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Increased reliance on electronic health records and plethora of new sensor technologies
has enabled the use of machine learning (ML) in medical diagnosis. This has opened up
promising opportunities for faster and automated decision making, particularly in early and
repetitive diagnostic routines. Nevertheless, there are also increased possibilities of data
aberrance arising from environmentally induced noise. It is vital to create ML models that
are resilient in the presence of data noise to minimize erroneous classifications that could
be crucial. This study uses a recently proposed ML algorithm called the Tsetlin machine
(TM) to study the robustness against noise-injected medical data. We test two different
feature extraction methods, in conjunction with the TM, to explore how feature engineering
can mitigate the impact of noise corruption. Our results show the TM is capable of effective
classification even with a signal-to-noise ratio (SNR) of −15dB as its training parameters
remain resilient to noise injection. We show that high testing data sensitivity can still be
possible at very low SNRs through a balance of feature distribution–based discretization
and a rule mining algorithm used as a noise filtering encoding method. Through this
method we show how a smaller number of core features can be extracted from a noisy
problem space resulting in reduced ML model complexity and memory footprint—in some
cases up to 6x fewer training parameters while retaining equal or better performance. In
addition, we investigate the cost of noise resilience in terms of energy when compared with
recently proposed binarized neural networks.
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1 INTRODUCTION

The introduction of machine learning (ML) in healthcare has already shown promise in automated
diagnosis (Alaoui et al., 2021), most notably in mammogram abnormality detection (Amrane et al.,
2018). Its use is likely to expand in other diseases with more exploration into new detection methods,
enabled by advances in sensing technologies, coupled with high-throughput computing architectures
(Alizadehsani et al., 2021; Baldi, 2018). The rise of this big data landscape has led to an industry-wide
reliance on electronic health records (Driggs et al., 2021). Therefore, it is expected that close-knit
integration of AI into clinical decision support systems will lead to greater personalization with fast
yet reliable diagnosis to tackle the forecast population increase (Castiglioni et al., 2021).

Nevertheless, there remains the possibility of noise corruption in data collection methods which
may propagate through an ML diagnosis pipeline resulting in uncertainty or an incorrect
classification. This is seen when a feature is blemished through a fluctuation from the nominal
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value; this new value may then play a crucial part in the classifier
deciding the class boundaries. If the range of values that the
feature can take is close together, then the effects that are
intensified as class boundaries can become less distinct
(Shathini et al., 2019). Traditional approaches of mitigating
the impact of noise, such as the incorporation of error
correction codes or redundancy methods, can incur significant
costs in terms of model complexity, learning convergence time,
memory requirements, and performance degradation (Gupta and
Gupta, 2019).

Naturally, it is understandable why noise corruption may arise
when looking into the general characteristics of biomedical data,
the main factor being data heterogeneity (Baldi, 2018). Medical
data can span many orders of magnitude with specific spatial and
temporal characteristics of interest, and it can also range from
analog, digital, text, or complex data structures such as sequences
or trees. Often the data will come from several sources and may
not have a uniform structure; in many cases with clinical data,
data imputation techniques are needed to fill missing value gaps,
but overuse of this will lead to inaccurate analysis or incorrect
conclusions (Tice and Farag, 2019).

To address these problems there are two routes for reducing
noise effects for ML applications: a) focusing on data quantity,
integrity, and representation granularity (often tackled at the
preprocessing stage) and b) the ML models’ learning ability when
data points are small.

Gathering sufficient training data to represent the problem is a
logical technique to diminish the effects of outlier points in the
models’ classification (Driggs et al., 2021), albeit the “small-data”
problem is difficult to address for certain medical applications
where the disease or virus is novel. However, to tackle this issue
for known diseases in classical machine learning pipelines, it is
better to create curated data sets where medical experts have
removed outlier features (Thottakkara et al., 2016; Castiglioni
et al., 2021) or to use techniques such as regularization and other
data augmentation techniques to create a more defined problem
space (Tice and Farag, 2019). But the method of hand-crafted
feature extraction has obvious drawbacks when considering the
scale with which future medical data machine learning must be
designed for. Data with higher dimensionality will require more
time to analyze and curate; in addition, most ML problems are
data hungry and will require many data points to leverage
satisfactory performance (Obermeyer and Emanuel, 2016).

In traditional machine learning systems, such as neural
networks, arithmetic processes can be used to filter out some
effects of the noise from the expanded data. This may include
adding extra convolution processes to adding more noise
screening neural layers (Sukhbaatar and Fergus, 2014). This
additional complexity can often be quite significant and may
require a system-wide hyperparameter optimization for
performance and compact representation (Cao et al., 2020).

To this end, it is better to focus on the second route, adjusting
the ML to learn the key information for the “small-data” and
reduce uncertainty. According to Gal (2016), the model
uncertainty can be seen through two types: model structure
uncertainty and model parameter uncertainty; both of which
are grouped together and referred as epistemic uncertainty.

Therefore one of the main indicators of robustness to noise
should be a minimal effect of this uncertainty on the ML model.

In this study, we examine the problem of noise corruption
into medical data with the outlook of creating preprocessing
and ML methods for noise resilience. We are particularly
interested in investigating the impact of noise on a new, logic-
driven ML algorithm called the Tsetlin machine (Granmo,
2021). We examine the different ways in which noise can be
injected into training and testing data and focus on ways in
which the feature spaces of these data sets can be reduced as
much as possible while mitigating the impact of noise. We do
this with both the intention of examining how ML might be
resilient when using data from noise-corrupted electronic
health records and also with the aim of minimizing model
complexity and energy expenditure. Through these insights
we explore the possibilities of edge ML for medical data. We
introduce the data sets that will be used and then present the
specific contributions and overview of this study.

