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In rotor dynamics, the deviation of the shaft is a common phenomenon. The

main reasons for the deviation are non-linear attractive forces, harmonic

disturbances, system parameter variations, etc. Active magnetic bearings

(AMBs) are used to support the rotor inside the air gap in rotating

machines, thus avoiding wear and tear and possible breakdowns. This

paper proposes a fuzzy sliding mode-inspired control (FSMIC) technique

for the five-degrees-of-freedom (DOF) AMB system in the presence of

system uncertainties and measurement noises. The fuzzy logic is used to

estimate the auxiliary control input of the sliding mode control (SMC) to

attenuate the chattering. The variable gains are designed with the help of

superintended fuzzy logic to bring more flexibility to the controller

performance. The stability analysis is presented with the help of the

Lyapunov function candidate. The simulation studies for the AMB system

under distinct types of control techniques, i.e., PID, SMC, and FSMIC, illustrate

the effectiveness of the proposed control strategy.
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1 Introduction

Amagnetic bearing is a specific type of bearing which holds the rotor without physical

contact with the stator, using electromagnets. Magnetic bearings that are controlled by a

feedback control system are referred to as active magnetic bearings (AMBs). Conventional

mechanical bearings were used in the industries to support the shaft with the help of

physical contact or fluid films. In many critical applications (Bleuler et al., 2009),

particularly those involving high-speed rotation, AMB systems have proved a better

alternative in recent years. The advantages of AMB are efficient energy consumption, low

friction losses, noise-free operation, longer lifetime, etc. (Saha and Nabi, 2016; Peng and

Zhou, 2019; Saha et al., 2019).

Some examples of the use of the AMB system in different industrial applications are

mentioned in the following text. In a study by Scharfe et al. (2001), a magnetically

suspended momentum wheel was designed for aerospace applications, specifically to
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support small and medium satellites. A flywheel-based energy

storage system built on superconducting AMB was presented by

Koshizuka et al. (2003). In a study by Knospe (2007), a high-

speed machine spindle for the application of metal cutting was

discussed. An axial AMB-based blood pump was designed by

Ricci et al. (2016) for medical industry application. AMB is also

used extensively for turbomachines (Aenis et al., 2002) and to

support rotor dynamics (Tang et al., 2014).

Most AMB systems encounter problems such as vibration

phenomena, mass imbalance, and harmonic disturbances

(Esfahani et al., 2013; Liu et al., 2019). Moreover, in

general, the AMB system is unstable and uncertain. Hence,

the use of control techniques for the balance and control of

the AMB system is crucial. A significant amount of research

has been reported in the recent decades by Mushi et al. (2011)

and Noshadi et al. (2014) to stabilize and regulate the AMB

system.

The literature has few reports of control technique

applications to the AMB system. The decentralized nature of

classical control strategies such as PI/PD allows for controlling

the shaft’s location of the AMB system (Polajžer et al., 2006). The

gains of classical control techniques such as the proportional

integral derivative controller (PID) are normally fixed. Thus,

nowadays, PID control is combined with other control

techniques to update the gains. In studies by Chen et al.

(2009) and Chang and Chen (2009), a way to update the fixed

gains by using fuzzy logic and an adaptive genetic algorithm has

been presented. However, the performance of PID control is

affected when the system dynamics contain uncertainties.

Therefore, in a study by Kang et al. (2011), an LMI-based H∞
control was proposed for the regulation of the AMB system. Also,

H∞ control of the AMB system was presented by Cole et al.

(2017) after considering the vibration of rotor dynamics. The

model predictive control for the AMB was discussed by Huang

et al. (2007) and Bonfitto et al. (2018). De Miras et al. (2013)

investigated the use of model-free control in the aspects of the

AMB system. The adaptive control strategy has also been used to

control the AMB system with a moving base (Sivrioglu, 2007).

