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In various research projects, it has been demonstrated that feedforward neural network
models (possibly extended toward dynamic representations) are efficient means for
identifying numerous dependencies of the electrochemical behavior of high-
temperature fuel cells. These dependencies include external inputs such as gas mass
flows, gas inlet temperatures, and the electric current as well as internal fuel cell states such
as the temperature. Typically, the research on using neural networks in this context is
focused only on point-valued training data. As a result, the neural network provides solely
point-valued estimates for such quantities as the stack voltage and instantaneous fuel cell
power. Although advantageous, for example, for robust control synthesis, quantifying the
reliability of neural network models in terms of interval bounds for the network’s output has
not yet received wide attention. In practice, however, such information is essential for
optimizing the utilization of the supplied fuel. An additional goal is to make sure that the
maximum power point is not exceeded since that would lead to accelerated stack
degradation. To solve the data-driven modeling task with the focus on reliability
assessment, a novel offine and online parameterization strategy for interval extensions
of neural network models is presented in this paper. Its functionality is demonstrated using
real-life measured data for a solid oxide fuel cell stack that is operated with temporally
varying electric currents and fuel gas mass flows.

Keywords: feedforward neural networks, NARX models, interval methods, parameter optimization, fuel cell
modeling, uncertainty quantification

1 INTRODUCTION

Because of their high efficiency factors, high-temperature fuel cells, for example, solid oxide fuel cells
(SOEC:s), are promising devices to use in the framework of a decentralized grid for co-generation of
heat and electricity. An advantage of SOFCs compared to other fuel cell types is their capability to
operate with a wide range of fuels such as pure hydrogen, different hydrocarbonates (e.g., methane
and propane) or even carbon monoxide. To employ the latter types of fuels for power
generation—which often appear as a kind of waste in industrial process engineering
anyway—appropriate gas reformers need to be used in the fuel cell system. Thus, fuel cells can
provide a powerful means to use waste in an energetically efficient way. Moreover, they operate in an
environmentally friendly manner if the fuel gases are produced from renewable sources (Stambouli
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and Traversa, 2002; Gubner, 2005; Pukrushpan et al., 2005; Stiller,
2006; Stiller et al., 2006; Weber et al., 2006; Sinyak, 2007; Bove and
Ubertini, 2008; Divisek, 2010; Huang et al., 2011, 2013; Dodds
etal., 2015; Arsalis and Georghiou, 2018). However, the operation
of SOFCs according to the current state-of-the-art is restricted to
a thermally and electrically constant, a-priori optimized
operating point. This restriction needs to be removed if
dynamic system employment in decentralized, island-like
settings with high efficiency is desired. There, battery buffers
and thermal energy storage (aiming at low-pass filtering temporal
variations of the power demand) should be kept as small as
possible to reduce costs for installation and maintenance. In any
case, a dynamic fuel cell operation needs to be implemented in
such as way that constraints on the admissible stack temperature
and also on the fuel consumption are not violated.

Possibilities to describe both the thermal and electrochemical
fuel cell behavior using neural network (NN) models with a
shallow structure were investigated, for example, in Razbani and
Assadi (2014) and Xia et al. (2018). In contrast to Rauh et al.
(2021), other state-of-the-art NN models are purely data-driven
black box representations and do not explicitly structure the NN
to account for physical dependencies (such as proportionality
between the consumed hydrogen mass flow and the exothermal
heat production). Hence, those dependencies are typically
extracted from a set of measured data by the training
algorithm of the (shallow) NN. A shallow NN has only a
small number of hidden layers with an optimally chosen small
number of hidden layer neurons. In Rauh et al. (2021), it was
shown that the structure of such models can be devised by using
physical insight, leading, for example, to the introduction of
multiplicative couplings between hydrogen mass flows (or
electric currents) with temperature-dependent nonlinearities.
These couplings directly represent the physical influence
factors on the exothermal heat production in high-temperature
operating phases that were derived in Rauh et al. (2016) in an
equation-based form. A point-valued NN model describing not
only the thermal but also the electrochemical system behavior was
introduced in Rauh et al. (2021) and extended to (fractional)
differential equation models in Rauh (2021). However, these
publications do not analyze the robustness of point-valued NN
models by the additional means of interval techniques. To
quantify the reliability of the models and to deal with the
uncertainty of a point-valued (static or dynamic)
representation for the electrochemical fuel cell behavior, novel
interval-based approaches are proposed in this paper. As such,
these extended NN models provide the basis for improving the
reliability of control procedures either during their offline design
or for their online adaptation or optimization.

The main factors influencing the electric power characteristic of
high-temperature fuel cells are the electric current and the supplied
fuel mass flow (Pukrushpan et al., 2005; Bove and Ubertini, 2008;
Divisek, 2010). Therefore, typical approaches for the derivation of
physically inspired system descriptions make use of the
representation of the stack’s terminal voltage by means of electric
equivalent circuit models. In those, the Nernst voltage serves as the
system input from which voltage drop phenomena due to activation
polarization, Ohmic polarization, and concentration polarization are
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subtracted. After that, the corresponding parameters can be
identified using data from experiments comprising stepwise
current variations and methods for impedance spectroscopy
(Frenkel et al., 2019).

From a phenomenological point of view, these models can be
simplified toward linear transfer function representations that are
valid in the vicinity of a desired operating point (Frenkel et al.,
2020). However, those simplified models become quite inaccurate
if large and relatively fast variations of operating points occur. A
promising approach to deal with this situation is to approximate
the electric stack voltage by a multivariate polynomial with
respect to the current and fuel mass flow and to estimate the
corresponding coefficients in real time by means of a suitable
Kalman filter. Such models have been applied successfully for the
derivation of maximum power point tracking controllers and for
the online optimization of the fuel efficiency under the constraint
that the maximum power point must not be exceeded (to avoid
system wear) (Rauh et al., 2020; Rauh, 2021).

