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This paper introduces a method to control a class of jump Markov linear systems with
uncertain initialization of the continuous state and affected by disturbances. Both types of
uncertainties are modeled as stochastic processes with arbitrarily chosen probability
distributions, for which however, the expected values and (co-)variances are known. The
paper elaborates on the control task of steering the uncertain system into a target set by use
of continuous controls, while chance constraints have to be satisfied for all possible state
sequences of theMarkov chain. The proposed approach uses a stochastic model predictive
control approach on moving finite-time horizons with tailored constraints to achieve the
control goal with prescribed confidence. Key steps of the procedure are (i) to over-
approximate probabilistic reachable sets by use of the Chebyshev inequality, and (ii) to
embed a tightened version of the original constraints into the optimization problem, in order
to obtain a control strategy satisfying the specifications. Convergence of the probabilistic
reachable sets is attained by suitable bounding of the state covariance matrices for arbitrary
Markov chain sequences. The paper presents the main steps of the solution approach,
discusses its properties, and illustrates the principle for a numeric example.

Keywords: jump markov linear systems, stochastic systems, Chebyshev inequality, probabilistic reachable sets,
kronecker algebra, invariant sets

1 INTRODUCTION

For some systems to be controlled, the dynamics can only be represented with inherent uncertainty,
stemming not only from disturbance quantities, but also from uncertain operating modes leading to
different parameterization or even varying topology. Examples are production lines, in which units
may be temporarily unavailable, or cyber-physical systems embedding communication networks, in
which link failures lead to reduced transmission rates or varied routing. If the underlying
continuous-valued dynamics is linear, jump Markov linear systems (JMLS) are a suitable means
for representing the dynamics. In this system class, the transitions between different operating modes
with associated linear dynamics are modeled by Markov chains (Costa et al., 2005). If disturbances
are present in addition, the dynamics of each mode comprises stochastic variables with appropriate
distribution. The control of JMLS has found considerable attention in recent years, e.g. with respect
to determining state feedback control laws for infinite and finite quadratic cost functions (Do Val and
Basar, 1997; Park et al., 1997).

Many research groups have focused on schemes of model-predictive control (MPC) for JMLS,
motivated by the fact that MPC enables one to include constraints (Maciejowski, 2002). Since the
states and inputs of almost all real-world systems have to be kept in feasible or safe ranges, this aspect
is a crucial one. The first contributions to constrained control of JMLS date back to the work (Costa
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and Filho, 1996; Costa et al., 1999), in which state feedback
control laws have been determined. Additionally, their control
designs consider uncertainties in the initial state and in the
transition matrix of the Markov chain. An approach for
unconstrained JMLS with additive stationary disturbances
based on MPC was proposed in (Vargas et al., 2004),
embedding a procedure to determine a set of state feedback
controllers. In designing such controllers for bounded additive
disturbances, formulations using semi-definite program are well-
known (Park et al., 2001; Park and Kwon, 2002; Vargas et al.,
2005). For constrained JMLS, an MPC scheme was presented in
(Cai and Liu, 2007), in which embedded feedback controllers are
synthesized based on linear matrix inequalities, too. Subsequent
work improved this approach in (Liu, 2009; Lu et al., 2013; Cheng
and Liu, 2015) by using dual-mode predictive control policies,
periodic control laws, and multi-step state feedback control laws.
In (Yin et al., 2013; Yin et al., 2014), MPC approaches have been
presented which ensure robust stability in case of uncertain JMLS.

The mentioned MPC approaches for JMLS are all based on the
principle of strict satisfaction of the specified constraints. However,
in the case of modeling uncertainties in terms of stochastic
variables with unbounded supporting domain, the satisfaction of
constraints with high confidence only is a reasonable alternative,
leading to a form of soft constraints. For such a probabilistic
perspective on constraint satisfaction, which is also adopted in this
paper, two approaches are used in literature: In the first one, only
the expected values of the random variables are constrained in
strict form, and then are referred to expectation constraints. In
(Vargas et al., 2006), the first and second moments of the state and
input have been considered in this form. In (Tonne et al., 2015),
only the first moment was strictly constrained, but the
computational complexity has been reduced significantly for
higher-dimensional JMLS. In the second approach, the
constraints are formulated such that the distribution of the
stochastic variables has to satisfy the constraints with a high
confidence, then termed chance constraints. Some papers
following this principle use particle filter control (Blackmore
et al., 2007; Blackmore et al., 2010; Farina et al., 2016;
Margellos, 2016), in which a finite set of samples is used to
approximate the probability distributions of the JMLS.
Typically, these approaches are formulated in form of mixed-
integer linear programming problems. While these approaches can
handle arbitrary distributions, the computational complexity rises
exponentially for increasing the dimension of the spaces of the
JMLS or for large prediction horizons. Following a different
concept, the work in (Chitraganti et al., 2014) transforms the
stochastic problem into a deterministic one (Chitraganti et al.,
2014), but the method is restricted to Gaussian distributions of the
stochastic variables. The same applies to the approach in
(Asselborn and Stursberg, 2015; Asselborn and Stursberg, 2016),
which uses probabilistic reachable sets to solve optimization
problems with chance constraints, and the work does not use a
prediction scheme. The authors of (Lu et al., 2019) have proposed a
stochastic MPC approach for uncertain JMLS using affine control
laws, but this scheme is restricted to bounded distributions.

