0.5810 −6.6358 2.0500 0.0158
1.0670 0.7661 −6.6540 4.9282
0.0480 0.3713 1.3430 −2.9087

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

9(Ac) �
−0.0815
−4.0161
−6.4195
−9.0614

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎫⎪⎪⎪⎬⎪⎪⎪⎭,

while the upper bound of H∞ norm of the disturbance transfer
matrix function matrix for the faulty-free system is c � 1.6276.

In the following is considered the same system but with the
second actuator fault, defined by an interval of actuator gain loss.
To get a better understanding of the underlying task, the matrices
�Bf, B f are specified as follows:

Bf1 � �Bf �
0.0400 0.0180
0.0568 0.0193
0.0114 0.0299
0.0114 0.0162

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, Bf2 � B f �
0.0400 0.0047
0.0568 0.0051
0.0114 0.0079
0.0114 0.0043

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

To solve the VA design task, the state form of VA dynamics
description implies another diagonal matrix representation than
was used in the first case, i.e., the diagonal matrix representation
schemes for Bf1, Bf1 according (Eq. 104) give

Bfd11 � diag 0.0400 0.0568 0.0114 0.0114[ ],
Bfd21 � diag 0.0180 0.0193 0.0299 0.0162[ ],

Bfd12 � diag 0.0400 0.0568 0.0114 0.0114[ ],
Bfd22 � diag 0.0047 0.0051 0.0079 0.0043[ ].

Although the C matrix is not changed, in the VA design task
the diagonal representation of C reflects separation its rows that is

Cd1 � diag 0 1 0 0[ ], Cd2 � diag 0 0 0 1[ ].
Moreover, to reflect the disturbance extension, the generalized

matrices Df1, Df2, defined by (Eq. 106), have to be created as

Df1 �
0.0140 0.0400 0.0047
0.0150 0.0568 0.0051
0.0223 0.0114 0.0079
0.0061 0.0114 0.0043

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

Df2 �
0.0140 0.0400 0.0180
0.0150 0.0568 0.0193
0.0223 0.0114 0.0299
0.0061 0.0114 0.0162

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.
Fortunately, in this example, the diagonal representation of the

system matrix A by the set of matrices AΘ(p) resulting from its
rhombic representation remain unchanged.

Solving (112)–(115) within the same environment and the
considered toolbox, the following LMI variables result

U � diag 1.3531 0.1074 0.3234 0.0790[ ],
V1 � diag 3.3725 4.8766 10.4354 0.3562[ ],
V2 � diag 0.7227 1.2291 2.2375 1.1621[ ]

and the VA gain is given as:

G � 2.4924 45.4203 32.2668 4.5092
0.5341 11.4477 6.9184 14.7094
[ ].

One can verify that with such defined G the dynamics of VAs,
on the borders of the interval fault gain of the second actuator, are

�Acf �
−3.4893 0.1856 5.3001 5.2315
0.4291 −7.0906 0.0838 0.1352
1.0226 3.4126 −7.2289 5.4014
0.0110 1.5703 0.8634 −2.6730

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

9(�Acf) �
−0.5363
−4.0873
−7.4010
−8.4571

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎫⎪⎪⎪⎬⎪⎪⎪⎭,

A cf �
−3.4822 0.3371 5.3916 5.4261
0.4367 −6.9280 0.1821 0.3442
1.0344 3.6651 −7.0763 5.7258
0.0173 1.7066 0.9458 −2.4979

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

9(A cf) �
−0.1657
−4.0721
−7.2311
−8.5156

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎫⎪⎪⎪⎬⎪⎪⎪⎭.

whilst the upper bound of H∞ norm of the disturbance transfer
matrix function matrix is δ � 1.9907. It is obvious that both of
these matrices are Metzler and Hurwitz.

In order to see the system state and output responses in the
system working point set mode, the control law is realized as

u(t) � −KCy(t) +Mw, w � 2 1[ ],
where w defines the desired system output. The matrixM ∈ I R2×2

is the signal gain matrix, computed by using the static decoupling
principle, being different for the nominal and faulty regime,
where

Mn � 151.7698 −144.8794
−123.2342 123.6073
[ ],

Mf � 233.4773 −149.7073
−447.5619 357.2267
[ ],

Mf is determined using the mean value of the interval
boundaries of the matrix Bf and the same Bf is used in the
simulation.