The advantage of this online estimation approach, in contrast
to the equivalent circuit representation, is the significantly
reduced model complexity and the fact that the dependencies
of the equivalent circuit parameters on system inputs such as the
anode gas, cathode gas, and the internal stack temperatures do
not need to be identified in advance. Instead, the parameter
identification is performed at runtime using a Kalman filter-based
scheme. However, this advantage turns into a drawback if the
model needs to be applied offline for simulation, control design,
and validation purposes. Both to solve this problem and to avoid
explicit specifications of parameter dependencies, it is promising
to employ NNs as a data-driven modeling option. In this paper,
we propose to generalize static feedforward networks (Haykin
et al, 2001) and dynamic nonlinear autoregressive models with
exogenous inputs (NARX) (Nelles, 2020) using intervals. Such
extensions quantify the accuracy of the system representation in
comparison with available training and validation data sets that
are obtained by suitable identification experiments.

Interval analysis (Jaulin et al., 2001; Moore et al., 2009) (IA) isa
powerful mathematical and computational approach to result
verification with a wide range of applications in engineering,
medical science, (bio)mechanics and others. Methods based on
IA ascertain formally that the outcome of a computer simulation
implemented with their help is correct despite, for example, the use
of floating point arithmetic (having a finite precision) or possible
appearance of discretization errors (assuming that the underlying
implementation is correct). The results are intervals with bounds
expressed by floating point numbers which with certainty contain
the exact solution to a mathematical function evaluation or a more
complex dynamic system model. Such correctness properties are
exploited, for example, when searching for all zeros of an algebraic
function on a bounded domain or when simulating ordinary
differential equations which may loose their stability properties
if floating point solvers with inappropriate discretization step sizes
were chosen. A method with result verification based on IA then
always provides bounds for the system states that contain the true
system dynamics. It is, furthermore, possible to quantify bounded
uncertainty in output parameters from that in the input data. By
using suitable model implementations that replace the system
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inputs and selected parameters by interval quantities, system
models can be analyzed from the angles of sensitivity,
reachability, and feasibility numerically in a reliable way. In our
paper, we use IA primarily in its capacity to deal with uncertainty in
measured data.

A common drawback of such rigor-preserving methods,
caused by the dependency problem or the wrapping effect
(Jaulin et al., 2001), is the possibility of too wide bounds for
the solution sets (e.g., between —oo and +oo), which is called
overestimation. The dependency problem manifests itself if an
interval variable occurs multiple times in the mathematical
expression to be evaluated. The wrapping effect appears
because of the need to enclose rotated, non-axis aligned (and
in some cases even non-convex) sets in axis-parallel boxes.

An interval [x] = [x ; x], with x as the lower and x as the
upper bound, is defined as [x ; x] = {x € R|x <x<x} with its
width (interval diameter) given by

w([x])=x -x. 1)

For a binary operation O = { +, —, -, /} and two intervals
[x; x], [ Y y], the corresponding interval operation can be
defined as

This formula can be simplified using further information
about the operation, for example, [x ; X]+ [y ; y] =[x +
y ; X+ ] for the addition. For division of intervals, usually
0¢ [y ; y] is assumed. Based on this arithmetic, higher-level
interval methods can be defined, for example, those for solving
systems of algebraic or differential equations or for the
identification of parameters for a given mathematical model
given measured data affected by interval uncertainty
(Neumaier, 1990; Jaulin et al., 2001; Nedialkov, 2011).

To quantify the accuracy of models for the electrochemical
behavior of SOFCs relying on NN representations, information
from the available training and validation data sets is exploited in
terms of a two-stage offline procedure comprising:

1. Identification of a classical point-valued NN model for the
system;

2. Identification of interval bounds for the model parameters at
Stage 1 using offline optimization (leading to an interval
parameterization of the NN).

In an optional third online identification stage of the proposed
procedure, the interval parameters can be adapted further so that
the interval extension of the NN representation becomes
compatible with data points that are observed additionally.

The structure of the paper is as follows. Sec. 2 describes
different options using which NN models and interval

Interval Neural Networks for SOFCs

techniques can be combined. Based on this, the proposed
interval extension of both static (feedforward) NN models and
dynamic NARX models is presented and illustrated for an
academic example in Sec. 3. After that, the interval approach
is applied to modeling and simulation of the electric power
characteristic of an SOFC system in Sec. 4. Finally,
conclusions and an outlook on future research are given in Sec. 5.

2 INTERVAL EXTENSIONS OF NEURAL
NETWORKS: PRINCIPLES

In general, it is possible to employ interval methods for the
evaluation of NNs in two fundamentally different ways. The first
approach is to perform a classical training of the NN so that a
model is obtained that provides point-valued outputs if point-
valued data are applied to the network’s input layer. Interval
analysis can then be used to assess a posteriori the sensitivity of
the network with respect to inputs that are described by suitable
intervals. This kind of assessment can serve either to analyze the
robustness of the NN or to quantify its range of possible outputs.
The latter helps to examine the capability of the NN model to
generalize with respect to unknown inputs and to perform a
reachability or safety analysis for the modeled system. The second
and less commonly used approach is to incorporate intervals
directly into the training phase. In this case, layer weights and bias
values are determined as interval quantities so that (uncertain)
input data lead to interval bounds on the system outputs which
themselves enclose uncertain but bounded (measured) data. In
this section, we give references and examples for the first
approach in Sec. 2.2 and for the second in Sec. 2.3 and Sec.
2.4 to highlight the specific combination of NN modeling with
interval methods suggested in this paper.

2.1 Preliminaries

Our general goal is to use NN modeling to solve nonlinear
regression problems. In the considered SOFC application, this
task corresponds to approximating scalar-valued multivariate
functions that represent the electric power of the fuel cell in
terms of all relevant influence factors. As already stated in the
introduction, we restrict ourselves to the case of shallow NNs with
a suitably chosen internal structure (cf. Rauh et al., 2021) and an
optimized number of hidden layer neurons. This kind of network
structuring is similarly exploited by Lutter et al. (2019), where
NN are employed to describe mechanical systems with the help
of an approach based on the Lagrange formalism.

In contrast to our shallow NN approach, deep learning
techniques are also employed in the current applied NN
research. Here, the focus is on probabilistic regressions in
combination with importance sampling, noise contrastive
estimation, and maximum likelihood estimation (Gustafsson
et al.,, 2020; Andersson et al., 2021; Gedon et al., 2021). In the
area of probabilistic NN techniques, the estimation of probability
density functions in a data-based context should be mentioned as
a further approach that might find applications in control-
oriented system modeling. Because of their limited
applicability in the frame of control for fuel cell systems, other
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deep learning approaches, for example, for solving automatic
(image) recognition tasks, are not discussed here. In our future
research, we might consider extending the interval shallow NN
modeling using the deep learning regression techniques that
employ a feedforward or NARX structure similar to that
considered in this paper. In such a way, the proposed
approach could be extended not only to handle a control
optimization in a bounded-error framework but also as an
alternative to stochastic model predictive control techniques
(Gonzédlez Querubin et al, 2020) with underlying deep
learning system representations.