1.1 Data sets Used for Noise Injection
To evaluate the impact of noise we chose three data sets with
specific qualities that might effect our preprocessing method
when paired with the Tsetlin machine. We measure
performance in terms of sensitivity and specificity, and the
TM’s convergence efficiency is expressed in terms of Nash
equilibrium. The data sets are as follows:

• Breast Cancer: A data set developed by Dr. William H.
Wolberg from patients attended between January 1989 and
November 1991 at the University of Wisconsin Hospitals.
Wolberg states three crucial aspects for diagnostic decision
making for this data set: the universality of the data used in
the training set, precision of the numerical representations
of the features, and the inherent mutual exclusiveness of the
two classes—see Wolberg and Mangasarian (1990). The
classification for the Breast Cancer data set is the
determination of benign and malignant tumors based on
the floating point mammogram data from cell samples
taken from a patient. The floating point features
represent cell properties such as radius, texture, and
concavity. The objective of the TM is to create logic
propositions that will determine the boundaries for each
of these features that determine either malignant or benign
diagnosis.

• Pima Indians Diabetes: This data set is from the National
Institute of Diabetes and Digestive and Kidney Diseases. It
consists of an oral glucose tolerance test (GTT) and general
health measurements used to determine diabetes diagnosis
of female Pima Indian population from Phoenix, Arizona.
Schulz et al. (2006) states that malignant diagnoses are
usually a combination of genetic attributes with
environmental factors (not explicitly present in the data
set). The data set contains challenges from the classification
perspective as some features such as age and glucose levels
do not follow normal distributions across the data points
and may require more intelligent discretization in
preprocessing. The classification of the Pima Indians
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Diabetes data set is the determination of whether a patient is
diabetic based on blood pressure, age, insulin levels, etc.
Once again the TM must create propositions that will form
boundaries for these features to enable classification.

• Parkinson’s disease: This data set was created as a
collaboration between the National Center of Voice and
Speech and the University of Oxford to understand the
relationship between the severity of Parkinson’s disease
(PD) from speech signals. The data set contains 195
voice recordings from 31 people, 23 of whom have PD.
The classification of Parkinson’s disease uses vocal
recordings to determine the Parkinson’s diagnosis. The
features here are different frequency measures and vocal
jitter measures. Once again the TM must create
propositions that will determine both which feature(s)
and what empirical value they must have for Parkinson’s
diagnosis.

These data sets will allow us to focus on some commonly
faced challenges in medical data ML: the high dimensionality
problem where not all features may have meaningful
contributions to classification and the class imbalance
problem which will dictate the number of
false positives and false negatives in the classification
depending on which class has more instances (Shanab
et al., 2012).

1.2 Contributions
Through this study, we show how the Tsetlin machine is
robust to noise impact when the SNR of the data set is
reduced, we explore how feature extraction methods can
aid the TM to offer better performance at low SNRs and
how these extraction methods are themselves affected by noise
injection, and finally, we explore the Nash equilibrium of
Tsetlin machine’s model parameters to understand the impact
of noise on parameter uncertainty. The main contributions
are as follows:

• Evaluating the effect of adding attribute noise to the three
data sets in question and empirically evaluating how this
effect is propagated through the proposed preprocessing +
TM pipeline and analyzed through the performance
characteristics.

• Proposal of a new discretization and rule miningmethod for
encoding data for the Tsetlin machine and exploration into
the performance and noise resilience of this new technique
when compared to the standard “Fixed Thresholding”
approach to encoding data.

• Exploration into the classification capability of the Tsetlin
machine in terms of accuracy, sensitivity, and specificity at
varying SNRs when injecting noise into both training and
testing data sets.

• Comparison of the Tsetlin machine with binary neural
networks to test the robustness of these two different
learning systems when injecting noise into training data set.

• Examining the possible energy expenditure of noise resilient
TMs as edge nodes.

1.3 Article Outline
The structure of this article is as follows: Section 2 explores
previous works that investigate noise injection into biomedical
data to understand how commonly used ML models are effected
as well as how certain preprocessing methods can be used to
mitigate these noise effects. Section 3 introduces the ML model
used to test robustness and explains the feature extraction
methods employed to diminish noise impact. Section 4
describes the method for noise injection and discusses the
testing methods for robustness using both training and testing
data sets. The following sections show the experimental results of
different noise injection procedures with emphasis on
performance and ML models’ ability to cope with epistemic
uncertainty.

2 RELATED WORKS

There are two different types of noise that can affect an ML
model: attribute noise and class noise. Class noise may occur from
subjectivity in the data or inadequate information being available
for clear labeling (Pechenizkiy et al., 2006). Many neural network
(NN)–based models have been explored with the aim of reducing
class noise; Sukhbaatar and Fergus (2014) have shown that it is
possible to learn from noisy labels using deep neural networks
(DNNs) by adding an additional noise layer in the network that
uses weights for this layer to learn noise distribution from the
data. This method showed promising results on CIFAR10 with a
30% test error from training on 30k noisy training data points.

This method of adding an additional layer is also seen in Cao
et al. (2020) where they incorporate a double soft-max design to
counter overfitting due to noisy labels. This is done working on
the principle suggested in Han et al. (2018) that deep learning
models first memorize the clean data labels and then start to learn
the noisy labels. The double soft-max design increases the
training speed such that more time is spent learning the clean
data labels.

Feature extraction methods such as principal component
analysis have been effective in spreading out into new
extracted axes based on the level of variability; while this is
useful in unsupervised learning approaches and an effective
form of dimensionality reduction, there is no guarantee that
noise-corrupted features (or indeed discriminatory features for
classification) will be present on the new axes (Pechenizkiy et al.,
2006). This is shown by Romero (2010) on noisy ECG data, where
the correlation coefficient starts to decrease as the SNR starts to
decrease from 10dB to −10dB and the system variance increases
and standard PCA helps in simplifying the problem space. To
address this problem, Bailey (2012) proposed a method to weight
the input data with known measurement error estimates,
although this the method can be resilient to both
measurement noise and missing values. This method can be
useful with spectral data and systems where the measurement
errors of the sensors are known; however, it still suffers from the
fundamental issue with PCA. PCA works well when the
correlations between feature points are linear; non-linear
relations as seen with rotational changes in image data or time
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shifts in audio data are not correlated leading to more complex
problem spaces for the ML to solve. The use of PCA as a
preprocessing method with the Tsetlin machine has already
been explored in Wheeldon et al. (2020); this method
highlighted the benefits of PCA in dimensionality reduction
but also poor scalability of larger data sets and data sets with
class overlap.