The deviations of the rotor from the nominal position and

unbalancing due to mass imbalance are the main challenges in

the case of control of the AMB system. To tackle these

phenomena, sliding mode control (SMC) has been used in

different research works because of the advantages of

robustness, faster convergence, ease of design, and better

transient and steady-state responses (Edwards and Spurgeon,

1998; Amrr et al., 2022a). In a study by Kang et al. (2010), a

conventional SMC is implemented for the AMB system with a

movable base that only ensures the asymptotic convergence of

system states. An integral SMC control for the regulation

problem of the five-degrees-of-freedom (DOF) AMB system is

presented in a study by Lin et al. (2011), where the gains are

updated using a neural network. In the aforementioned SMC

techniques, the issue of the chattering phenomenon (Shtessel

et al., 2014) is mainly addressed using the boundary layer

technique. This technique resolves the problem of chattering

at the cost of the robustness of SMC (Amrr et al., 2022c). Another

effective approach to address the chattering is a higher-order

SMC scheme (Levant, 2003; Davila et al., 2005; Defoort et al.,

2009; Utkin et al., 2020). The higher-order SMC strategies have

also been used for the uncertain AMB system, and the recent

results were reported by Saha et al. (2020), Amrr and Alturki

(2021), and Saha et al. (2021). In a study by Saha et al. (2020), an

adaptive-based second-order SMC was designed, whereas Saha

et al. (2021) extended this result to a third-order SMC approach.

Likewise, non-singular fast terminal sliding surface-based

second-order SMC was proposed by Amrr and Alturki (2021)

and Amrr et al. (2022b) to resolve the issue of chattering.

Although these schemes are effective in solving the problem

of unwanted chattering, they have high computational

complexities, the control design is mathematically intensive,

and it also requires an additional differential observer to

estimate the higher-order derivatives of system states (Saha

et al., 2020; Saha et al., 2021).

The chattering in SMC arises due to the switching

characteristics, so a good alternative to this is the use of the

approximation method. Therefore, a worthwhile approximation

method to attenuate the chattering is the auxiliary control by the

fuzzy logic algorithm (Lo and Kuo, 1998; Tong and Li, 2003).

Since Lotfi A. Zadeh originally proposed fuzzy logic (FL) and

fuzzy set theory in the 1970s, they have drawn much interest

from scholars as an emerging field. FL has been employed in a

variety of applications, including control, communication, the

creation of integrated circuits, and medical fields. However, fuzzy

logic control (FLC) has been the most effective application of FL.

Numerous scholars have looked at the possibility of fuzzy control

applications for active magnetic bearing control (Alassar et al.,

2010; Amer et al., 2011; Su and Li, 2016). Fuzzy logic control has

also been explored for the modeling of the AMB system from its

input–output relation and combined with SMC for robust

control of the system under gyroscopic effects, as can be seen

in the study by Xu and Nonami (2003). The primary

characteristic of FLC is the use of IF-THEN rules that are

based on conventional control theories and human

experiences. Such FL principles can be used to tackle

chattering issues in traditional SMC theory. The fuzzy-based

SMC (FSMC) combines FL and SMC theories and provides the

benefits of both SMC and FLC (Palm, 1994; Li et al., 1997). The

FSMC scheme is highly efficient in lowering the number of

switches in the SMC approach without compromising the

other system performances. By using the linguistic fuzzy rules,

the system state trajectory may be brought back to the defined

sliding surface by choosing either a big or tiny control force as it

moves away from the sliding surface.

Fuzzy sliding mode control of a single DOF AMB system was

presented in a study by Qin et al. (2011), where the tracking

problem was effectively tackled. The reference tracking of the
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rotor was first performed using only nominal control input, and

then to solve the problem of chattering, fuzzy logic was used

along with the sliding mode control. However, the use of fuzzy

sliding mode control for the stabilization of the MIMO AMB

system has not been explored previously. Thus, this paper

proposes a fuzzy SMC-inspired control with variable gain for

the stabilization of the five-DOF AMB system, which,

to the authors’ knowledge, has not been previously

explored much.

The contributions of this paper can be summarized as

follows:

• A fuzzy-based sliding mode-inspired control is designed

for the regulation problem of the five-DOF AMB system

subjected to the system uncertainties and measurement

noise.

• The auxiliary control input is calculated using a Mamdani-

based fuzzy inference with two inputs and one output to

attenuate the chattering phenomenon, the auxiliary control

input is estimated by two inputs one output Mamdani-based

fuzzy inference engine. Also, a superintended fuzzy block is

used to update the auxiliary control gains to bring flexibility to

the controller design.

• Three different types of control techniques (PID, SMC, and

FSMIC) have been compared for the AMB system to

provide efficacy and validate the proposed control

technique.