The general aim of this paper is thus to solve a function
approximation problem (with possible memory effects
represented by means of autoregressive NN structures)
supposing that

¢ measurements of the system inputs are available at certain
time instants,

e measurements of system outputs are available at the
identical synchronized time steps, and

o the networks are extended by systematically introducing
interval parameters so that the computed output intervals
cover all available measurements and that a re-training
becomes possible as soon as new measured data arrive.

Classical methods for point-valued NN parameterization
make use of well-known optimization techniques such as the
Levenberg-Marquardt algorithm, conjugate-gradient approaches,
or Bayesian regularization (Dan Foresee and Hagan, 1997;
Nocedal and Wright, 2006). These tools perform well if
feedforward NNs with sufficiently large numbers of hidden
layer neurons are considered. However, excessive
overparameterizations should be avoided since this might lead
to overfitting or high sensitivity against input disturbances which
both cause poor generalizability to unknown inputs.

To prevent under- and overfitting of the data by the used NN,
we employ the singular value decomposition approach
theoretically derived in Kanjilal et al. (1993) and investigated
in detail from an application (fuel cell) perspective in Rauh et al.
(2021) and Rauh (2021) to find reasonable numbers of neurons in
the hidden layer(s). In addition, this procedure is applicable to
eliminate system inputs that do not contribute essentially to the
input-output relations to be identified.

To solve the tasks listed above, we denote the vector of NN
inputs by q, € R”, where k € {1, . .., kpay} corresponds either to
the sample number in a list of possible input values or to the data
at the kth time instant if the system inputs possess a temporal
relationship. Assuming a shallow NN with a single hidden layer,
the vector y, € R" of outputs can be computed by

Yk:N(qk’Wl’WZ)bl)bZ):WZ'g(Wl'qk+bl)+b2’ (3)

where g(-): RE - RE is the activation function in the hidden
layer, L is the number of hidden layer neurons and the output
layer is linear. Here, W; € R and W, € R™L are weighting
matrices of suitable dimensions with the bias vectors b; € R!
and b, € R".

Interval Neural Networks for SOFCs

In the frame of training feedforward NNs with the aim of
function approximation, the vector g(x) of activation
functions is usually chosen either as the so-called ReLU
function

g(x1)] max (0, x;)
gx) = : |[= : (4)
g(xp)l  Lmax(0,x;)
or as a sigmoid-type function
[o(x1)
gx) = | (5)
Lo(xr)

A typical choice for the latter is the hyperbolic tangent
o(x;) = tanh (x;), (6)

(implemented in MATLAB by the function tansig). Throughout this
paper, we use the representation

2
o(x;) = Treo 1 (7)
to avoid overestimation caused by a dependency of the numerator
and denominator terms on the same variable in the alternative
representation of the hyperbolic tangent function.

Remark 1. Both ReLU and sigmoid functions are capable of
accurately representing input-output relationships in the frame of
nonlinear function evaluation. ReLU representations are preferred in
many current research works on regression problems in system
identification because of their lower computational cost since
efficient linear algebra routines and more simple gradient
expressions can be applied during training phases. However, we
make use of sigmoid representations in the hidden network layer in
our paper because they automatically provide bounded outputs to
input values with large magnitudes. This holds not only for point-
valued NN realizations but also for the interval-valued counterparts
introduced in this contribution. For those, constant interval diameters
can be expected for inputs with large magnitude if sigmoid activation
functions are used while the interval diameters would grow inevitably
in the ReLU case because the vector components of (Eq. 4) are
unbounded for x; —+oo,

2.2 Interval Evaluation of Static

Feedforward Neural Network Models
The NN model according to (Eq. 3) can be extended with the help
of intervals if the inputs qy are replaced by corresponding interval
bounds to analyze the effect of input uncertainty on the network
outputs. In this case, the NN parameters by, b,, Wy, and W,
remain fixed to the point values from the training phase. Related
techniques for set-based reachability analysis were investigated in
Tran et al. (2019a), Tran et al. (2019b), Xiang et al. (2018), Tjeng
et al. (2019) and the references therein.

We demonstrate how this approach works using the following
artificial example. Consider the task of approximating the static
nonlinearity
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A Sigmoid activation function.
4 -
nn approximation
3t true function
training samples
21

output yy,

-10 -5 0 5 10
input g

FIGURE 1 | Feedforward NN for the approximation of the static system model (Eq.

B ReLU activation function.
4.
nn approximation
3+ true function
training samples
216

output yi

-10 -5 0 5 10
input g

®)

by a feedforward NN. For that purpose, we generate N = 500
normally distributed input samples g with zero mean and
standard deviation ¢ = 3 as the system inputs for which
output measurements are available. These outputs y., s where
the subscript m stands for measured data, are corrupted by
uniformly distributed, additive noise from the interval A-
[-1; 1] with A = 0.15. The presence of such noise processes
is quite common in practice. It models the effects of random
disturbances that can be considered as bounded due to
quantization effects and the use of intelligent sensors detecting
measurement outliers’.

Figure 1 shows a comparison of the exact system behavior
(Eq. 8), the training samples, and the corresponding point-valued
NN representation, where the number of hidden layer neurons is
set to L = 10 if either sigmoid-type or ReLU activation functions
are used. In both cases, the NN was trained using a Bayesian
regularization technique from MaTLAB. During this process, the
overall data set was subdivided randomly into training (70%), test
(15%), and validation (15%) data.

A naive interval extension of the network (ie., that directly
replacing all floating point operations with the corresponding
interval counterparts) for an equidistant interval mesh [q I g
of NN inputs with either g, —g, = 0.1 or g; — g, = 0.01, where
mm(q ) = -10 and max(q;) = 10 is shown in Flgure 2. This
interval extension aims at quantifying the ranges of possible NN
outputs without the necessity for sampling the inputs in a point-
valued form.