When injecting Gaussian noise into gyroscopic and
accelerometer data used to determine a person’s walking
speed, Schooltink (2020) showed that upon injecting noise to
this training data, it was only at around 60% noise percentage
(noise to data) that the support vector classifier (SVC) and
random forest start experiencing a major degradation in
performance on the training data set.

In ensemble learning, methods such as vote-boosting have
been effective in reducing noise by weighting the training data
and removing unusually high weights; however, for ensemble
learning, many instances of the classifier are required which poses
issues of increasing memory and computing expense as the
problem scales (Sabzevari et al., 2018).

Our method is designed to reduce the effects of attribute noise
where erroneous values occur in one or more feature channels in
the data set. We chose to focus on this problem as there are very
few methods that explore reducing the effects of attribute noise,
mainly due to the complexity of the problem (Gupta and Gupta,
2019). We explored three different routes to attribute noise
injection: injecting specific feature channels, injecting all the
features of the testing data, and injecting all the feature
columns of the training data.

3 TSETLIN MACHINE

The Tsetlin machine (TM) is a recently proposed ML algorithm
that incorporates the use of parallel state machines, such as
learning automata, called Tsetlin automata (TA) to form

propositional logic; this logic is used to form the relationships
that describe the inputs to the determined classification (Granmo,
2021). The block diagram for the TM is given in Figure 1. In this
section, we have provided an overview of the Tsetlin machine but
readers are encouraged to refer to Granmo (2021); Abeyrathna
et al. (2020); Granmo et al. (2019); Jiao et al. (2021) for detailed
insights into TM’s functionality and proof of convergence,
performance on commonly benchmarked data sets, and recent
developments to the algorithm.

Figure 1 shows that raw data must pass through a Booleanizer
in order to be used by the TM. Booleanization is the encoding of a
real value number to either 1 or 0. This is because the TM requires
Boolean input features. Here, we have created a distinction
between Booleanization and Binarization. For Boolean inputs,
each individual bit has equal significance. The notion of a place
value is not present unlike in binary and decimal numbering
systems.

The next stage of the diagram is the transformation of the
Boolean features into Boolean literals. Literals are formed by
considering the Boolean feature and its negated form. The TM
then creates a TA for each of these literals. In this way, we have an
automata for every possible value the Boolean input can take. The
TAs themselves correspond to two decisions based on which state
the automata is in, include a literal or exclude a literal (view the
Tsetlin automata).

The TAs are then used in the Clause Module which performs
the operation shown in the block in Figure 1 to relate the include/
exclude decisions of the TAs to the input literals. The clauses are
stochastically independent blocks that form propositional logic
and output a 1-bit value. The outputs of each clause are summed
for each class, and the class with the most votes becomes the
output classification. This decision is then given to the Feedback
Module which updates each TA with a reward or penalty to
transition its state.

Therefore, when the training process is complete and these TA
states are fixed, we can perform simple logic operations that

FIGURE 1 | Block diagram of the Tsetlin machine.
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generate the output class—leading to explainable and dependable
AI seen at the hardware level (Shafik et al., 2020). The Boolean
data inputs also mean that bit-wise operations can be used over
arithmetically heavy floating point computations; therefore, this
linear logic–based structure allows for low energy expenditure in
hardware implementations (Wheeldon et al., 2020, 2021).

Previous works has already shown that compared to NN
methods, it is possible to create TMs with far fewer training
parameters and much lower model complexity (Lei et al., 2021,
2020). This is further possible by creating minimal input Boolean
feature spaces. In the next section, we have shown how this will
impact the memory footprint, model complexity, and
performance of the TM.

3.1 Feature Extraction Methods
The Tsetlin machine requires Boolean data as its inputs; this
differs from binary data as all the bit inputs to the TM have equal
significance. As seen through the diagram, the size of the TM is
dictated by the number of inputs and the number of clauses.
Therefore, to create smaller TM models that still offer high
performance, there must be significant effort given to the
preprocessing stage of transforming the raw features to
Boolean features.

We have also seen that the number of TAs that are required is
directly proportional to the number of inputs (number of TAs =
number of clauses × number of classes × number of features × 2).
Therefore, reducing the Boolean input space may dramatically
reduce the memory footprint, the model complexity, and the
number of clause operations that need to be performed. Smaller
TMs will require fewer training parameters and perform
inference quicker at a lower energy cost.

In this study, we have explored two routes to Booleanization of
raw features as our key approaches of feature engineering. First, we
have used Fixed Thresholding to Booleanize the data according to
some predefined thresholds equally distributed across the feature
columns; this is shown visually in Figure 2. Fixed thresholding is the
current go-to method for Booleanizing data for the Tsetlin machine;

it is favored because it is a simple algorithm that is portable to many
problems. However, this method is unable to capture the skew in
feature columns as it will simply equally distribute across the range of
the highest and lowest values in the feature column. Therefore, we
have also considered a method more statistically aware of the feature
column distribution in the form of quantile binning. When dividing
the features into bins, the bin number must be determined
beforehand through a trial and error–based initial exploration.

The quantile binning method uses each feature column’s
distributions to generate the bins giving a discretized
representation of the feature space. These bin numbers are
then binarized. These binary numbers then form the inputs to
the Espresso logic minimizer algorithm (Brayton et al., 1984).
Espresso combines minimization techniques presented by Quine
(1952) andMcCluskey Jr (1956) to create a set of sum of products
(SoP) expressions for Boolean features that cannot be simplified
any further. The full workflow for our proposed preprocessing
method is shown in Figure 3. After the end of the pipeline, we
have created a reduced Boolean data set for the training data and
the testing data. For the testing data, we do not need to run the
quantile binning or the minimizer, we simply used the quantiles
found during the training and eliminated the redundant columns
not used by the minimizer.