Apart from the last-mentioned paper, all previous ones are
tailored to Gaussian distributions. In contrast, the paper on hand

aims at proposing a control approach by which JMLS with general
(bounded or unbounded) distributions are transferred into a target
set while chance constraints are satisfied and the computational
effort is relatively low. The key step is an analytic approximation of
the distribution to reformulate the stochastic control problem into a
deterministic one. A method for computing bounds for the
covariance matrix is proposed, which enables to compute
probabilistic reachable sets (PRS) for the underlying dynamics.
The determination of PRS for jump Markov systems has already
been considered in (LygerosCassandras, 2007; Abate et al., 2008;
Kamgarpour et al., 2013), but these approaches cannot handle
arbitrary probability distributions. Here, we use a tightened
version of these sets in order to achieve the satisfaction of chance
constraint for the states. Furthermore, a scheme of stochastic MPC,
which builds on over-approximated probabilistic reachable sets
(PRS) for the given arbitrary probability distributions, is proposed
in order to realize the transfer of the JMLS into a target set for
arbitrary sequences of the discrete state. The paper is organized as
follows: Section 2 clarifies some notation used throughout the paper,
and introduces the considered system class as well as the control
problem. Section 3 describes the procedure for designing the control
law, the handling of the construction and approximation of the
probabilistic constraints, the determination of the prediction
equations, and the predictive control. A numerical example for
illustration is in Section 4, before Section 5 concludes the paper.

2 PROBLEM STATEMENT

2.1 Notation
Within this paper, weighted 2-norms are written as
‖x‖2Q � xTQx, and Q > 0 refers to a positive definite matrix.
Let Sn be the set of all symmetric matrices of dimension n.

The standard Kronecker product is denoted by ⊗, and the
Minkowski difference by ⊖. The operator vec(M) returns a vector
which stacks all elements of the matrix M column-wise.

A distribution v ~ Gv is represented by its expected value qv as
well as its covariance matrix Qv.

An ellipsoidal set ε(q, Q) is parametrized by a center point
q ∈ Rn, and a symmetric positive shape matrix Q ∈ Sn:

ε q, Q( ) � x ∈ Rn | x − q( )TQ−1 x − q( )≤ 1{ }.
If an ellipsoidal set is transformed by an affine function f(x) =

Mx + b with M ∈ Rn×n and b ∈ Rn, the result is again an
ellipsoidal set:

M · ε q, Q( ) + b � ε Mq + b,MQMT( ).
2.2 The Control Task
Consider the following type of jump Markov linear and time-
invariant system (JMLS) with continuous state xk ∈ Rn,
continuous input uk ∈ Rm, and disturbance wk ∈ Rn:

xk+1 � Aθkxk + Bθkuk + Gθkwk,
M � Θ, PM, μ0( ),

x0 ~ Gx, wk ~ Gw.
(1)
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In here, the initial continuous state x0 as well as the
disturbance wk as stochastic variables are selected from
arbitrarily selected distributions Gx and Gw. The expected
values q0 and qw of these variables as well as covariance
matrices Q0 and Qw are assumed, however, to be known. Let
θk ∈ Θ denote a discrete state of the Markov chain M, and θk
selects the system matrices from the sets A = {Ai | i ∈Θ}, B = {Bi |
i ∈ Θ}, and G = {Gi | i ∈ Θ}. The probability distribution of θk is
denoted by μk with μi,k = Pr(θk = i). The conditional transition
probabilities are defined as pi,m≔ Pr(θk+1 = i | θk =m) for i,m ∈ Θ,
and by collecting all of these probabilities, the transition matrix
PM � [pi,m]i,m∈Θ is formed.

Assumption 1. The system state xk, the Markov state θk, as
well as the probability distribution μk are measurable.
Furthermore, the distributions of x0 and wk are independent.

The measurability assumption of the Markov state and its
probability distribution is quite common for JMLS. If the
Markov state is used to model whether a process is in a
nominal or a failure state, and if a suitable failure detection
mechanism exists for the process, this assumption is certainly
justified. Note that only the Markov state in the current time
step k is assumed to be measurable, while the next transitions is
unknown. For a system of type (1), let a terminal set T ⊂ X
with 0 ∈ T and an initial state x0 be given, where the latter is
sampled from the distribution Gx.