As mentioned in Remark 1, the use of a sigmoid hidden layer
ensures bounded outputs for inputs with large absolute values.
For both kinds of activation functions, the comparison of

y =sin(q’)

'Note that the following interval techniques do not impose any structural
assumptions on the probability distribution of the noise.

different mesh sizes for the input intervals reveals the problem
of multiple interval dependencies that leads to overestimation in
the computed output ranges. For that reason, it is necessary to
apply techniques for the reduction of overestimation during the
interval evaluation of NNs with interval-valued input data qy.
This might include a (brute force) subdivision of input intervals?
as shown in Figure 2 or algorithmic means such as centered form
or affine representations and slope arithmetic (Cornelius and
Lohner, 1984; Chapoutot, 2010). Due to the restriction to globally
defined (and, for the sigmoid case, differentiable) functions in the
hidden layer, these methods can be implemented using existing
interval libraries such as INTLAB (Rump, 1999) or JULIAINTERVALS
(Ferranti, 2021). An advantage of the latter is that it can be
employed to execute the NN’s source code directly on a GPU
(graphics processing unit) to exploit data parallelism for large
numbers of input samples q.

2.3 Interval-Valued Parameterization of the

Network’s Activation Functions
In contrast to performing a set-based reachability analysis of NN
models that are trained with the help of local optimization
procedures and thus possess point-valued parameters by, b,,
W;, and W, as summarized in the previous subsection, the
main goal of our paper is to determine suitable interval
versions of these parameters to quantify the NNs’ modeling
quality.

Gradient-based training techniques can be generalized quite
easily to determine interval-valued NN parameterizations (Oala
etal., 2020). However, a drawback of the direct NN training using

*Subdivisions of wide input intervals into a list of tighter ones are always possible if
static NN models are investigated for inputs that are calculated or measured at a
single point of time. Then, subdivisions do not lead to any loss of information but
only help to reduce the dependency effect of interval analysis.
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A Coarse interval mesh with g; — q; = 0.1 (sigmoid).

output vy,

L L L I

10

input g
Coarse interval mesh with g; — q; = 0.1 (ReLU).
0+

41

output vy
rllk lIO o [\

1
D

-5 0 5 10
input g

-10

B Refined interval mesh with g; — q; = 0.01(sigmoid).

D

FIGURE 2 | Interval evaluation of the NN model in Figure 1 for different interval widths of the input data. (A) Coarse interval mesh with g; — g, = 0.1 (sigmoid), (B)
Refined interval mesh with g; - g, = 0.01 (sigmoid), (C) Coarse interval mesh with g; — g, =0.1 (ReLU), (D) Refined interval mesh with g; — g,=0.01 (ReLU).

6L
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Refined interval mesh with g; — 4 = 0.01 (ReLU).
6L
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e 2t
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=
o 21
4L
6L
-10 -5 0 5 10
input g

interval parameters might be the convergence to poor local
minima of the considered cost function if inflating layer
weights leads to similar output intervals as replacing selected
bias terms by interval parameters. During the search for
interval-valued NN parameterizations, the cost function
should not only reproduce the training data with high
accuracy but also reduce the interval diameters of the
network’s outputs, see Sec. 3 for further details. Additionally,
we have to make sure that all (point-valued) system outputs
(i.e., the actual point-valued measured data available for the
training) are fully included in the networks’ output intervals.
This property can be relaxed, for example, by allowing a certain
percentage of outliers that do not necessarily need to be included
in the network’s output range. This modification is similar to
that from the relaxed intersection approach described in Jaulin
and Bazeille (2009).

Poor convergence of the interval-based NN training relying on
local optimization techniques by a direct search for interval

parameters as stated above is caused by the fact that the
conversion of different network parameters to interval
quantities might lead to ambiguous output behavior, at least
for some of the domains of the inputs q. This fact is visualized in
Figure 3 for the NN from the previous subsection. To limit the
overestimation caused by interval-valued inputs q; € [q;], the
evaluation is performed on the fine grid from Figure 2B. To
illustrate the influence of converting either by, b,, Wy, or W, into
interval quantities, each of them is multiplied independently with
the interval bounds [0.95 ; 1.05] (parameter uncertainty of £5%).
Since by, b,, Wy, and W, each appear only once in Eq. 3, the NN
does not exhibit classical dependency-based overestimation.
However, the wrapping effect described in Jaulin et al. (2001)
might still be present where the matrix multiplication is involved.
Output ambiguities, concerning a similar shape of the enclosures
[yk], can be seen when comparing Figure 3A with Figure 3C
(and Figure 3B with Figure 3D). This visual comparison
indicates that converting all entries in W; to intervals might
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A Conversion of W7 into interval parameters.
6F
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output yj

L L L

-10 -5 0 5 10
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C Conversion of by into interval parameters.
6
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output yi

-10 -5 0 5 10
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FIGURE 3 | Analysis of the influence of interval network parameters on the NN evaluation from Figure 2B. (A) Conversion of W1 into interval parameters, (B)
Conversion of W2 into interval parameters, (C) Conversion of b1 into interval parameters, (D) Conversion of b1 into interval parameters.

B Conversion of Wy into interval parameters.
6 F

41

output y

L L L |

-10 -5 0 5 10
input g

D Conversion of by into interval parameters.

6

output yi
o

-10 -5 0 5 10
input g

have a similar influence as the interval conversion of b; for some
of the respective entries.

To circumvent such kind of poor convergence and to reduce
the effect of the illustrated ambiguities, we propose a two-stage
identification procedure for feedforward NNs with interval
parameters. Rather than just replacing all entries by intervals
provided by local optimization in a single stage, we show in
Section 3 how to specifically determine those entries in b; and W;
in a two-stage procedure for which the interval conversion leads
to the smallest diameters of the NN output intervals while
nonetheless including (all) measured data.

2.4 Interval Evaluation of Dynamic Neural
Network Models

In contrast to static function approximations, dynamic NN
models contain a kind of memory for previous input and state
information. This can be realized, for example, by training
recurrent networks with an Elman or Jordan structure

(Elman, 1990; Mandic and Chambers, 2001), training
NARX models (Nelles, 2020), or combining static function
approximation networks with dynamic elements that can be
represented by integer- or fractional-order transfer functions.
The latter option leads to the dynamic NN models and
Hammerstein-type nonlinearity representations discussed
in Rauh (2021).