We propose this newmethod of Booleanization (Quantile binning
+ Espresso) to create a synergy between the Boolean inputs and the
Tsetlin machine. We can use the quantile binning as a design knob
for controlling the discretization level of the data, that is, the feature
granularity. Then using the Espresso algorithm, the rule set of the
Boolean feature set post-binning can be derived, thus enabling us to
remove redundancies from the data and create a more condensed
discriminatory data set for the TM.

Using logic minimization such as Espresso has been a
common practice in built-in self-test (BIST) applications for
many years (Galivanche and Reddy, 1987); however, given the
Boolean inputs to the Tsetlin machine, it seems intuitive that
using logic minimization would be an effective dimensionality
reduction method. We present visual representation of how the

FIGURE 2 | Visual representation fixed thresholding vs. quantile binning for data Booleanization.
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logic minimizer works in Figure 4. We fed the initial Boolean
space to the minimizer where each data point forms a logical
AND expression relating to the resulting class. Using the
minimizer, we can then form a condensed set of Boolean
features that form the rule set for the TM. We can then
eliminate feature columns that are not present in this rule set
thus resulting in a smaller data set.

4 NOISE INJECTION METHODS

To inject noise into the data sets chosen, we explored three main
routes: injection into all elements of the testing data, injection in

specific features of the testing data, and injection to the training
data. All these methods require that the data set as a whole, or, the
selected features injected with noise has a specific signal-to-noise
ratio (SNR). Figure 5 shows how this is implemented.

For a particular feature of the data set matrix, we selected a
particular SNR. Through this SNRwe can derive the noise variance to
inject for this particular feature. We used a Gaussian distribution
across a vector of the same length of the target feature column to
generate the noise values. Finally, vector addition of the target feature
column vector with the noise vector gives the noise-injected data.We
did this for both selected features (to inject noise to specific feature
columns) and all features (to inject noise to all the feature columns) of
the raw data matrix.

FIGURE 3 | Visual representation of the full preprocessing workflow for training and testing data.

FIGURE 4 | Visual representation of logic minimization on a data set.
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Figure 6 shows the full pipeline of injecting noise. We
separated the data into testing and training data and
applied the noise injection method shown in Figure 5 on

specific features. The noise injection process happens in the
preprocessing. We applied noise to the data before the
quantile binning stage; this can happen for either the

FIGURE 5 | Injecting noise at a specific SNR.

FIGURE 6 |Workflow showing injection of noise to specific feature columns, all feature columns for the testing data, and all feature columns for both the testing and
training data.
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training or testing data based on the approach given in
Figure 6. Using the noise injection technique expressed in
Figure 6, we applied the three scenarios to explore the noise
resilience of the TM. The most logical scenario is that the TM
will be trained using clean data and tested on noisy data;
however, we also evaluated the TM with both noisy training
and testing data, this way we can also examine the epistemic
uncertainty in the TAs when training on noisy data.

For quantifying noise impact, we explored the performance
change through three indicators: classification accuracy,
sensitivity, and specificity. Sensitivity and specificity are
incredibly important performance measures for medical data
as they offer greater insights into the classification ability in
terms of true positives (TN), true negatives (TN), false positives
(FP), and false negatives (FN). We have given a definition of
sensitivity and specificity below:

Sensitivity � TP

TP + FN
(1)

Specificity � TN

TN + FP
(2)

5 IMPACT OF SELECTIVE NOISE
INJECTION

Figure 7 shows the performance change as the SNR increases
from −15 to 15dB when injecting specific columns of the Breast
Cancer testing data with those SNRs. Given the skew of data
points favoring the Benign class, it is expected that the specificity
performance would be higher compared to the sensitivity, given
there are fewer Malignant class instances. This is seen in the
high specificity maintained throughout the SNR sweep.

The performance of the fixed threshold Booleanization is
much poorer at low SNRs compared to that of the quantile
binning + Espresso as seen through the sensitivity. For this
experiment, the raw data was Booleanized with 10 bits used to
represent each feature, resulting in 300 Boolean features
altogether using the fixed thresholding method, while using
quantile binning, 10 bins were used to discretize the features,
resulting in a 4-bit representation per feature. Espresso then
further reduced the feature space down; on average, the
feature space was 45 features across the SNR sweep, as
summarized in Table 1. The removal of these redundancies is
possible through the rule mining approach of the Espresso
minimizer; the features that are not present in the rule set are
removed thus resulting in a smaller data set (as shown with
Figure 4). Therefore, with significantly fewer features, we were
able to produce a much more robust encoding method at low
SNRs with equal performance at high SNRs.

The large variance in sensitivity seen across the SNR sweeps of
both fixed thresholding and Qbinning + Espresso is down to the
class imbalance. With fewer data points corresponding to the
Malignant class, it is more difficult to create a universal
proportional logic in the training set that can then be used for
testing. This is particularly true when certain Boolean features of
the Malignant class have deviated away from the expected range
due to the noise injection. For both preprocessing methods, it is
clear that as the noise injection level is reduced (increasing SNR)
the possible range a noise-injected feature can take is also
reduced, thereby reflecting the features seen in the training set,
and this leads to the increase in performance.To explore why the
Quantile binning + Espresso method is superior at low SNRs, we
looked deeper into the workflow, Figure 8. The block diagram
flow at the top of the figure shows our general method; we
injected noise into the target features and then performed the

FIGURE 7 | Comparison of the two different feature Booleanization methods when injecting specific feature columns of the testing data with noise.
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quantile binning and allocated the appropriate binary space to
represent the binarized bin numbers. Note that, in the diagram,
we have chosen to use eight bins for the quantile binning, this
means that for each feature column data is divided into eight bins.
We have represented the raw data as the binary bin number it is
allocated to because there are eight bins and we need 3 bits to
represent it. In Figure 8, we have shown this as the Boolean
columns. Each feature column that we had at the start is now 3
Boolean columns (created by the 3-bit feature representation
through binning; see the three spaces in the Boolean columns).
After this point, each column has equal significance, that is, the
notion of the place value is gone, and this is why we referred to
them as Boolean columns.