Furthermore, let admissible state and input sets be defined by:

X � x ∈ Rn | Rxx≤ bx{ }, (2)
U � u ∈ Rm | Ruu≤ bu{ } (3)

as polytopes, which are parameterized by Rx ∈ Rnx×n, bx ∈ Rnx

and Ru ∈ Rnu×m, bu ∈ Rnu respectively.
Then, the control problem investigated in this paper is to find a

control strategy ϕu = {u0, u1, . . ., uN−1}, N ∈ N leading to a
continuous state sequence ϕx = {x0, x1, . . ., xN} which satisfies,
irrespective of the uncertain discrete state sequence ϕθ = {θ0, θ1,
. . ., θN}, that:

• ϕu stabilizes the JMLS with confidence δ,
• ϕx and ϕu fulfill the chance constraints:

Pr xk ∈ X( )≥ δx, (4)
Pr uk ∈ U( )≥ δu (5)

in any time step k and for any disturbances wk,

• and for which a finite N ∈ N exists such that
Pr(xN ∈ T )≥ δx.

3 PROBABILISTIC CONTROL OF JUMP
MARKOV AFFINE SYSTEMS

In order to solve the stated control problem, this paper proposes a
new method which combines concepts of stochastic model
predictive control (SMPC), the conservative approximation of the
distributions Gx and Gw and the computation of stochastic reachable
set of the JMLS. The approach also includes a scheme to modify the

chance constraints tailored to the approximated distribution, and the
use of embedded feedback controllers to take care of the disturbances
and to shape the state distribution along the system evolution.

An underlying principle is to separate the evolution of the
continuous state into a part referring to the expected state and a
part encoding the deviation from the latter, as also followed in some
approaches of tube-based MPC (Fleming et al., 2015). This principle
allows for a control strategy, in which the expected state is steered
towards the target set by a solving a deterministic optimization
problem within the MPC part, as was proposed in (Tonne et al.,
2015). The fact that repeated optimization on rolling horizons is used
rather than the offline solution of one open-loop optimal control
problem not only tailors the scheme to online solution, but also
reduces the computational effort due to the possibility of employing
rather short horizons. For the deviation part of the dynamics, a new
scheme based on probabilistic reachable sets is established, which are
computed and used for constraint tightening of the MPC
formulation to satisfy the chance constraints (Eqs 4, 5). Since
these sets depend on the covariances of the continuous system
states and thus, on future discrete states of the JMLS, a boundary of
the covariances for arbitrary sequences of the Markov state can be
established. One of the main contributions of this paper is that a
control strategy is derived which stabilizes the uncertain JMLS into
the target with a specified and high probability.

3.1 Structure of the Control Strategy
To design a control strategy for the given problem, the
probabilistic continuous system state xk as well as the
disturbance wk are split into an expected and an error part:

xk � qk + ek, qk ≔ E xk[ ], (6)
wk � qw + ew,k, qw ≔ E wk[ ]. (7)

Similar to methods of MPC employing reachability tubes, see
e.g., (Fleming et al., 2015), a local affine control law of the form

uk � vk −Ki xk − qk( ), (8)
is defined, in which vk is the expected value of uk. The state

feedback matrix Ki is determined off-line, such that Acl,i = Ai −
BiKi for i ∈ Θ is stable. Note that stability here refers only to Acl,i,
not to that the complete switching dynamics. The stability of the
JMLS will be taken care of later in this section. The feedback
matrixKi of the control law ensures that the error part ek is kept in
a neighborhood of qk. By applying the control law (8) to the
dynamics (1), the following difference equations for the expected
value qk and error ek of xk are obtained:

qk+1 � Aθkqk + Bθkvk + Gθkqw, (9)
ek+1 � Aθk − BθkKθ( )︸������︷︷������︸

�Acl,θk

ek + Gθkew,k. (10)

The stochastic term ew,k of the uncertainty is considered in Eq.
10, while Eq. 9 considers only the deterministic part (expected
value) qw. Since the error part encodes the covariance of xk
around the expected value qk, the following difference
equation for the covariance matrix Qk results from using
linear transformation of the covariance matrices:
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Qk+1 � Acl,θkQkA
T
cl,θk

+ GθkQwG
T
θk
. (11)

As already mentioned, an approach of SMPC is chosen in the
upcoming parts of the paper to determine a sequence of expected
inputs vk+j|k, such that the expected value of xkwill be transferred and
stabilized into the target set. SMPC has the crucial advantage
(compared to optimal control), that the sequence of input signals
are computed on-line based on the current discrete state which can
bemeasured, see Asm. 1. Thus, the probabilistic reachable sets can be
computed with higher accuracy. Since Eq. 9 is only stochastic with
respect to the Markov state θk, the SMPC scheme can be formulated
as a deterministic predictive control scheme with respect to the
expected values of xk. This scheme predicts the future expected
continuous states over a finite horizon using the affine dynamics Eq.
9. To ensure that a certain share of all possible xk (according to the
underlying distributions) satisfies the constraints, the feasible set of
states and inputs is reduced. This step of constraint tightening is
described in detail in Section 3.4.