The paper is categorized as follows: the system descriptions

for five-DOF AMB systems are introduced in the first section,

and in the second section, the problem formulation is

presented. In the next section, a fuzzy-based SMC-inspired

control with a variable gain is proposed, and Lyapunov-

based stability analysis is presented. The simulation results

are discussed in the next section. Finally, the conclusion is

drawn in the last section.

2 Five-DOF AMB system

Figure 1 shows a simplified version of the model given by

Lin et al. (2011). The essential components are two identical

radial AMBs (RAMBs) and a thrust AMB (TAMB) in addition

to the motor and the shaft. The two RAMBs are used in the two

endpoints of the shaft to control four DOF, and the TAMB is

used to control the axial DOF.

The measurement of the shaft anomaly in the X−Y direction

from the nominal air gap is detected by sensors placed in the two

RAMBs. The shaft deviation in the Z direction is sensed by a

single sensor installed in the TAMB. The sensors send the

measurement signals to the controller, and, based on these

deviations, the controller generates a control signal to make

the deviations zero.

The system dynamics can be represented as follows after

decoupling the coupling of the five axes (Sivrioglu, 2007; Lin

et al., 2011):

M€x � Ax + Bu +Mq, (1)
where x � [x1 x2 y1 y2 z]T presents states, which actually are

the deviations in the shaft in the five axes; u �
[ix1 ix2 iy1 iy2 iz]T displays control input currents; and Eq. 5

presents the term due to decoupling q � [qx1 qx2 qy1 qy2 qz]T.
The mass matrix (M), stiffness matrix (A), and control gain

matrix (B) matrices are presented as follows (Lin et al., 2011;

Abooee and Arefi, 2019):

M � I5×5, (2)
A � diag kfpϑ1, kfpϑ3, kfpϑ1, kfpϑ3, ktpϑ4[ ], (3)
B � diag kfiϑ1, kfiϑ3, kfiϑ1, kfiϑ3, ktiϑ4[ ], (4)

q �

−ε1 _y1 + ε1 _y2 + 2kfpϑ2x2 + 2kfiϑ2ix2 + ϱ1fdtx

ε2 _y1 − ε2 _y2 + 2kfpϑ2x1 + 2kfiϑ2ix1 + ϱ2fdtx

ε1 _x1 − ε1 _x2 + 2kfpϑ2y2 + 2kfiϑ2iy2 + ϱ1fdty − g
−ε2 _x1 − ε2 _x2 + 2kfpϑ2y1 + 2kfiϑ2iy1 + ϱ2fdty − g

ϱ3fdtz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (5)

FIGURE 1
Sketch of a five-DOF AMB system.
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where kfp, kfi, ktp, and kti are the stiffness related to position

and current of the RAMB and the TAMB, respectively, while

ϑ1 � ( 1
m) + (a2J ), ϑ2 � ( 1

m) − (abJ ), ϑ3 � ( 1
m) + (b2J ), and ϑ4 � ( 1

m),
where mass of rotor is denoted by m, and the parameters a,

b, and c are the distances to the center of gravity (CG) from

the left RAMB, the right RAMB, and the end of rotor,

respectively. The transverse moment of inertia is denoted

as J, the polar moment of inertia is given as Jz, and ε1 � aJzω
Jl ,

ε2 � bJzω
Jl with l being the distance between two RAMBs and

ϱ1 � ( 1
m) − (acJ ), ϱ2 � ( 1

m) + (bcJ ), and ϱ3 � ( 1
m). Finally,

external disturbance forces are considered as fdtx, fdty,

and fdtz.

To derive a control law for the fuzzy SMC, first, the system

dynamics have to be formulated as first-order dynamics. The

problem formulation for converting the first-order dynamics is

discussed in the following section.

3 Problem formulation

Initially, the non-linear five-degrees-of-freedom AMB is

converted into a linear model, and the coupling of states is

removed by decoupling the dynamics. The parameters in

system dynamics often fluctuate. Therefore, system dynamics

will always suffer from some amount of uncertainty. In the case

of practical applications, approximating the precise nominal

values of system matrices A and B is challenging. Moreover, the

decoupled term q can be considered as an uncertainty.