These binary bins are then given to the Espresso algorithm to
perform the minimization (in Figure 8, this corresponds to the
logic minimizer block in the block diagram flow). The output of
the algorithm is the rule set for these features.

We can therefore remove all the feature columns that are not
within these rules as seen by the “Don’t Care Columns” block in
Figure 8. These columns are not used by the minimizer to create
the rules that link the Boolean data to the output class. We
removed all the columns that deemed “Don’t Care Columns,”
note in the final encoding block, shown with a red cross. It means
that the entire column is no longer used by the TM. This
highlights the redundancy removing capabilities of the logic
minimizer, not only does it allow for feature extraction but it
also acts as an effective noise filtering mechanism.

This forms a crucial indicator into why our encoding method
performs better. Figure 8 shows that the highlighted red columns

are the ones with noise injected into them; a large number of these
columns have been indicated as redundant by the minimizer and
are removed. Therefore, while the final encoding loses some
valuable features resulting in reduced accuracy, the sensitivity
of the TM remains high as much of the noise is filtered out, and
there are still sufficient features remaining to form correct
classifications.

Despite the noise injection at −15dB, the Breast Cancer data
set still retains relatively high test accuracy at 75.6% (see
Figure 1). To understand this behavior, we performed the
principal component analysis of the testing data post noise
injection, shown in Supplementary Figure S1. Through this
we can understand how the covariance of the features is
changed when some feature channels lose integrity; the plots
show the first two PCA components of the raw data prior to
Booleanization. It is clear that even at low SNRs benign data
points are still very correlated, while the malignant data points are
more scattered.We can see this in the higher specificity compared
to sensitivity in Figure 1 as well. Only when the SNR is increased,
both classes start to correlate together and therefore the
classification problem becomes more defined and performance
increases. Nevertheless, these results indicate the TM’s robustness
to specific feature corruption if sufficient data points are gathered.

An important parameter of the Tsetlin machine is the number
of clauses that are used per class. Increasing the number of clauses
can be an effective method in increasing classification ability.
More clauses result in a higher likelihood of clauses creating
correct propositions that can describe the population. We
explored this effect using the Breast Cancer data set, as shown

TABLE 1 | Booleanization configuration for the Breast Cancer data set, with 100 clauses per class.

Booleanization method Boolean features Sensitivity at −15dB Sensitivity at 15dB

Fixed thresholding 300 42.6 ± 13.8% 96.2 ± 0.2%
Qbinning + Espresso 45 (average) 70.0 ± 6.0% 95.7 ± 0.4%

FIGURE 8 | Breakdown of the preprocessing approach when using the Qbinning + Espresso workflow with respect to each feature column in the testing data.
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in Figure 9. It is clear from the sensitivity results that increasing
the number of clauses results in better performance at low SNRs.
This suggests that even with the noise injected in specific feature
columns it is still possible for the TM to generate good
propositional logic when the number of opportunities to do so
is increased (i.e., more clauses).

6 IMPACT OF NOISE INJECTION IN TEST
DATA

For this test, we trained the TM on clean data (i.e., without any
noise added) and injected the testing data with noise across all the
feature columns. Thus, we tested the universality of the training
set with the following two hypotheses. First, if the training data is
sufficiently diverse in the conditions it can describe each
classification, and then it should be more robust to noise.
Second, we tested if the rules generated by the minimizer and
the resulting redundant features are still the same in the noisy
testing population.

Figure 10 and Supplementary Figure S2 show the training vs.
testing performance in terms of accuracy for the Breast Cancer
and Parkinson’s data sets. We have summarized the
preprocessing and TM configurations in Table 2. There are
two behaviors that are present across both these results: first,
the training accuracies remain high throughout (this is expected
as the training data is clean); second, the Quantile binning +
Espresso method performs better at low SNRs for both data sets,
but as the SNR increases the fixed thresholding method appears
to perform better.

Table 2 shows that having more features through fixed
thresholding gives more advantages when the SNR increases.
As seen through the PCA visualizations, the points for each class
became more correlated, and having more bits for feature
representation using fixed thresholding means greater
granularity and therefore greater ability to capture patterns
from the training set. At low SNR this is a disadvantage; the
skewing of the data points between the training and testing due to
increased noise injection means that patterns derived from the
training set may not appear in the testing set. This is where the

FIGURE 9 | Effect on test accuracy when increasing clauses (using fixed threshold Booleanization). (Left) Testing accuracy for clauses ranging from 20 to 200.
(Middle) Testing sensitivity for clauses ranging from 20 to 200. (Right) Testing specificity for clauses ranging from 20 to 200.

FIGURE 10 | Breast Cancer 100 clauses testing data noise injection.
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Quantile binning + Espresso is superior; through discretization,
the slight variances due to noise injection can be minimized as the
feature will most likely still be put into the same bin during
quantile binning.To further prove the idea that discretization
allows more robustness to noise, we conducted the same
experiment on the Pima Indians Diabetes data set, as seen in
Figure 11. We saw similar traits in the Breast Cancer and
Parkinson’s disease data sets; the binning process allows for
more robustness to noise. However, we also saw that at high
SNR quantile binning performs better. This is due to the feature
distributions of the data set. The age and glucose features are not
normally distributed, and quantile binning is able to capture the
data skew better than fixed thresholding. In Figure 11, we used
six bins resulting in a 3-bit representation per feature. We chose
six bins because this is the lowest discretization level before we
start to see aliasing occurring in the data set leading to reduced
performance. However, we also observed that having too many
bins (more than 12) can result in empty bins in features where the
distribution is close together. The choice of bin number should be
attained through an initial trial and error exploration.

Figure 12 examines the effect of changing the number of bins
using quantile binning on the raw Pima Indians Diabetes data set.
We can see that there is an optimal bin number at eight bins. Bins
less than eight are not as effective in capturing enough
information from the training data and bins above eight are
gathering unnecessary information not seen in the testing data,
hence the poorer performance of 10 bins at low SNRs.