3.2 Construction of PRS Using the
Chebyshev Inequality
In order to satisfy the chance constraints (4) and (5),
probabilistic reachable sets for the error part of the
continuous states are computed and used for tightening the
original constraints. This allows one to use the reformulated
constraints in a deterministic version of an optimization
problem (with the MPC scheme) with respect to the
continuous state of the JMLS. Probabilistic reachable sets
are first defined as follows:

Def. 1. A stochastic reachable set contains all error parts which
are reachable according to Eq. 10 from an initial set R0 with a
probability of at least δx, given the disturbances wk ~ Gw:

e0 ∈ R00Pr ek ∈ Rk( )≥ δx, k ∈ 0, 1, . . . , N{ }.
In the general case, the computation of the true PRS may turn out

to be difficult and can result in non-convex sets. If so, the true PRS can
be be over-approximated by convex sets as described in the following:
as a main contribution of this paper, it is proposed to use the
Chebychev inequality (Marshall and Olkin, 1960) to conservatively
bound the true PRS. The n-dimensional Chebyshev inequality for
random variables provides a lower bound on the probability that an
ellipsoidal set contains a realization of the stochastic variable. Thus,
the inequality can be used to approximate the true reachable sets by
ellipsoids in case that the expected value as well as the covariance
matrix of the random variable is known.

Theorem 3.1. Let X be a random variable with finite expected
value q � E[X] and covariance matrix Q = Cov(X) > 0. Then

Pr X − q( )TQ−1 X − q( )≤ δ( )≥ 1 − n

δ
,

for all δ > 0.
PROOF. (Ogasawara, 2019). Consider the transformed new

random variable Z:

Z � X − q( )TQ−1 X − q( ).

SinceQ > 0, the random variable Z can be decomposed as follows:

Z � YTY, where Y � Q−1
2 X − q( )

The random variable Y satisfies

E Y[ ] � E Q−1
2 X − q( )[ ] � Q−1

2 E X[ ] − q( ) � 0,

and

Cov Y( ) � Cov Q−1
2 X − q( )( ) � Q−1

2Cov X( )Q−1
2 � I.

Therefore,

E Z[ ] � E YTY[ ] � E ∑n
i�1

Y2
i

⎡⎣ ⎤⎦ � ∑n
i�1

E Y2
i[ ] � ∑n

i�1
Var Yi( ) � n.

Finally, by using the Markov’s inequality,

Pr X − q( )TQ−1 X − q( )≤ δ( ) � Pr Z≤ δ( )≥ 1 − E Z[ ]
δ

� 1 − n

δ

holds for all δ > 0.
Now, the Chebyshev inequality is used to formulate a bound

on the probability that the error part of the continuous state xk of
the JMLS at time k is contained in an ellipsoid around the origin:

Pr eTkQ
−1
k ek ≤ δ︸����︷︷����︸

�ek∈ ε 0,Qδ
k( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠≥ 1 − n

δ︸��︷︷��︸
�δx

. (12)

In here, the matrix Qδ
k � n/(1 − δx) · Qk is a scaled shape

matrix of the over-approximating ellipsoid which contains the
realizations of ek at least with probability δx. While this
approximation may introduce conservatism, the important
point is that this inequality applies to arbitrary distributions.
For computation of the ellipsoidal sets, the ellipsoidal calculus can
be used, see (Kurzhanskii and Vàlyi, 1997). With Qδ

k, the over-
approximating PRS can now be expressed by:

Rk � ε 0, Qδ
k( ).

Nevertheless, this leads to time-varying constraints which
depend on the discrete state of the JMLS. To reduce the
computational complexity, and thus the computation time, a
possible alternative is to use a more conservative approximation
of the constraints, such that they remain time-invariant and
independent of θk, as described in the following.

3.3 Bounding the State Covariance Matrix
For time-invariant constraints being independent of the discrete
state of the JMLS, the shape matrices Qδ

k, k ∈ {1, . . ., N} can be
over-approximated by a static matrix Qδ

∞, such that:

Rkε 0, Qδ
k( ) ⊆ ε 0, Qδ

∞( ) �: R∞, ∀k ∈ 1, . . . , N{ } (13)
holds for all states θk ∈ Θ. Note that Qδ

∞ is equal to the
solution of a Lyapunov equation, if there is only one mode.
Before detailing the method, the following definitions are
required:

Def. 2. For any symmetric matrix S ∈ Sn, let an operator svec
be defined as:
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svec S( ) ≔ s11,
�
2

√
s21 . . . ,

�
2

√
sn1, s22,

�
2

√
s32, . . . ,[

. . . ,
�
2

√
sn2, . . . , snn]T.

i.e., the elements of S are stacked columnwise, and the off-
diagonal elements are multiplied by

�
2

√
.