Therefore, the nominal system parameters along with the

uncertainties are presented as

€x � Anom + ΔA[ ]x t( ) + Bnom + ΔB[ ]u t( ) + q t( )
� Anomx t( ) + Bnomu t( ) + n t( ), (6)

where Anom and Bnom are the nominal values of A and B,
respectively, the variations of time-varying system parameters

are symbolized as ΔA ∈ R5×5 and ΔB ∈ R5×5, and the lumped

uncertainty denoted as n ∈ R5×1 is presented as

n t( ) � ΔAx t( ) + ΔBu t( ) + q t( ). (7)

Assumption 1: The system states and its derivatives are

measurable during the designing feedback.

Assumption 2: The variable n is slowly time-varying and

bounded, i.e., ‖n‖≤ n and the values of n > 0 are known.

Remark 1: The first-order derivative of states x can be derived

by using a finite-time differentiator (Levant, 2007). This

observer estimates the derivative of the input signal, and it is

expressed as

_φ1 � −c1|φ1 − x|12 sign φ1 − x( ) + φ2, (8a)
_φ2 � −c2sign φ2 − x( ), (8b)

where c1 > 0, c2 > 0, and c1 > c2. The variables φ1 ∈ R5 and

φ2 ∈ R5 are the estimates of x and _x, respectively.
Now, the system dynamics Eq. 6 is converted into first-order

dynamics by using Eq. 9 as follows:

x1 ∈ R5 � x and x2 ∈ R5 � _x. (9)

Substituting these new variables in Eq. 6 yields

_x1 � x2
_x2 � Anomx1 + Bnomu t( ) + n.

(10)

Therefore, the main objective of the controller design

is to stabilize the shaft in the nominal air gap by navigating

the state variables (x1, x2, y1, y2, z) and its derivatives to

zero despite system uncertainties and measurement

noise, i.e.,

lim
t→∞

e( ) � 0 0 0 0 0[ ]T, (11)
lim
t→∞

_e( ) � 0 0 0 0 0[ ]T, (12)

where the error is e ∈ R5×1 � x1 − xd, and xd is the central

position in AMB. To achieve this objective, a fuzzy logic

controller inspired by sliding mode is proposed in the next

section.

4 The proposed control strategy

In this section, first, the fuzzy logic-based control law is

designed, and the subsequent Lyapunov-based stability analysis

is presented.

Sliding mode control is a non-linear technique that helps

the system dynamics perform in a prescribed manner

despite uncertainties. In this technique, the system

dynamics are forced to reach a sliding surface and then

slide on it. The most crucial part of designing the SMC is to

choose the sliding surface carefully. Due to the flexibility of

choosing proportional integral derivative (PID) gains in

SMC control (Stepanenko et al., 1998), in this paper, a

PID sliding surface is selected over a linear sliding surface

to design an SMC-inspired controller. A PID sliding surface

based on the error in the states can be presented as (Eker,

2006)

s t( ) � Kpe t( ) + K i ∫ e ζ( )dζ + Kd
d

dt
e t( ), (13)

where Kp ∈ R5×5 is matrix of proportional gain, K i ∈ R5×5 is

matrix of integral gain, and Kd ∈ R5×5 is matrix of derivative

gain. For the five-DOF AMB system, Kp, Ki, and Kd can be

defined as

Kp � diag kp1 kp2 kp3 kp4 kp5[ ]
K i � diag ki1 ki2 ki3 ki4 ki5[ ]
Kd � diag kd1 kd2 kd3 kd4 kd5[ ].

(14)
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After getting s from Eq. 13, the change in

sliding surface variable _s can be generated through signal

processing.

In the absence of uncertainties (n) and taking _s � 0, the

nominal control input can be designed. Now, the nominal

control input un can be presented as

un � KdBnom( )−1 −Kp _e − K ie − KdAnomx1( ), (15)
where KdBnom is invertible as both Kd and Bnom are diagonal.

In the presence of uncertainties, an additional control input

called auxiliary control is needed to suppress the uncertainties.

Also, the auxiliary control is the main reason for the chattering

problem in SMC control. To contain the chattering

problem, the auxiliary control in this paper is estimated by

fuzzy logic.

Fuzzy logic control (FLC) has been applied to many practical

applications. The significant advantage of employing fuzzy logic

is that it can transform the amount of vagueness into a human-

understandable form (Bai and Roth, 2019). Therefore, in the

absence of a mathematical model or mathematical model

containing uncertainties, the issue can be efficiently dealt with

by using fuzzy logic control. However, large numbers of rule base

for higher-order systems complicate the analysis. Thus, much

focus has been given to fuzzy SMC control (Yau and Chen, 2006;

Roopaei and Jahromi, 2009; Lin et al., 2019).