As seen with the testing data selective injection, the Quantile
binning + Espresso method offers better sensitivity across the

SNR range, and this results in the better testing accuracy. Given
the skew of more benign vs. malignant data points in the Breast
Cancer data set, it is expected that the specificity should be high.
In both cases for fixed threshold and quantile binning + Espresso,
the specificity performance remains high echoing the results seen
with selective testing column noise injection. To understand the
testing accuracies more clearly, we examined the sensitivity and
specificity’s for the Breast Cancer data set in Figure 13 across the
SNR sweep. It is clear that the sensitivity for the quantile binning
+ Espresso is higher at low SNRs. We can see that having more
granularity (using 10 bits per feature representation using fixed
threshold) results in poorer performances at low SNRs.

More granular Boolean features result in a greater impact from
the noise injection and therefore more difficult classification due to
the increasing correlations between different features, as shown in
Supplementary Figure S3. The SNR increases so does the
covariance between features. Therefore, at higher SNR, the
problem is better defined and hence higher sensitivity is expected.
However, at low SNR, there is a larger correlation between the
features leading to greater difficulty in forming a propositional logic
that is more universal outside of the training data.

7 IMPACT OF NOISE INJECTION IN
TRAINING DATA

We injected noise across all the feature channels in the training
data. This was performed to understand the robustness of the TM

TABLE 2 |Comparing the Tsetlin machine and preprocessing configurations when injecting noise to all the test data on the Breast Cancer and Parkinson’s disease data sets.

Data set Clauses Booleans (fixed Threshold) Booleans (qb + Esp) Bins for qb

Breast cancer 100 300 47 (average) 8
Parkinson’s disease 100 220 36 (average) 6

FIGURE 11 | Testing data noise injection effect on the Pima Indians
Diabetes data set. FIGURE 12 | Effect of changing the number of bins using quantile

binning.
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in terms of its classification boundaries when learning from noisy
data. This is done by considering the TA states (the training
parameters) after the training process; thus, we determined if
each TA has reached an optimum position with respect to every
other TA, that is, reached Nash equilibrium. In addition, we
examined if our preprocessing methods can also aid in noise
resilience.

To explore the effect on the training data using our noise-
injection method, the PCA plots were used, as shown in
Supplementary Figure S4. This figure highlights the
difficulties present in this data set. Even at high SNR, we can
see that there are many overlapping points. Nevertheless, the
PCA plots follow the same relationship seen in the earlier plots
when injecting testing data with noise; it can be seen that as the
SNR increases the points corresponding to each class start to
correlate more and therefore the problem becomes more defined
for classification.

Figures 14, 15 show effects on the sensitivity and specificity of
the training data when injected with noise using the two
Booleanization methods. It can be seen that in both cases the
specificity is consistently high across the SNR sweep for both
Booleanization types, albeit for the quantile binning we saw a
degradation in performance at the lower SNRs. The high
specificity is explainable through the class imbalance in the
data set. As seen through the PCA plots in Supplementary
Figure S4, there are more benign points that correlate at
higher SNRs.

We note that the sensitivity is much higher using quantile
binning compared to that using fixed thresholding. This is most
likely due to discretization masking the effects of the noise
injection as seen with the results for Pima Indians Diabetes
data set in the previous section. We know that there is still a
large overlap between the two classes even at high SNR; therefore,
they have more granularity and redundancy, which makes it

harder for the TM to create all the appropriate logic propositions
where we have 100 clauses per class. Therefore, having increased
discretization means there are fewer features and fewer elements
to be incorporated into the logic propositions, so it stands to
reason that the sensitivity would be higher.

7.1 Nash Equilibrium Analysis
One of the fundamental tropes of noise resilience is mitigating the
effects of epistemic uncertainty (Gal, 2016). In our experiment,
we have defined this as the uncertainty of the clauses when
creating a propositional logic. We have already seen that the
clause computation is a simple logic operation between the

FIGURE 13 | Testing data noise injection into the Breast Cancer data set.

FIGURE 14 | Sensitivity and specificity of the Pima Indians Diabetes data
set using fixed thresholding when injecting the training data with noise.
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include/exclude decisions of the TAs for each literal with the
input literals (see Figure 1). In the TM, we know that each clause
is aligned to a particular class; therefore, if we can group the
clauses for each class, we can examine the decision boundaries of
the TM.

We grouped each clause as a vector that contains the include/
exclude decisions from its respective TAs. Then we were able to
plot the clauses into a 2D space to determine if there are clear
clusters for each class. Through this space we also gained insights
into the TAs decisions with respect to every other TA at the
clause level.

In order to translate our clause vectors to a 2D space, we used
T-SNE (t-distributed stochastic neighbor embedding). We
favored this method because unlike other dimensionality
reduction techniques such as PCA, LDA, or K-means
clustering, T-SNE is able to preserve more of the significance
of the high-dimensional data structure in the low-dimensional
map, whereas linear transformation methods focus more on
pushing dissimilar points for apart (Van Der Maaten, 2014).

Through the clustering approach offered by T-SNE, we took a
similar approach to Ficici et al. (2012) by examining the strategic
view of agents (Clause vectors of TA decisions) in a cluster-based
representation. We can use this to show that agents in the same
cluster have the same pay-off and each cluster is aligned with a
strategy. Therefore if the strategies are clear and explainable, we
can conclude that we have reached Nash equilibrium.

For all the Nash equilibrium plots shown, the TM used 100
clauses per class and the number of used features can be seen in
Figures 22, 23. Figures 16 and Supplementary Figure S5 show
the T-SNE of clauses after training when using the fixed threshold
preprocessing at both −15 and 15dB. To create these figures, we
ran the TM noise–injected training pipeline 100 times and plotted
the clause vectors from all these runs. In both SNR levels, it can be
seen that there are clear boundaries present between the two

clusters. Next, we examined the points to understand the strategy
of each cluster. We saw that the positive clause of one class and
the negative clause of the other are grouped together.