In all cases, interval parameters within the corresponding
networks or also interval-valued system inputs and initial
conditions lead to discrete- or continuous-time dynamic systems
with interval parameters. For such systems, the wrapping effect of
IA is an important issue to handle. For corresponding approaches,
the reader is referred to the vast literature on verified simulation
procedures for dynamic systems, cf. Nedialkov (2011); Lohner
(2001). As far as dynamic NN-based model evaluations are
concerned, Xiang et al. (2018) and the references therein provide
a good overview of the current state-of-the-art. However, the
computational effort increases by a large degree in comparison to
the evaluation of purely static NN models.
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FIGURE 4 | Interval parameterization of the layer weights W4, W, and
bias terms by, b, in a feedforward NN model. These interval parameters are
highligted by thick arrows with solid arrow heads and are distinguished from
the network inputs that can be set to point-valued data (thin arrows).

For that reason, we do not make use of a direct IA evaluation of
any of the mentioned dynamic NN models. Instead, a NARX model,
representing a point-valued approximation of the dynamic system
behavior, is combined with a static interval-valued additive error
correction model, both relying on the same finite window of input
and output information.

3 PROPOSED INTERVAL
PARAMETERIZATION OF NEURAL
NETWORK MODELS

In this section, interval extensions of the static feedforward NN models
and dynamic NARX models sketched in the previous section are
presented in detail. For these two different types of models, we propose
a unified interval methodology that quantifies the modeling quality.

3.1 The Static Case

For the purpose of static function approximations, an interval NN
model structure shown in Figure 4 is considered. A
generalization of the representation given in Eq. 3, namely, its
interval extension aiming at a guaranteed enclosure of all
measured samples y,x, is denoted by

Ym,k € [N] (qk> [WI]’ [WZ]’ [b1]> [bz])
= [W2] - g([Wil - g + [bi]) + [b2],

where the interval parameters, highlighted by the thick lines in
Figure 4, are defined for i € {1, 2} according to

)

[b] =b; + [Ab, ; Ab;] and
, _ (10)
[Wil =W, + [AW, ; AW,].

In analogy to the definition of scalar interval variables, the
inequalities Ab; < Ab; and AW ; <AW, hold in an element-wise

Interval Neural Networks for SOFCs

manner. To make it possible to combine a point-valued NN
parameterization with an IA-based uncertainty model, we assume
that both b; and W; denote the interval midpoints to be identified
in the first stage of the following procedure, while the additive
bounds in the relations stated in (Eq. 10) are determined in the
second stage.

In Figure 4 and all subsequent block diagrams of NN models
in this paper, the parameters indicated by solid arrow heads are
determined during the training and optimization phases of the
proposed procedure while the non-filled arrow heads denote
connections with fixed weights that are set to the constant
value one.

We suggest the following interval procedure for static NN
modeling.

Stage A Train the NN N(%,WI,WZ,Bl,Bz) according to
(Eq. 3) by means of a standard algorithm (e.g., trainbr in MATLAB)
to minimize the quadratic cost function

In =2 ik = ymi)s (11)

keT i=1

where 7 denotes the set of training samples’ indices. The
resulting parameters b, b,, W,, W, define the interval
midpoints that are kept constant during the following stage.
Stage B Determine the NN’s interval extension.
B1 Compute interval correction bounds for the parameter b,
according to

_ Komax ..
[Abz ] Abz] = Ym,k - ukZl ./\f(qk,Wl, Wz,b],bz) (12)

so that all measured ouput samples y,,x are included in the
interval-valued NN outputs. In (Eq. 12), the symbol denotes
the tightest axis-aligned interval enclosure around all arguments
of this operator.

B2 Determine the intermediate minimum cost function value

Kmax

Tt = z lT-LU(N(qk,WI,WZaBIaBZ + [Abz ; ABZ])) (13)
k=1

with w([x]) being the element-wise extension of the interval
diameter definition from (Eq. 1) and the vector

1=[1...1]" eRr" (14)

B3 Minimize the cost function

Kmax

J=) (1" w(N (g [Wi], W2, [by], [b2])) + J*- Pi)  (15)
k=1

by searching for optimal parameterizations of the additive
interval bounds [Ab;; Ab;] and [AW,; AW;] in (Eq. 10).
Here, Py is a sufficiently large penalty term

Pe=100- (|81 + 18l + lavil: + lavill) o)

with the squared Euclidean norms ||x||§ preventing minima that
are inadmissible due to a violation of the network’s output
intervals by individual measurements. These points are
detected with the help of the Boolean indicator vectors
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8;:{ym)k—§k>0} and 8;:{ym,k—zk<0} 17)
with their corresponding element-wise defined excess widths

Ay} = max (0, Yk ~ yx) and Ay, = min(O, Yk = X’f)'
(18)

Remark 2. Using this minimization procedure, implemented by
means of a particle swarm optimization technique (Kennedy and
Eberhart, 1995; Yang, 2014), it is guaranteed that the optimized
bounds in Step B3 become tighter than the heuristic outer bounds in
Step Bl in those domains for the inputs qy, where dense
identification samples are available. This is a direct consequence
of the fact that the relation ] < J* between the cost functions (Eq. 13)
and (Eq. 15) is always satisfied if P, = 0. In this case, the NN is
parameterized so that none of the measured samples lies outside the
output interval bounds.

Remark 3. For scenarios in which a certain percentage of outliers
are tolerated, the penalty term J* - Py in (Eq. 15) can be modified
easily to ignore those samples in the summation that have the
largest indicator values Py. For an example of this relaxation of the
inclusion property, Sec. 4.

In Figure 5A and Figure 5B, a comparison is shown between
the heuristic interval parameterization of a feedforward NN
according to Step B1 and the systematic version according to
Step B3 (for sigmoid activation functions). The comparison for
the ReLU case is illustrated in Figures 5C,D.

These two scenarios make use of the same data as in the
previous section. Due to the symmetric (uniformly distributed)
nature of the disturbance, the interval parameterization can be
simplified in this example by setting

Ab, = -Ab; and AW, =-AW, (19)

to reduce the degrees of freedom during the particle swarm
optimization in Stage B. For both kinds of NN, it can be seen
clearly that the interval diameters are much smaller in the domains
in which dense measurements are available. Outside those domains,
the sigmoid version of the NN has the advantage of providing
tighter bounds due to the inherited saturation of the hyperbolic
tangent function (Eq. 7). For that reason, we use only the sigmoid
implementation in the context of SOFC modeling (cf. Sec. 4).