To suppress the chattering phenomenon, a fuzzy inference

engine alongwith a fuzzy rule base is used, and FSMIC is proposed,

which is similar to the design in studies by Yau and Chen (2006)

and Roopaei and Jahromi (2009). Along with the estimation of

auxiliary control input, the gain used for auxiliary control is also

estimated using a fuzzy inference engine for the improvement of

the systemperformance. This type of gainmodification is normally

known as superintended fuzzy control. The robustness of the

system behavior is the main advantage of this method. The

block diagram of fuzzy SMC-inspired control is shown in

Figure 2. Fuzzy SMC block and superintended fuzzy block each

consist of five components, where only one component of each

block is shown in Figures 3 and 4, respectively. The Mamdani-

FIGURE 2
Fuzzy SMC-inspired control with PID surface.

FIGURE 3
Fuzzy SMC block.
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based fuzzy inference method is used for both blocks to construct

the two-input-one-output setup. In the case of fuzzy SMC block,

inputs are sliding surface variable (s1) and change in sliding surface

( _s1) and the output is the main component of calculated auxiliary

control uq1. In the superintended block, inputs are the error and

change in error, and the output is the variable gain for auxiliary

control.

The auxiliary control law is designed as

uh � KdBnom( )−1 Gquq( ), (16)

whereGq is the auxiliary control gain which can be represented as

Gq = diag{gq1, gq2, gq3, gq4, gq5}, and uq is the output of fuzzy SMC

block. The rules for the fuzzy control are produced by mapping

input variables (s, _s), which are linguistic in nature, to the output

linguistic variable uq by the following relation (Roopaei and

Jahromi, 2009):

uq � uq1 s1, _s1( ), uq2 s2, _s2( ), / , uq5 s5, _s5( )[ ]T
� uqi si, _si( )[ ], (17)

where i = 1, 2, . . ., 5.

The fuzzy membership functions and fuzzy rule base are

designed for the fuzzy SMC and superintended block. Here,

the fuzzy design of only one component inside those blocks is

shown. However, the design for other components is the

same as that for this one. The input variables (s1, _s1) and

output variable main component of auxiliary control (uq1)

which are linguistic in nature are represented by membership

functions, as shown in Figure 5. The inputs and output are

mapped into the domain [−1, 1] and divided into seven fuzzy

divisions, which are represented as “BN” (big negative),

“MN” (medium negative), “SN” (small negative), “ZE”

(zero), “SP” (small positive), “MP” (medium positive), and

“BP” (big positive). The fuzzy rules are selected such that the

controller stability is preserved. The rules are selected by IF-

THEN logic by taking s1 and _s1 as inputs and uq1 as output

(Zadeh, 1965; Wang and Mendel, 1992). The rule base for

fuzzy SMC is given in Table 1, where i = 1, . . ., 5. The whole

fuzzification is performed using the singleton process, and

the crisp value of the output is generated by center average

defuzzification.

For the construction of the superintended fuzzy block, two

inputs, which are errors (e1 and _e1), are fuzzified in the same

manner as was performed for the fuzzy SMC. The membership

function of the inputs is given in Figure 6. The range of the

inputs is taken as [−0.01, 0.01]. The output of the

superintended fuzzy block is also fuzzified and divided into

seven divisions represented as “VVT” (very very tiny), “VT”

(very tiny), “T” (tiny), “M” (medium), “L” (large), “VL” (very

large), and “VVL” (very very large). The membership function

of the output is given in Figure 7. The range of the output is

taken as [1000, 6000]. The surface view for the superintended

fuzzy control for gain estimation is shown in Figure 8. The

fuzzy rules for this block are also based on IF-THEN

conditions, and rules are generated by the Mamdani

FIGURE 4
Superintended fuzzy block.

FIGURE 5
Membership function for sliding surface (s1), change in s1 ( _s1),
and auxiliary control (uq1).
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method. The rule base for variable gain estimation is given in

Table 2. In this case also, the center average defuzzification

method is chosen for generating crisp output.