This is expected at the TM clause level. We know that we have
clauses aligned to each class, and we also know that half the
clauses for each class will create propositional logic that supports
the class and the other half will create logic that is against the
class—this is referred to the polarity of the clause (either positive
or negative). With this knowledge, we can say that our figures
show that the TA states have reached Nash equilibrium. The
clusters are formed of positive clause vectors for the class with
TAs whose decisions are used to create propositional logic that
supports that class, along with negative clause vectors from the
other class whose TAs have been used to create propositional
logic that supports the opposing class. The clusters are clear and
the strategies they represent are explainable. Next, we determined
if it is the preprocessing that allows for Nash equilibrium or
whether it is the TM itself that is resilient to the noise impact.
Therefore, we performed the same experiment using the quantile
binning + Espresso preprocessing method, as seen in Figure 17
and Supplementary Figure S6. Once again the same
characteristics are present at both the SNRs, and the same
strategies are present in each of the clusters. Through
Supplementary Figure S6, we also noted that the separation
between the two main clusters is larger; therefore, the TA
decisions that create the clause vectors are more similar as the
noise is reduced.

Through Supplementary Figure S7 and Figure 18, it can be
seen that the same characteristics that are present in the Breast
Cancer data set are also seen here in the Parkinson’s disease data
set. Once again, the distinctions between the two clusters are clear
at both SNRs, and the strategies that each cluster represents
matches the Breast Cancer T-SNE plots and what is expected

FIGURE 15 | Sensitivity and specificity of the Pima Indians Diabetes data
set using quantile binning when injecting the training data with noise.

FIGURE 16 | Breast Cancer clauses using fixed threshold at
−15dB SNR.
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from the TM algorithm in terms of clause polarity alignment.
Once again, we performed the same experiment using the
quantile binning + Espresso method on the Parkinson’s
disease data set. Supplementary Figure S8 and Figure 19
show that the Nash equilibrium characteristics extend beyond
both data set and the preprocessing method.

Figures 20, 21 shows that when the training data is injected
with data, the Qbinning and Espresso method is not as effective as
the fixed threshold method. Both encoding methods show an
almost linear increase in sensitivity as the SNR is increased. This
data set has fewer raw features compared to those of Breast
Cancer and alsomore malignant data points compared to those of

benign data points. The number of used features using fixed
threshold are 220 for Parkinson’s and 300 for Breast Cancer, and
the number of features used using the quantile binning + Espresso
method are shown in Figures 22, 23.

8 LOGIC MINIMIZATION AND
COMPARATIVE ANALYSIS

This section explores the feature extraction capability of the logic
minimizer as the SNR is increased from −15 to 15dB and the
impact this Booleanized data has on both the TM and binary
neural networks (BNNs) in terms of accuracy and estimated
energy costs.

FIGURE 17 | Breast Cancer using QBin + Esp at −15dB SNR.

FIGURE 18 | Parkinson’s disease using fixed thresholding at 15dB SNR.

FIGURE 19 | Parkinson’s disease using QBin + Esp at 15dB.

FIGURE 20 | Breast Cancer testing sensitivity of the two encoding
procedures when the training data is injected with noise.
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Figures 22, 23 show the effect of the Espresso minimizer
when the SNR is increased from −15 to 15dB when the training
data is injected across all columns. In both cases, we saw a linear
increase in the number of “Don’t Care” features as the SNR
increases. The increased noise at low SNR results in more
skewed features, and it becomes more difficult to generate
rules for these features and hence the smaller set of
redundant features. Nevertheless, compared to the fixed
threshold approach even at the lowest SNR for Breast Cancer
for example, we have 84 features using our proposed approach
compared to 300 features for fixed threshold.

The most comparable neural network architecture to the TM
that can use the same preprocessing pipeline is the binary neural
network (BNN). BNNs use binary activations, weights, and bit-
wise XNOR for calculating the dot product (Geiger and Team,
2020).

In this section, we have compared the effects of noise on a
BNN compared to that in the TM; we intend to show the effect of
noise resilience through two different learning mechanisms:
arithmetic weight–based learning vs. logic proposition–based
learning.

FIGURE 21 | Parkinson’s disease testing sensitivity for the two encoding
methods.

FIGURE 22 | Espresso minimization ability for the Breast Cancer
data set.

FIGURE 23 | Espresso minimization ability for the Parkinson’s disease
data set.

FIGURE 24 | BNN vs. TM performance using fixed thresholding on the
Breast Cancer data set.
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We used the LARQ BNN software library to build a simple fully
connected three layer BNN for all the experiments and compared
with a TM that uses 100 clauses per class for all experiments (see
Bannink et al. (2020) for further reading into this library).

Figure 24 shows the performance of a simple three layer BNN
(300, 256, and 2) using the LARQ library vs. the TM with 100
clauses per class. We performed the fixed thresholding approach
and trained both the ML models on noisy data as well as testing
on equally noisy data on the Breast Cancer data set. Figure 24
shows that while the BNN offers better performance in the
training accuracy when injected with noisy data, it is the TM
that performs better in terms of testing accuracy. Through this we
gained insights into the robustness of logic proposition–based
learning. At low SNR, the TM testing accuracy is significantly
higher meaning that the relationships formed through the
propositional logic are more universal and less prone to
overfitting compared to those in the BNN.

We performed the same experiment using the proposed
quantile binning + Espresso approach, as shown in Figure 25.
Once again, a similar result with higher TM test accuracy

compared to BNN test accuracy across the SNR sweep was
observed. We also noted that BNN performs better when
using the quantile binning + Espresso method; this further
supports the arguments made from previous results that
discretization at the right granularity can be a good measure
for reducing the effects of noise and using a prior rule finding
algorithm can also help in focusing the classifier toward only the
most essential features.

For quantile binning + Espresso, the differences in performance
are minor because the logic minimizer algorithm already found
redundant features through rule mining in the normal disjunctive
form—the same form in which the TM creates clause propositions.
This added problem simplification helps the BNN.