In Table 1, there is a summary of the computing times® for
evaluating the trained neural networks. Obviously, the slowest
version is the naive evaluation of the point-valued networks in the
form of the MATLAB network structure using the command sim.
This can be accelerated significantly by employing automatic
code generation (genFunction with the option MatrixOnly),
which, however, pre-evaluates all NN-internal relations with
the point-valued parameters. To obtain an implementation

*Windows 10, Intel Core i5-8365U @ 1.60GHz, 16GB RAM, matLAB R2019b,
INTLAB V12, Rump (1999).

Interval Neural Networks for SOFCs

that is directly suitable for replacing the NN parameters with
intervals, an extension of the Matlab functionalities by a
vectorized implementation is necessary to which all
parameters are passed as function arguments. Compared with
this version, the interval-valued realization increases computing
times by a factor 5 for ReLU activation functions and by a factor
10 in the nonlinear, sigmoid case.

Remark 4. Note that the true function (usually not available for the
identification procedure) is not necessarily fully included in the
determined interval outputs if the number of training points is
insufficient in certain domains. If this phenomenon is detected at
runtime after new measured data arrive, the model can be adapted by
a re-application of Step B1. If computational resources allow this,
Step B3, hot-started with the previously identified interval bounds,
can also be re-applied.

3.2 Interval-Based Error Correction of NARX
Models

In this paper, we extend the two different system structures for
NARX models depicted in Figure 6 using IA. The first is the
dynamic NN model A4 4 in which both input variables q; and
output information from a (previous) time window influence the
dynamics in a nonlinear way (Figure 6A). In contrast, the
network N qp in Figure 6B contains a simplified version in
which only the input variables enter the nonlinear hidden layer
with the sigmoid activation functions (Eqs. 5-7), while the
previous outputs are fed back in a linear manner. For a
compact mathematical representation of the networks

Y = Nd,A(qk,M: 1o Yi-M: k-1 Wd,q,la Wd,y,b W, bd,la bd,Z)
=Wq,- g(wd,q,l Qe k t Wt Vs o + bd,l) +baz
(20)

and

Y = Nd,B(qk_M: o Yi-M: k-1> Wd,q,l > wd,y,l» Wi, bd,la bd,Z)
= Wao - 8(Wagr - Qear x +bar) + Wap - Ve a1 + b
21

with M > 1 as the number of previous sampling points, we
introduce the stacked vectors

Qo= - q] eR™ and

T T 1T n-M (22)
Vw1 =[Yem - Yial €R

for input and output variables, respectively.

As explained in Sec. 2.4, we suggest to extend both types of
networks (1 € {A, B} in Figure 6) using an additive correction that
is implemented by means of a static NN with interval parameters
such that the enclosure property

ym,k € Nd,t(qk,M; k> Yk—M: k=1 Wd,q,l) Wd,y,l: Wd,Z) bd,1> bd,Z)
+IN](q), (Wi, [W,], [bi], [ba]) . 1 € {A, B}
(23)

with the combined input vector
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FIGURE 5 | Optimized interval parameterization of the feedforward NN for the approximation of the static system (Eq. 8). (A) Heuristic approach of Step B1
(sigmoid). (B) Systematic approach of Step B3 (sigmoid). (C) Heuristic approach of Step B1 (ReLU). (D) Systematic approach of Step B3 (ReLU).
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TABLE 1 | Comparison of computing times for the static system (8), times in us.

Sigmoid ReLU
Stage 1, MATLAB (Sim) 4,906 4,717
Stage 1, MATLAB (genFunction) 93 51
Stage 1, MATLAB (vectorized code) 250 218
Stage 2, MATLAB (INTLAB) 2,632 1,194
I — [T T T m-(M+1)+n-M
G = [Qrek YVemsa) €R (24)

holds for all measured samples y;, x. Due to this specific structure,
the network [A/] with interval parameters can be optimized with
the help of the two-stage procedure described in Sec. 3.1 as soon
as the structure and the parameters of the point-valued NARX
models N, have been fixed.

A detailed comparison of the alternatives from Figure 6 is
given in the following section using the example of modeling the
electrochemical behavior of an SOFC system.

4 NEURAL NETWORK MODELING OF THE
ELECTRIC POWER OF A
HIGH-TEMPERATURE FUEL CELL

SOFC:s can only produce electric power from the supplied fuel gas
if a certain minimum operating temperature is maintained in the
interior of the fuel cell stack. Moreover, this temperature must be
limited from above so that rapid wear of the system components
is prevented. For that reason, the identification experiment used
in this section only contains the high-temperature phases from
the data sets in Rauh et al. (2021) and Rauh (2021). During this
phase, an observer-based interval sliding mode controller (Rauh
et al,, 2015) is employed to keep the stack temperature in the
vicinity of a constant value despite temporal changes of the
electric SOFC power. During the identification experiment for
the electric power characteristic of the SOFC, the fuel mass flow
(hydrogen) and the electric current (specified by means of an
electronic load) are varied according to the measured data shown

Frontiers in Control Engineering | www.frontiersin.org

10

March 2022 | Volume 3 | Article 785123


https://www.frontiersin.org/journals/control-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/control-engineering#articles

Rauh and Auer

Interval Neural Networks for SOFCs

A NARX model A4 A with input and state

nonlinearity.
Input Hidden Ouput
layer layer layer
q1,k—M:k . AN
— ™ \\ N \ N
Wd,g@ \ () '
; Y1k
Gm k—M:k Q
Y1,k—M:k—1 d
—>
?/n,k]&[:klb&

B NARX model A4 g with pure input nonlinearity.

Ynk—M:k—1 ch/

FIGURE 6 | Different options for structuring NARX models for dynamic system representations, where the activation functions o4 are set to the hyperbolic tangent
function according to (Eq. 7) for the rest of this paper. (A) NARX model N ga with input and state nonlinearity. (B) NARX model N gg with pure input nonlinearity.
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FIGURE 7 | Static neural network model for the electric power characteristic of the SOFC stack with a multiplicative output layer to compute Pg_x from the
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I,
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in Figure 8. During the first 0.7 h, the mass flow and current were
specified as piecewise constant, while the remaining part of the
data consists of a controlled system operation according to
Frenkel et al. (2020).