The final control input can be represented as

u � un + uh

� KdBnom( )−1 −Kp _e − K ie − KdAnomx1 + Gquq( ). (18)

4.1 Stability analysis

Theorem 1: Under Assumptions 1 and 2, the system

dynamics (10) can be stabilized to the nominal position

using the designed fuzzy-based SMC scheme (18). The

proposed control law will steer the states and their

derivatives to zero under the influence of model

uncertainties and disturbances.

Proof: The stability analysis is presented in two steps. In

the first step, the convergence of the sliding surface is

proved. Then, the convergence of error and its derivatives

is shown.

To show the convergence of the sliding surface, a positive

definite Lyapunov function is chosen

V1 � 1
2
sTs. (19)

Taking the time derivative of Eq. 19,

_V1 � sT _s. (20)

After taking the derivative of Eq. 13 and substituting it,

_V1 � sT Kp _e + K ie + Kd€e( )
� sT Kp _e + K ie + KdAnomx1 + KdBnomu(
+Kdn).

(21)

Now, putting the value of u from Eq. 18, it becomes

TABLE 1 Rule base for fuzzy SMC block.

si

s_i BP MP SP ZE SN MN

BP BN BN BN ZE ZE ZE

MP BN BN BN ZE ZE ZE

SP BN BN MN ZE ZE SP

ZE BN MN SN ZE SP MP

SN MN SN ZE ZE MP BP

MN SN ZE ZE ZE BP BP

BN ZE ZE ZE ZE BP BP

FIGURE 6
Membership function for error (e1) and change in error ( _e1).

FIGURE 7
Membership function for auxiliary control gain.
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_V1 � sT Kp _e + K ie + KdAnomx1 + KdBnom{
· KdBnom( )−1 −Kp _e − K ie − KdAnomx1(
+Gquq) + Kdn}

� sT Gquq + Kdn( ).
(22)

The output of the main component of the auxiliary control is

mapped in the range of [−1, 1]. So, |uq|≤ 1 and |uqi(si, _si)|≤ 1.

Also, siuqi(si, _si)≤ − |si| for proposed fuzzy rule base is given in

Table 1. Thus, putting the value of the diagonal matrices Gq and

Kd and using bound ‖n‖≤ n , as given in Assumption 2, Eq. 22

implies

_V1 � sT Gquq + Kdn( )
� gq1s1 uq1 s1, _s1( ) + gq2s2 uq2 s2, _s2( ) + /{
+ gq5s5 uq5 s5, _s5( )} + sTKdn. (23)

Using the fuzzy SMC rule base in the aforementioned

equation, i.e., siuqi(si, _si)≤ − |si|. Therefore,

_V1 ≤ − gq1 s1| | − gq2 s2| | −/ − gq5 s5| | +max kd1 , kd2 , kd3 , kd4 , kd5( ) n ‖s‖1
≤ −max gq1 , gq2 , gq3 , gq4 , gq5( ) s1| | + s2| | + s3| | + s4| | + s5| |( )
+max kd1 , kd2 , kd3 , kd4 , kd5( ) n ‖s‖1

� −max gq1 , gq2 , gq3 , gq4 , gq5( )‖s‖1 +max kd1 , kd2 , kd3 , kd4 , kd5( ) n ‖s‖1
� − max gq1 , gq2 , gq3 , gq4 , gq5( ) −max kd1 , kd2 , kd3 , kd4 , kd5( ) n{ }‖s‖1
≤ − η‖s‖1 ,
≤ − η ‖s‖2( )1/2
≤ − �

2
√

η
sTs
2

( )1/2

≤ − �
2

√
ηV1/2

1 < 0,
(24)

where η � {max(gq1, gq2, gq3, gq4, gq5) −max(kd1, kd2,
kd3, kd4, kd5) n }> 0. The closed loop stability is guaranteed

subject to the reaching condition, that the gains of Gq should

always be greater than Kd n . Thus, Eq. 24 satisfies the finite-time

inequality condition of Bhat and Bernstein (2000). Hence, the

sliding surface s converges to zero within finite time.

Once the sliding phase is achieved, i.e., s = 0, the AMB system

adapts the sliding dynamics. Therefore, Eq. 13 can be represented as

Kpe t( ) + K i ∫ e ζ( )dζ + Kd
d

dt
e t( ) � 0. (25)

Now, rearranging the dynamics,

_e � −Kd
−1 Kpe + K i ∫ e ζ( )dζ{ }. (26)

After taking the derivative of Eq. 26,

€e � −Kd
−1Kp _e − Kd

−1K i e. (27)

Now, writing Eq. 27 in the state space form,

_e
€e

[ ] � 0 I
−Kd

−1K i −Kd
−1Kp

[ ] e
_e

[ ], (28)

where the system matrix is in controllable canonical form, and all

the coefficients are negative definite, making Eq. 28 a stable system.