SinceMn is signum indefinite, to guarantee positiveness of the
system state variables and the system output variables, the initial
system state vector is set as

q(0) � 0 0 0.6 0[ ]T.
To present different scenarios (the fault-free regime, the single

second actuator fault), the fault-free operation happens until t �
7s, the loss of the actuator gain starts at the time instant t � 7s and
is step-like and permanent, the fault detection time is Δt � 0.04s
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and, consequently, VA can be activated at the time instant t �
7.04s. Because such a loss of gain causes the system instability, it is
clear that the error detection and localization block must be
responsive. In the simulation the band-limited white noise with
noise power Np � 0.3 is applied on the disturbance input of D.

The simulation results are presented in Figure 1 and Figure 2.
It can be seen that reconfiguration goal, consisting in a new
control structure by activating VA and new set-point control for
the control loop with VA, is such that the control aims are met.

Since the dynamics of state observers is projected in the
dynamics of observer-based fault residual generators, an
algorithm, the discrete version of which is given in
Krokavec and Filasová (2012), can be used for detection
and localization of actuator faults. To process in the
considered task the produced residual signal to an actuator
fault detection, the bank of two set of thresholds is applied,
where each of them uses one of the actuator fault residual
signal model to actuate the decision logic for single actuator
fault detection and localization. The result is activation of the
VA and the gain matrix Mf, corresponding to the detected
fault. Of course, like any fault detection and localization
subsystem, this structure also has a finite positive
response time.

The main illustrative contribution of this example is the
detailed explanation of the VA design steps, based on the
system constraint interpretation and a single actuator fault
interval limits incorporation in the LMI algorithm, including
the implementation algorithm for strictly Metzler continuous-
time linear systems.

6 CONCLUDING REMARKS

According to the control theory of positive linear continuous-
time systems, in the paper is presented one design method which

gives desired stability of the faulty system via activation of the
linear VA after a single actuator fault occurrence and this method
is theoretically substantiated. The main contribution is giving the
sets of design conditions for stability of the system in the nominal
mode and for stability of faulty system with VAs, guaranteeing
positiveness of such solutions.

Outlining specific aspects of construction, the structural
flexibility of this multi-constrained problem suggests to treat
the FTC design separately, what has a strong practical point of
view. Thus, one of the contributions of the presented approach is
the separation of the VA synthesis scheme and the static output
control design task, respecting the fundamentally different LMI
algorithms and preserving the structure of Metzler matrices,
when defining the properties of positive continuous-time
linear systems.

The major concepts, in the nominal control parameter
design and in the VA synthesis, are formulated using the
sets of LMIs, to allow the system parameter representation
when reflecting the diagonal stabilization principle, strictly
limiting the synthesis tasks for positive continuous-time linear
systems. The state-feedback principle in VA design guarantees
almost-global asymptotic stability of the faulty system after
VA activation. The proposed design approaches provide
computationally checkable tools, based on representative
analysis. The other results (e.g., Shen and Lam (2015);
Bhattacharyya and Patra (2018)) had their main limitation
in the computability based on linear programming,
guaranteeing non-negative parameters in design. The
advantage of the proposed method is an equivalently
reformulation of this task for strictly Metzler systems in a
more explicit form that makes use of strictly LMIs.

The application of the proposed approach requires that a fault
detection and isolation subsystem is available. However, it
becomes clear that the desired performances depend on the
fault isolation time, but a suitable conjunction of the all

FIGURE 1 | The system state variables time response.
FIGURE 2 | The system output variables time response.
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dynamic components potentially allows good adaptation to the
time limit of fault detection.

For future research, generalized algorithms will be studied to
incorporate interactions of actuator fault interval representations
into design conditions. Metzler-Takagi-Sugeno models will be
studied to overcome the problem that the actuator gain loss can
take no clear boundaries. It remains also as a future topic to
extend the presented results to distributed system fault diagnosis
and fault tolerant control. The currently known design techniques
do not overcome the obstacles related with uncertain non-
Metzler matrices and so suitable similarity transformations the
will also be of subject of authors’ future interest to make proposed
procedure applicable to a wider class of systems.
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