Def. 3. The symmetric Kronecker product of two matrices
D,M ∈ Rn×n is defined by:

D⊗sM ≔ T D ⊗ M( )TT,

where T ∈ R
n
2 (n+1)×n is an orthogonal matrix with:

T · vec S( ) � svec S( ), TT · svec S( ) � vec S( ).
By using the definitions above, the covariance difference Eq.

11 turns into a pseudo-affine system:

svec Qk+1( ) � Acl,i⊗sAcl,i( )︸�����︷︷�����︸
�: Φi

· svec Qk( )︸���︷︷���︸
�: φk

+ svec GiQwG
T
i( )︸������︷︷������︸

�: φw,i

, (14)

where φk is the pseudo state, and again i ∈Θ. Note that the next
state φk+1 = svec(Qk+1) depends also on the Markov state.
Furthermore, let �φi be the steady state of system (14). It can be
shown that if Acl,i is stable, then Φi is also stable.

Now a quadratic Lyapunov function ~V(φ) is introduced, which is
centered in φc and which is parametrized by a shape
matrix ~P � ~P

T > 0:

~V φ( ) � φ − φc( )T ~P φ − φc( ).
The center point φc of the Lyapunov function is chosen as the

mean value of the steady states for the different Markov states.
Next, the smallest common invariant set is determined for the
pseudo system (14). The common Lyapunov stability condition is
given by ~V(φk) − ~V(φk+1)≥ 0. However, since the JMLS may
transition between the Markov states and every i ∈ Θ leads to a
different steady state, it cannot always be guaranteed that the
value of ~V(φ) decreases. In case a descent is locally not possible,
the absolute value of ~V(φ) is bounded by the following relaxed
condition:

If ~V φk+1( ) − ~V φk( )≥ 0, then ~V φk+1( )≤ 1. (15)
By applying the S-procedure to Eq. 15, a corresponding LMI

can be obtained for λ > 0:

1 + λ( )ΦT
i
~PΦi − λ~P 1 + λ( ) φw,i − φc( )T ~PΦi

1 + λ( )ΦT
i
~P φw,i − φc( ) 1 + λ( ) φw,i − φc( )T ~P φw,i − φc( ) − 1

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦≤ 0.
(16)

The minimum positive definite matrix ~P is determined such
that the set with ~V(φ)≤ 1 contains all steady states of Eq. 14:

min
~P

trace ~P( ) (17)
s.t. : (16), �φi ∈ ε φc, ~P( ) ∀i ∈ Θ, (18)

where �φi is the steady state of Eq. 14. If there exists a positive definite
matrix ~P which satisfies (18), then the set (φ − φc)T ~P(φ − φc)≤ 1 is
an invariant set for the sequence of covariance matrices Qδ

k,

k ∈ {1, . . ., N}. By back-transformation of the solution ~P and by
applying the inverse Kronecker product operator, an upper
bound Qδ

∞ of the covariance matrix Qδ
k for arbitrary

sequences of discrete states of the JMLS can be determined.
Theorem 3.2. Let the optimization problem (17)-(18) have a

feasible solution. The back transformation of the solution is an
over-approximation of all covariance matrices, i.e.

lim
k→∞

ε 0, Qδ
k( ) ⊆ ε 0, Qδ

∞( ) ∀θk ∈ Θ. (19)

PROOF. (Sketch) The transformation of Eqs 11–14 by using
Kronecker algebra does not modify the solution for a specific i ∈Θ
(Schäcke, 2004). Consider now arbitrary sequences of i, the set
Ω ≔ {φ | ~V(φ)≤ 1} is invariant as long as the implication Eq. 15
holds, what is ensured by the matrix inequality Eq. 16. When
applying back-transformation to the solution, the resulting
covariance matrix is an upper bound of Qδ

k, since the back-
transformation does again not modify the solution (as the
forward transformation).

Note that solving the optimization problem Eqs 17, 18 and
thus, the computation of the PRS for the error part ek of the state
xk can be computationally demanding for larger-scale Markov
systems. But this optimization problem has to be solved only once
and is carried out offline before starting the online optimization
(to be described in the following). The offline computation is
possible, since R∞ � ε(0, Qδ

∞) is valid independently of a
particular mode and time. In the next subsection, the upper
bound Qδ

∞ is used to compute substitute constraints for the
optimization in the MPC scheme.