This proves that the errors and their derivatives will converge to

zero asymptotically. In other words, the position of the rotor will

asymptotically stabilize to the nominal air gap position.

FIGURE 8
Surface view of auxiliary control gain.

TABLE 2 Rule base for variable gain.

ei

ėi BN SM SN ZE SP MP BP

BN M T VT VVT VT T M

SM L M T VT T M L

SN VL L M T M L VL

ZE VVL VL L M L VL VVL

SP VL L M T M L VL

MP L M T VT T M L

BP M T VT VVT VT T M
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5 Numerical analysis

This section presents the performance of the proposed

fuzzy sliding mode-inspired control (FSMIC) for an

uncertain five-DOF AMB system (10) on the MATLAB

simulation platform. In order to establish the effectiveness

of the proposed FSMIC design (18), this section also

illustrates the comparative simulation analysis with a

traditional SMC (Eker, 2006) and proportional integral

derivative (PID) control (Ang et al., 2005). The parameter

values of AMB system 1) are taken from Lin et al. (2011) and

Lin et al. (2010) and given in Table 3. Notably, the rotor is

considered to be rigid with a maximum operating speed of

4,800 rpm. The nominal air gap position is taken as xb = yb =

0.4 mm and zb = 0.5 mm. The bias currents in the coils for

RAMB and TAMB are ibr � ibl � 0.9 A and ibt � 1.1 A,

respectively. The initial conditions of five states are

x1(0) = −0.3 mm, x2(0) = 0.1 mm, y1(0) = 0.25 mm,

y2(0) = −0.15 mm, and z(0) = 0.2 mm. The model

uncertainties of system parameters (i.e., ΔA and ΔB) are

considered as 10% and 15% of their respective nominal

values. To put the effectiveness of the proposed control

algorithm to the test, the disturbance forces (fdtx, fdty, fdtz)

are taken as

fdtx � 0.1 sin t( ) + 7 × 10−2η,

fdty � 0.2 sin 5t( ) + 7 × 10−2η,

fdtz � 0.3 sin 8t( ) + 7 × 10−2η, (29)

where η ∈ R is white noise. Furthermore, a random Gaussian

white noise with a magnitude of 5 × 10–4 mm is also considered in

the state feedback as measurement noise.

5.1 Comparative simulation results

The comparative performances of PID, SMC, and FSMIC

are presented through state response, input efforts, and total

input variation. The time response of system states, which are

rotor positions measured at left and right RAMBs and TAMB,

is shown in Figure 9. The state response under PID control,

traditional SMC scheme, and FSMIC algorithm are illustrated

in the left, middle, and right subplots of Figure 9. It can be seen

from the state response under PID and SMC schemes that the

rotor deviations settle to zero from the given initial

displacement within 0.63 s and 0.51 s, respectively. On the

other hand, the proposed FSMIC technique helps converge the

states to zero within 0.38 s. Therefore, the convergence rate is

faster in the FSMIC scheme than in the comparative

TABLE 3 Five-DOF AMB system parameters (Lin et al., 2011; Lin et al., 2010).

Parameters Value Parameters Value

M 2.56478 kg a 0.16 m

L 0.505 m b 0.19 m

D 0.0166 m c 0.263 m

J 0.04004 kg m2 ktp 36,000 N/m

Jz 0.0006565 kg m2 kfi 80 N/A

L 0.35 m kfp 220,000 N/m

kti 40 N/A ω 48,000 rpm

FIGURE 9
States response with PID, SMC, and FSMIC.
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approaches. Moreover, there are noticeable overshoot and

undershoot in the state trajectories under PID and SMC

schemes, whereas there is no overshoot or undershoot in

the proposed control strategy. The steady-state response is

also presented in the zoomed-in plot in Figure 9, which shows

that all the states remain in the neighborhood of zero with the

residual bound range of 4 × 10−6 m. The bound of state x1 at
the settling time is also mentioned in Table 4,

which indicates that the FSMIC algorithm is performing

better.