Both, the open-loop and the controlled phases show that there
exist numerous factors that influence the electric power
characteristic of the SOFC. Describing all of these factors by

physically motivated analytic models is a next to impossible task
due to the following reasons. The electric power depends on the
mass flows and temperatures of the supplied media in a strongly
nonlinear way; the internal fuel cell temperature shows a
temporally and spatially multi-dimensional dependency; and,
last but not least, operating conditions depend on the electric
current if the fuel cell is utilized in a current-controlled mode.
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FIGURE 8 | System inputs for the NN model identification (experimental data). (A) Stack segment temperatures. (B) Gas inlet temperatures. (C) Cathode gas mass
flow. (D) Hydrogen mass flow. (E) Electric stack current. (F) Stack voltage.

Although analytical models such as those based on the Nernst
potential (describing the open-circuit voltage), activation

polarization,

Ohmic

polarization, and  concentration

polarization can be developed under idealized assumptions,
they show significant deviations from the measured electric
power for real-life fuel cell stacks’ operation. Such deviations
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FIGURE 9 | Comparison between measured and estimated stack power, Pg_m and Pg_stat, for the system model in Figure 7. (A) Electric power: absolute values.
(B) Electric power: approximation errors Pg_m — PeLstat-

appear mainly because knowledge concerning the internal
construction of a fuel cell stack is incomplete for the user due
to manufacturer confidentiality, there are assembly constraints on
gas supply manifolds and electric contact paths, manufacturing
tolerances, and non-ideal material properties. An additional
difficulty is that a perfectly constant, spatially homogeneous
temperature cannot be achieved in practice if the electric load
varies.

In previous work, it has been shown that point-valued static
NN models such as the one in Figure 7 (and their dynamic
extensions) can represent the measured SOFC system behavior
quite accurately. To develop a shallow NN model with an
acceptable hidden layer for the considered SOFC test rig, we
identify system inputs having the largest influence on the electric
power with the help of a principal component analysis based on
the singular value decomposition (Kanjilal et al, 1993) as
described in Rauh et al. (2021) and Rauh (2021). As shown in
these papers and indicated in Figure 7, the relevant components
of the input vector qj for the NN-based system identification are

the measurable stack temperatures 9, (1,1,1)x and 9 (1,3.1)%
close to the gas inlet and outlet manifolds,

o the electric current I,

e the inlet temperatures 9cgmi and 9agmx at the stack’s
cathode and anode sides, and

the nitrogen and hydrogen mass flows 7, x and #iy, i at
the anode.

Moreover, we consider the influence of the mass flow g x of
preheated air at the cathode as a further NN input to achieve
larger flexibility with respect to temporally varying operating
conditions. In Figure 8, plots for selected measured input and
output data are shown that are used throughout the remainder of
this section. At the test rig, these inputs q; are sampled with a

frequency of 10 Hz. Prior to the NN identification, we average
these values to reduce the sampling frequency to 1 Hz. Our goal is
to predict, based on these data, the SOFC stack voltage Uy, as the
system output from which the instantaneous electric power Py 4
is determined by multiplying with the measured electric current
I, (cf. Figure 7). Interval enclosures for the electric power can be
used to forecast not only the uncertainty in the predicted system
output but also for implementing set-based generalizations of the
maximum power point tracking from Rauh (2021) and to forecast
the uncertainty of fuel efficiency factors for specific operating
points.

In this section, we first show results for traditional, point-
valued NN models for the electric power obtained with the
help of static (Sec. 4.1) and dynamic (Sec. 4.2) networks.
After that, we show how to employ the procedure described in
Sec. 3 to parameterize interval extensions of both types of
models reliably in Sec. 4.3 and Sec. 4.4. For that purpose, we
exploit the fact shown in Rauh et al. (2021) and Rauh (2021)
that using seven neurons in the hidden layer is sufficient for
representing the SOFC system behavior in an accurate way if
these neurons are parameterized by the sigmoid
function (Eq. 7).

4.1 Point-Valued Static Neural Network
Model

As the fundamental, static electric power model, the NN
representation in Figure 7 is employed. This network is
trained with the measured data described above by using
the MaTLAB NN toolbox. We rely on the Bayesian
regularization back-propagation algorithm (parallelized on
four CPU cores) with a maximum number of 5,000 epochs
to solve the training task. During the network training, a
worsening of the validation performance has been allowed in
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FIGURE 10 | NARX model M ga with M = 10. (A) Electric power: absolute values. (B) Electric power: approximation errors Pg m — PeLstat-
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50 subsequent iterations with a random subdivision into
training (70%), test (15%), and validation (15%) data. For
further details, see Rauh (2021).

The visualization of the training results in Figure 9 reveals that
the largest approximation errors occur during those operating

TABLE 2 | Approximation quality of the point-valued static and dynamic (NARX)

NN models.

Network type RMS (stack voltage) RMS (stack power)
Static NN (Figure 7) 1.974 5.855
Dynamic NN A g4 (Figure 6A) 0.898 2.862
Dynamic NN N 4z (Figure 6B) 1.219 3.756

phases of the SOFC stack in which either the hydrogen mass flow
or the electric stack current show significant temporal variations.
Therefore, point-valued NARX models (not yet considered in
previous publications by the authors) are discussed in the
following subsection to reduce approximation errors in
dynamic operating phases.

4.2 Point-Valued Dynamic NARX Model

As indicated in Figure 6, two different types of NARX models
can be considered. These are either models with fully
nonlinear characteristics of both the system inputs and the
fed-back stack voltage (N ga) or a model simplification in
which only nonlinearities with respect to the input variables
are accounted for (N 43p). To ensure comparability between
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the previous static system model and the NARX
representation, L = 7 is again used as the fixed number of
hidden layer neurons. In addition, M = 10 (for the data set
with the reduced sampling frequency of 1 Hz) serves as the
memory length of the autoregressive model. This heuristically
chosen value is motivated by a delay of a few seconds between
the fuel cell stack’s inputs and outputs that became visible
during the experimental data acquisition.