3.4 Computation of the Tightening
Constraints and MPC Formulation
In this section, a method to compute the tightened constraints in a
stochastic manner for arbitrary distributions is presented.
Tightening the constraints plays a crucial role if the optimization
problem refers to the (conditional) expected values of xk [and thus uk
according to the control law (Eq, 8)], as in this paper. Since the true
values lie around the expected values (depending on the chosen
distribution), the original constraints have to be tightened to ensure
satisfaction of the chance constraints Eqs 4, 5. Since the tightening is
obtained as the Minkowski difference of X (or U respectively) and
the PRS, the computation of the PRS is necessary. The tightened
constraints are obtained by:

Q � X ⊖ R∞ � X ⊖ ε 0, Qδ
∞( ), (20)

V � U ⊖ KiR∞ � U ⊖ ε 0, KiQ
δ
kK

T
i( ). (21)

Note that these computations can be carried out offline. Based
on the ellipsoidal form ofR∞, the chance constraints Eqs 4, 5 can
be reformulated into (linear) hard constraints using (Boyd and
Vandenberghe, 2009):

rx,i · qk + ‖Qδ
1
2

∞ · rx,i‖2 ≤ bx,i, ∀i ∈ 1, . . . , nx{ }︸������������������︷︷������������������︸
�: qk∈Q

, (22)

where rx,i the i-th row of Rx, and bx,i the i-th entry of bx, defining
the polytope X . The relation (22) can be understood as the
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condition qk ∈ Q. The linearity of the inequality constraints Eq. 22
is guaranteed since the reachable sets of the error part ek are over-
approximated by an ellipsoid with a constant shape matrix Qδ

∞.
The computation of the input constraint (5) follows

analogously by determination of an over-approximated matrix
for KiQ

δ
kK

T
i . Let vk ∈ V denote the resulting hard constraint for

the input vk.
The following assumption is necessary for ensuring the

existence of a feasible solution of the following optimization
problem to be carried out online within the MPC scheme.

Assumption 2. After constraint tightening, the resulting sets
Q and V are non-empty and contain the origin in their interior. In
addition, Q contains the initial expected value q0.

Note that if the computations according to Eqs 20, 21 lead to
empty sets Q or V, thus contradicting this assumption, the
reduction of δx may heal this situation. The optimization
problem to be solved in any step of the MPC scheme can
finally be expressed as follows:

min
ϕv

‖qk+H|k‖2P + ∑H−1

j�0
‖qk+j|k‖2Q + ‖vk+j|k‖2R (23)

s.t. for all j ∈ 0, 1, . . . , H − 1{ }: (24)
qk+j+1|k � Aθk+j|kqk+j|k + Bθk+j|kvk+j|k + Gθk+j|kqw, (25)

qk+j|k ∈ Q, (26)
vk+j|k ∈ V, (27)

qk+H|k ∈ S · αk+H|k, (28)
with the sequence of expected continuous inputs ϕv = {vk|k, . . .,
vk+H−1|k} and for a quadratic cost function with matrices P,Q, R >
0. Convergence is enforced by a shrinking ellipsoid
S ≔ {x ∈ Rn | xTx≤ q20} with α ∈ ]0, 1[.

Note that throughout the derivation of this problem, no
specific assumptions for the distributions of x0 and wk were
required. Previous contributions in this field consider
bounded distributions or assume that there are normally
distributed.

Generally, the constraints Eq. 25 have to be fulfilled for
every possible discrete state since the future states are not
deterministically known. For JMLS with high-dimensional
continuous spaces or many discrete states, as well as
instances of the MPC problem with large horizons H, the
computational complexity of solving Eq. 23 can be
significant. To improve the solution performance, the
following section proposes the modification of not only
predicting the expected values of xk and uk, but also those
of the discrete states.

3.5 Prediction Equations for the Expected
Discrete State
The solution of the optimization problem Eqs 23–28 requires to
determine the predictions qk+j|k. The recursive procedure
proposed in (Tonne et al., 2015) can be used also for Eqs
23–28 in order to determine the predictions with relatively
computational effort.

Let the conditional expected value of xk+j|k under the condition
of a discrete predecessor state i be defined as:

�qi,k+j|k ≔ E xk+j|k | θk+j−1 � i[ ]. (29)
The predicted conditional expected value of the continuous

state over all discrete states can then be expressed as:

�qk+j|k � ∑|Θ|
i�1

�qi,k+j|k. (30)

Due to theMarkov property ofM, the probability distribution
μ can be predicted to μk+j|k � Pj

M · μk. In order to formulate the
prediction equations depending on qk, vk+l|l and qw, the recursive
matrices ~Ak+j|k, ~Bk+j|k, and ~Gk+j|k can be defined according to
(Tonne et al., 2015):

~Ai,k+j+1|k � Ai ∑|Θ|
m�1

pi,m
~Am,k+j|k, ~Ai,k+1|k � μi,kAi,

~B
l( )

i,k+j+1|k � Ai ∑|Θ|
m�1

pi,m
~B

l( )
m,k+j|k, ~B

j−1( )
i,k+1|k � μi,k+j−1|kBi,

~G
l( )

i,k+j+1|k � Ai ∑|Θ|
m�1

pi,m
~G

l( )
m,k+j|k, ~G

j−1( )
i,k+1|k � μi,k+j−1|kGi.