One of the most important factors toward more efficient
embedded implementations of ML applications is the number
of training parameters; this will affect the overall memory
footprint of the model (Geiger and Team, 2020). Table 3
shows the number of training parameters when injecting noise
into the training data set using different preprocessing methods
on both the TM and the BNN; we reported the number of training
parameters at an SNR of −15 and 15dB.

We noted that both models have similar numbers of trainable
parameters, but we have seen that the TM offers better resilience
to noise. If memory constraints are paramount for a target
platform, then we can start to reduce the number of clauses
which will further reduce the number of training parameters at
the cost of reduced performance, as seen in Figure 10.

When considering the performances of the quantile binning +
Espresso, we have fewer features in the input layer of the BNN
leading to similar memory footprint to the TM, but the
performance of the BNN is poorer. To compensate this, a
larger BNN with greater model complexity is required, but we
chose to show the configuration closest to the TM complexity to
highlight the performance vs. memory cost trade-off.

9 ESTIMATED ENERGY COSTS

To enable the transition to edge ML, it is vital to consider the
energy cost associated with the training and inference. To
calculate the energy, we extrapolated the energy per Boolean
feature from the TM ASIC implementation presented in

FIGURE 25 | BNN vs. TM performance using QBin + Esp on the Breast
Cancer data set.

TABLE 3 | Number of training parameters for the TM and BNN when injecting noise into training data for the three data sets.

Breast cancer Fixed threshold Qbinning + Esp at
−15dB

Qbinning + Esp at
15dB

BNN 168k 29.4k 14.4k
TM 120k 33.6k 18k

Pima Indians diabetes Fixed threshold Qbinning at −15dB Qbinning + Esp at 15dB

BNN 27.7k 10k 10k
TM 32k 12.8k 12.8k

Parkinson’s disease Fixed threshold Qbinning + Esp at −15dB Qbinning + Esp at 15dB

BNN 106k 16.1k 10.3k
TM 88k 20k 13.2k
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Wheeldon et al. (2020) and scaled these energy costs to the
number of Boolean features in our two different approaches.

We have already seen that when the training data is injected with
noise, the capability of the Espresso logic minimizer decreases with
the SNR (Figures 22, 23).We applied the ASIC energy per data point
measures to the number of features that are present post logic
minimization for the Breast Cancer and Parkinson’s disease,
shown in Figure 26. It can be seen clearly that as the SNR
increases and the minimizer is able to deduce a more compact
rule set, the number of features is reduced meaning fewer
computations per clause and fewer state transition operations
during the feedback stage.

When considering that the Breast Cancer training set has 300
data points for fixed threshold, we found that we used 25x less
energy in training using the quantile binning + Espresso
approach. It can bee seen that as the number of data points
increased, we incurred far greater energy costs from fixed
thresholding. Therefore, there is a trade-off to be made in
balancing energy expenditure with achieving high sensitivity.

Nevertheless, we know that the feature spaces at the end of the
quantile binning + Espresso are much smaller than that using
fixed thresholding, as shown in Table 4. Here, we have compared
the worst case feature sets for Breast Cancer, Pima Indians

Diabetes, and Parkinson’s disease at −15dB with the respective
features when using fixed thresholding.

10 CONCLUSION

By examining the impacts of noise injection into specific features, we
showed how the removal of redundant features through a logic
minimizer can be effective as a noise filtration method. We showed
that discretization of the data using quantile binning can also be used
as a method of masking the data corrupted by noise. By exploring the
Nash equilibrium of the TM after training on noisy features, we
showed that even through an SNR sweep on −15–15dB the TM is still
able to generate distinct class boundaries where the strategies of the
individual TAs are clear. We then examined how effective the TM is
in comparison to BNNs; we showed that for both the preprocessing
methods used in this study the TM test accuracy is better when the
TM and BNN are trained on noisy data and that learning through
creating logic proposition is a more robust way of dealing with noise
corruption. We then provided insights into the effectiveness of TMs
for edge ML implementation. The TM requires roughly the same
number of parameters as BNNs, and through the energy per data
point numbers we can see the effects of reducing the number of
features on the energy expenditure.
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FIGURE 26 | Energy per data point when injecting training data; more
noise requires additional features for resilience and thereby affects the system
energy.

TABLE 4 | Table showing the energy per data point for fixed thresholding vs. the
proposed preprocessing approach. All models used 100 clauses per class.

Data set (Approach) Features Energy/Data point for
Training (nJ)

Breast cancer (fixed thresholding) 300 2,158.3
Breast cancer (Qbin + Esp) 85 611.5
Pima Indians diabetes (fixed thresholding) 80 575.5
Pima Indians diabetes (Qbin) 24 172.7
Parkinson’s disease (fixed thresholding) 220 1,582.7
Parkinson’s disease (Qbin + Esp) 49 352.5
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Supplementary Figure S1 | First two principal components of Breast Cancer data
set with noise injected to specific feature columns. The blue dots represent benign
data points and the orange dots represent malignant data points. As the SNR is
increased from (A) to (F) the points corresponding to each class become more
correlated and the problem space becomes more defined.

Supplementary Figure S2 | Parkinson’s disease 100 clauses testing data noise
injection.

Supplementary Figure S3 | PCA eigenvalues of the Breast Cancer data set across the
SNR sweep.

Supplementary Figure S4 | First and second principal components of the Pima
Indians Diabetes data set when the training data is injected with noise. The blue

dots represent benign data points and the orange dots represent malignant
data points. As the SNR is increased from (A) to (F) the points corresponding
to each class start to correlate more and the classification problem becomes
more defined.

Supplementary Figure S5 | Breast Cancer clauses using fixed threshold at
15dB SNR.

Supplementary Figure S6 | Breast Cancer using QBin + Esp at 15dB SNR.

Supplementary Figure S7 | Parkinson’s disease using fixed threshold at
−15dB SNR.

Supplementary Figure S8 | Parkinson’s disease using QBin + Esp at −15dB.
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