The training of both point-valued models Naa (Figure 10)
and N gp (Figure 11) is based on a two stage procedure (using
the same optimization algorithm as for the static case in the
previous subsection). First, an open-loop training is carried out.
Second, the NARX model obtained from the first stage is
converted into a closed-loop structure by feeding back the
simulated outputs. This configuration is then re-optimized to
further reduce approximation errors and to avoid instability of
the closed-loop NN models. Here, directions for our future
research will be to optimize the memory length M and to

develop techniques for automatically selecting different
memory lengths for the network inputs q_pnx and for the
output feedback yi prr-;. When fully neglecting the output
feedback, this would lead to nonlinear finite impulse response
models in which the only delayed variables are the input data
Qi—M:k-

Compared with the static NN model, both NARX options
reduce the deviations between measured and simulated data
significantly, especially during the dynamic operating phases.
This is confirmed in Table 2 that provides information on the
roots of the corresponding mean square approximation errors
(RMS). It can be clearly seen that approximation errors for both
the voltage and the power are approximately 30% lower if the
dynamic model Aqp with the linear output feedback is used
instead of the static representation. These errors can be reduced
even further if the fully nonlinear representation Aq is used
instead (cf. the visualization of the approximation errors in
Figures 10B, 11B).
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FIGURE 13 | Interval extension of the static NN model. (A) Interval extension of M'qa without admissibility of outliers. (B) Interval extension of Ngg without
admissibility of outliers. (C) Interval extension of ANga with 2% admissible outliers. (D) Interval extension of A'gg with 2% admissible outliers. (E) Interval diameters
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4.3 Interval Extension of the Static Neural
Network Model

In this section, we employ the procedure described in Sec. 3 to
parameterize the interval extension of the static NN model. The

left column of Figure 12 shows the results of the direct
application of this procedure to the complete available data set
for the SOFC system. It can be seen that the operating domains with
the largest uncertainty of the model (characterized by the largest
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interval diameters of the forecast electric power in Figure 12C) are
those regions in which significant power variations due to sharp
changes of the fuel cell current or the hydrogen mass flow occur (cf.
Figure 8). Here, symmetric bounds have been determined for all NN
parameters as suggested in (Eq. 19).

To reduce the resulting interval widths for the static approximation
of the electric fuel cell power, the penalty term (Eq. 16) is modified in
such a way that the largest positive deviations in (Eq. 18) of y, , — ¥,
andy,,, -y, —corresponding to outliers—are ignored in both cases
for at most 2% of the measured voltage samples (cf. the right column
of Figure 12). This modification results in an interval extension of the
NN model that encloses almost all measured voltage and power data,
respectively. Note that outliers occur only at those points where step-
like current changes of large amplitudes take place. If the resulting
interval-valued model is employed in future work to improve the
robustness of the maximum power point tracking procedures or
online optimization approaches for enhancing the fuel efficiency
according to Rauh et al. (2020) and Rauh (2021), such large
current changes can be avoided easily by imposing suitable rate
constraints on the control signals.

4.4 Interval Extension of the NARX Model

In the final part of this section, interval extensions of both possible
NARX models are presented in Figure 13. As in the previous
subsection, we again compare the cases with and without
admissible outliers. It can be seen that the fully nonlinear NARX
model A/ 4 does not only provide smaller approximation errors for
the point-valued system identification but also yields significantly
smaller diameters in its interval extension.

In contrast to the interval extension of the static NN model, it can be
seen that the interval diameters in Figures 13EF are almost
proportional to the electric current. This indicates that the identified
interval network parameters in (Eq. 23) lead to almost constant interval
widths if the fuel cell stack voltage is concerned as the output of the
dynamic system model. On the one hand, this confirms quite strongly
that the point-valued system model is parameterized in terms of a fairly
robust minimum of the employed quadratic error functional in Stage
A of the optimization algorithm. On the other hand, this indicates that
further improvements of the modeling accuracy could be achieved only
by replacing the feedback of the fuel cell voltage in the NARX models
by the electric power. However, this option is not further investigated in
this paper, because it would require removing the physically motivated
multiplicative system output shown in Figure 7. As observed in Rauh
et al. (2021), this would lead to the necessity of a larger number of
hidden layer neurons already during the phase of optimizing the point-
valued system model. Therefore, a promising compromise for future
research would be to modify the interval model (Eq. 23) in such a way
that the point-valued NARX models A/ 4, provide the stack voltage as a
system output that is multiplied with the measured current I, while
[AV'] represents interval bounds for the power approximation error
according to

Py mpi € -’V‘d,l(qk,M; o Yot k-]yWd,q,lywd,y,lawd,zxbd,bbd,z) Iy

+[N'](q}, W11, [W5], [bi], [by]) . 1€ {A, B
(25)
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It is especially interesting to investigate this modified formulation
in an ongoing research, in which the Kalman filter-based online
power identification according to Rauh (2021) and the interval-
valued NN models from this paper are compared with respect to
their capabilities to design robust procedures for the optimization of
fuel efficiency while simultaneously tracking desired temporal
responses for the stack power.

5 CONCLUSION AND OUTLOOK ON
FUTURE WORK

In this paper, we have presented a novel possibility for extending
both static NN models and NARX system approximations by
error correction intervals. These corrections are chosen in such a
way that the computed system outputs enclose available
measured data and can be adjusted so that a certain
percentage of outliers is permitted.

In future work, we plan to use the interval-valued NN models to
assess the reliability of optimization-based control strategies which (in
the sense of a predictive controller) adjust system inputs—such as the
hydrogen mass flow—to implement tracking controllers for a non-
constant electric power under the simultaneous minimization of the
fuel consumption. For this kind of application, it is necessary to avoid
overshooting the maximum power point with certainty. So far,
strategies have been developed which make use of a Kalman filter-
based optimization method (Rauh, 2021). Generalizations to interval-
valued NN models can lead to the implementation of sensitivity-
based predictive control procedures such as the one published in
Rauh et al. (2011). Note that this approach would require interval-
valued partial derivatives of the NN outputs with respect to the gas
mass flow and the electric current. This, however, can be achieved in a
straightforward manner by overloading the operators using the
interval data type of INTLAB with the functionalities for automatic
differentiation available in the same toolbox.
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