With these matrices, the prediction Eq. 29 is rewritten to:

�qi,k+j|k � ~Ai,k+j|kqk +∑j−1
l�0

~B
l( )

i,k+j|kvk+l|k + ~G
l( )
i,k+j|kqw( ).

Using Eq. 30, the conditional expected value �qk+j|k results in:

�qk+j|k � ∑|Θ|
i�1

~Ai,k+j|kqk +∑j−1
l�0

~B
l( )

i,k+j|kvk+l|k + ~G
l( )
i,k+j|kqw.( )⎛⎝ ⎞⎠ (31)

leading to the following form of the optimization problem Eqs
23–28:

min
ϕv

‖�qk+H|k‖2P + ∑H−1

j�0
‖�qk+j|k‖2Q + ‖vk+j|k‖2R (32)

s.t.: (31), (33)
�qk+j|k ∈ Q, (34)
vk+j|k ∈ V, (35)

qk+H|k ∈ S · αk+H|k. (36)
Since theMarkov state θk is measurable, the prediction �qk+1 for

the first step is deterministic. Thus, the constraints for the first
prediction are considered to be satisfied strictly (while the
subsequent prediction steps consider the constraints in
stochastic form). Due to the repeated optimization in each
time step k, these constraints are satisfied in every time instant
k, i.e. qkwill be kept within the state constraints if the problem has
a solution in each time step.

Theorem 3.3. For the optimization problem Eqs 32–36,
consider the case that a feasible solution exists in every time
step k. In addition, assume that Q, R, P > 0 and that the problem
Eqs 17, 18 has a feasible solution as well. The state of the closed-
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loop system then converges to the origin with at least a probability
of δx, i.e.:

Pr lim
k→∞

xk � 0( )≥ δx, (37)
and Pr(limk→∞xk ∈ T )≥ δx.

PROOF. From Theorem 3.1, the resulting over-approximated
sets contain the error parts ek of xk with at least a probability of δx,
independently of the chosen probability distribution,
i.e., Pr(ek ∈ ε(0, Qδ

k))≥ δx. Furthermore, from it follows from
Theorem 3.2 that the probabilistic reachable sets of the error ek
are independent of the discrete state and of time:

Pr ek ∈ ε 0, Qδ
∞( )( )≥Pr ek ∈ ε 0, Qδ

k( )( )≥ δx. (38)
When using constraint tightening based on ε(0, Qδ

∞) and
under the Assumption 2, it is sufficient to consider the
expected value of xk: By the last constraint (36), the
convergence of the expected value is enforced with increasing
k, i.e.

lim
k→∞

qk � 0. (39)

In addition, since the discrete state is measurable
(Assumption 1), the constraints of the prediction are always
strictly enforced. Finally, by combining (38) and (39), it follows
that Pr( limk→∞xk = 0) ≥ δx, implying also
Pr(limk→∞xk ∈ T )≥ δx due to 0 ∈ T . □

4 NUMERICAL EXAMPLE

In order to illustrate the principle of the proposed method,
numerical examples are provided in this section. First consider
the following small system with n = 2 and |Θ| = 4:

A1 � 1 0.1
−0.2 0.9

[ ], B1 � −1 0
0.5 1

[ ], G1 � 1.3 0
0 1

[ ],
A2 � −0.9 −0.1

0 1.1
[ ], B2 � 1 0.5

0 2
[ ], G2 � 0.7 −0.4

0 1.1
[ ],

A3 � 0.8 0
0.05 0.9

[ ], B3 � 0.5 0.2
0 1

[ ], G3 � 0.8 0
0 0.7

[ ],
A4 � 0.8 0

−0.2 0.9
[ ], B4 � −1 1

0.5 0.8
[ ], G4 � 0.8 −0.2

0.5 0.3
[ ].

The state region (2) is parameterized by:

Rx � −4 −1 −2 0 1 −5 4 0 2
−1 0 −1 1 0 −1 1 −1 −1[ ]T

,

bx � 15 11.5 10 60 3 25 48 7 10[ ]T,
the input constraints chosen to:

−3≤ ui ≤ 3, i ∈ 1, 2{ }
and the chance constraints selected as:

Pr xk ∈ X( ) � Pr uk ∈ U( ) � 0.85.