The control inputs’ response of these three schemes is

shown in Figure 10. In the case of the PID control, the

initial control current required is a little higher than the

other two schemes, i.e., 1.2 A. Moreover, the transient

response in the zoomed-in plot under the PID scheme shows

the effect of measurement noise. On the other hand, the

traditional SMC scheme experiences a chattering effect

which is evident in the transient response. In contrast, the

proposed FSMIC approach reduces the chattering to a great

extent. The FSMIC scheme circumvents chattering due to the

fuzzy-based approximation of the switching function in the

sliding mode control design.

In addition, the reduction in input chattering can be

quantified by calculating the total variation (TV) input

throughout the simulation time. The expression of TV is

defined as

TV � ∑5
i�1

∑n
k�1

ui k + 1( ) − ui k( )| |, (30)

where n is the total number of control input data samples. Figure 11

illustrates the performance of absolute fluctuations of control input over

time. In Table 4, the calculated TV values for three control strategies are

provided. Therefore, Table 4 and Figure 11 make it clear that the

proposed approach has a lesser change in control input than the other

two techniques. Consequently, the chattering is significantly minimized

in FSMIC design.

The time-varying control gains for the FSMIC scheme are

also given in Figure 12. These gains vary between 1,000 and

6,000 and settle down to a constant value when the system

reaches a steady state. The value of the gainsGq in the steady state

is 5,500. It is important to note that the gains in the PID and SMC

controllers are fixed. However, in the FSMIC design, auxiliary

control gains are modified using the fuzzy logic algorithm. As a

result, the variable gains under the FSMIC approach offer more

flexibility over the other two comparative techniques.

Lastly, the amount of control effort executed in achieving the

aforementioned results is also evaluated to determine the energy-

efficient control performance. Therefore, the energy index value

of these three control schemes is calculated using the following

formula (Amrr et al., 2020):

Energy Index � ∑5
k

∫s�1

s�0
|uk s( )|2ds. (31)

The energy index values of the three control schemes are

tabulated in Table 4, which shows that the proposed controller

consumes the least energy. Hence, the proposed FSMIC

algorithm is the most efficient.

TABLE 4 Comparison between different control approaches.

Control techniques Settling time (s) ‖x1‖
at settling time

Energy index (A2) Total variation

PID 0.63 4.0970 × 10–5 0.0524 439.253

SMC 0.51 2.1033 × 10–5 0.0320 277.746

FSMIC 0.38 1.0586 × 10–5 0.0224 165.632

FIGURE 10
Control inputs’ response with PID, SMC, and FSMIC.
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6 Conclusion

This paper investigates the application of fuzzy-based SMC

for the stabilization of the five-DOF AMB system under

parametric uncertainties and disturbances. The fuzzy logic

algorithm helps in reducing the chattering effect in the SMC

design by approximating the variable gains of the auxiliary

control. On the other hand, the SMC provides a faster state

response with better invariance properties against disturbances.

The comparative simulation analysis of the proposed scheme

with traditional SMC and PID control is also presented in this

study. The numerical results illustrate the efficacy of the

proposed fuzzy SMC technique over the other two in terms of

convergence time, maximum overshoot, energy consumption,

and chattering suppression. However, one of the shortcomings of

this scheme is that only asymptotic convergence of system

trajectories is ensured theoretically. Therefore, future

extension of this work could be focused on achieving the

finite time results for state response as well. Furthermore,

system complexity could also be enhanced by considering

rotor flexibility and gyroscopic effect.
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Nomenclature

n upper bound of lumped uncertainty

a length between COG and left RAMB

A stiffness matrix

Anom and Bnom nominal values of A and B

B control gain matrix

b length between COG and right RAMB

c distance between COG and end of the rotor

d diameter of the rotor

e error

Gq auxiliary control gain

ix1 control current for state x1

J transverse moment of inertia about the X and Y axis

Jz polar moment of inertia about the Z axis

Kd derivative gain

kfi current stiffness of RAMB

kfp position stiffness of RAMB

Ki integral gain

Kp proportional gain

kti current stiffness of TAMB

ktp position stiffness of TAMB

l distance between left RAMB and right RAMB

L length of the rotor

M mass matrix

m mass of the rotor

n lumped uncertainty

q term due to decoupling

s sliding surface

u control inputs

uq output of fuzzy SMC block

x states
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