The initial distribution of the Markov state is specified by:

μ0 � 1 0 0 0[ ],
and the transition matrix PM by:

PM �
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The matrices parameterizing the cost function (23) are

selected to Q = diag(100, 1), and R = 20 · I. The feedback
matrices Ki are determined as the solution of the Riccati
equation, and the prediction horizon is set to H = 20. To get a
challenging example regarding the stochastic parts, x0 is
sampled from a bimodal distribution, obtained from a
weighted superposition of two normal distributions
parametrized by q0,1 = [−7,50]T, q0,2 = [−7.5,47]T,
weighted by π1 = π2 = 0.5, and with the following
covariance matrices:

Q0,1 � 0.1 0
0 0.1

[ ], Q0,2 � 0.2 0.1
0.1 0.2

[ ].
In addition, the disturbances are chosen uniformly distributed:

wk ~ U
− ����

0.03
√

,
����
0.03

√
− ����

0.03
√

,
����
0.03

√[ ]( ).
In the first step, the (off-line) optimization Eqs 17, 18 is

carried out to determine an upper bound of the covariance matrix
of the state. Figure 1 shows the ellipse corresponding to the
bounded over-approximated covariance matrix Qδ

∞ (red) for the
given example. The blue ellipses are generated with a randomly
chosen sequence of the discrete state. The red ellipse, however, is
an over-approximation of for any possible sequence of θk, i.e., the
blue ellipses are guaranteed to stay inside the red one.

FIGURE 1 | Over-approximation of the ellipses corresponding to shape
matrices for an arbitrary sequence of discrete states.
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Figure 2 illustrates the result of applying the SMPC scheme in
the sense of a Markov simulation: The optimization problem Eqs
32–36 is solved repeatedly for sampled realizations of the
stochastic variables of the given example. The average
computation time for one iteration is about 17.4 ms, i.e. fast
enough for online computation. The confidence ellipsoids (blue
ellipses) are transferred into the terminal region (green ellipse)
over time. For this example, the PRS is guaranteed to contain at
least δx = 85% of the realizations, but it can be seen that almost
every sample (indicated by black stars) lies inside the
corresponding PRS. This behavior confirms the
conservativeness of the approximation by using the Chebyshev
inequality.

To also demonstrate the applicability of the proposed
approach to a JMLS with higher-dimensional continuous state
space and more discrete states, next an example with nz = 8, n =
10, nu = 6, and a prediction horizon of H = 15 is considered. The
matrices Ai, Bi, and Gi were determined randomly. For the initial
condition, μ0 = [1,0,. . .,0]T is used, and as in the previous
example, x0 is sampled from a bimodal distribution, obtained
from a weighted superposition of two normal distributions
parametrized by q0,1 � 19.5 · 1 10,×,1, q0,2 � 20.5 · 1 10,×,1,
weighted by π1 = π2 = 0.5. The corresponding covariance
matrices are chosen randomly under the condition that they
are symmetric and positive definite. In addition, as in the previous
example, the disturbances are chosen uniformly distributed.

The component-wise input and state chance constraints are
selected to Pr(|ui,k| ≤ 5) ≥ 80% and Pr(|xi,k| ≤ 25) ≥ 80%, and all
components of the transition matrix are chosen to pi,m = 0.125.
The average computational time for the determination of the
inputs in each time step k is about 124 ms. The results are shown
for the different components of xk over time in Figure 3. The
different colors represent these components, for any of which 10

FIGURE 2 | Example for n =2: The blue ellipses mark the over-
approximated probabilistic reachable sets, the dashed red line indicates the
sequence of the expected states, and the green ellipse refers to the target set.
The black stars are sampled from a bimodal distribution.

FIGURE 3 | Example for the high dimensional JMLS: The different colors represent the components of xk over the time k.
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samples are taken. The dashed lines represent the state chance
constraints. It is to observe that the presented approach stabilizes
any state of this high-dimensional JMLS, while satisfying the
chance constraints. The sampled states are far away from the
chance constraints, though these are chosen to only δx = 80%. As
in the first example, this behavior confirms the conservativeness
of the Chebyshev approximation. Furthermore, the
computational time is low even for larger JMLS, thus enabling
the online execution for many real-world systems.

5 CONCLUSION

The paper has proposed a method to synthesize a stabilizing control
strategy for JMLS with uncertainties, which are modeled as random
variables with arbitrarily chosen distributions. The approach can
cope with chance constraints for the input and the state. The control
strategy is obtained by determining stabilizing feedback control
matrices as well as a feasible input sequence by using an MPC-
like approach for the conditional expected values. The novel
contribution of this paper is to combine the principles of
optimization-based controller synthesis and probabilistic
reachability for JMLS with arbitrary disturbances, modeled as
random variables. Additionally, a method to compute the
bounded state covariance matrix for the same system class was
derived. In computing the PRS, the use of confidence ellipsoidal sets
was motivated by Chebychev estimation. The advantage is, that the
PRS of the error part can be computed off-line and together with the
tailored formulation of the prediction equations for the expected

continuous states, the on-line computational effort of the scheme is
relatively low, even for high dimensional Markov systems.

Possible extensions of the proposed technique include the
formulation of additional constraints to ensure recursive
feasibility, as well as further means to reduce the
computational complexity. In addition, in order to avoid the
measurability assumptions for the Markov state and the
continuous states, the extension of the scheme to state
observers may constitute a promising investigation.
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