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In this work, we introduce signal-to-noise ratio (SNR) based fault detection and
identification mechanisms for a networked control system feedback loop, where the
network component is represented by an additive white noise (AWN) channel. The SNR
approach is known to be a steady-state analysis and design tool, thus we first introduce a
finite time approximation for the estimated AWN channel SNR. We then consider the case
of a general linear time-invariant plant model with one unstable pole. The potential faults
that we discuss here cover simultaneously the plant model gain and/or the unstable pole.
The fault detection is performed relative to the estimated AWN channel SNR. The fault
identification is performed using recursive least squares ideas and then further validated
with the observed SNR value, when a fault has been previously detected. We show that the
proposed SNR-based fault mechanism (fault detection plus fault identification) is capable
of processing the proposed faults. We conclude discussing future research based on the
contributions exposed in the present work.

Keywords: networked control systems, AWN channel, SNR limitation, fault detection, fault identification

1 INTRODUCTION

Control theory, from the 20th century up to the 21st century, moved from what is known as classic
control into new research areas such as networked control systems (NCSs). Theory and practice
experts have been very busy (Chen et al, 2011), since results in NCSs are intrinsically
multidisciplinary by definition, for example, by considering simultaneously established results in
control and also information theory (Nair and Evans, 2004; Martins and Dahleh, 2008). Other
examples joined linear optimal control results together with communication theory results (Elia,
2004; Braslavsky et al., 2007; Rojas, 2012) for additive white noise (AWN) channels. Similarly, an
optimal approach for output tracking control over erasure channels has been proposed for stability
and subject to model uncertainties in Jiang et al. (2021). In more recent years, we have also seen an
increase in results that involve event-triggered NCS controllers (Heemels et al., 2012; da Silva et al.,
2014; Campos-Delgado et al., 2015) which attempt to use limited available communication and
energy resources with paucity, and nevertheless achieve a set of given goals, be those goals stability,
performance, or robustness. These and other NCS results can constitute the foundation for a better
control practice in the near future.

An NCS result, contributed early on in Braslavsky et al. (2007), imposes a channel input power
constraint P for an AWN channel in a control feedback loop and then characterizes the infimal
channel signal-to-noise ratio (SNR) in terms of the plant model features (unstable poles, non-
minimum phase zeros, etc.). The resulting SNR expression can then be used to revisit the control
feedback loop stability in terms of an SNR limitation, in particular when the controlled plant model is
unstable. Specifically, the SNR fundamental limitation expressions contributed in Braslavsky et al.
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FIGURE 1 | Networked control system (NCS) single-input single-output (SISO) feedback loop with fault detection and fault identification stages.

(2007) deal with unstable single-input single-output (SISO) linear
time-invariant (LTI) plant models, both in continuous time and
discrete time, characterizing the infimal channel input SNR
bound required to achieve control feedback loop stability.

A large body of contributions also exist on the topic of fault
detection and identification, with many books already written
on these topics (Gertler, 1998; Chen and Patton, 1999; Blanke
et al., 2003; Isermann, 2006; Saberi et al., 2007; Varga, 2017),
together with informative review articles such as Ding et al.
(2000) and Saberi et al. (2000). A fault is usually defined as an
abnormal behavior occurring in a process, which in turn is of
interest to first detect, identify, and then (ideally) properly
recover from. There are different formulations for the
problem of fault detection for LTI systems, which can be
roughly categorized as approximate (such as the synthesis of
fault detection filters subject to noise) and exact formulations
(such as the nullspace method).

The variability inherent in NCSs might also be caused by
anomalous variations in the plant model. An NCS example of the
proposed setup is presented in Figure 1, where in this article we
have considered a memoryless AWN communication channel in
place of the communication network, specifically over the
feedback path. These anomalous variations can be given the
interpretation of faults, thus the need to develop a fault
mechanism to detect and identify them (Figure 1) to later on
inform a possible controller adaptation in order to achieve what is
known as a fault-tolerant control feedback loop. Ding (2012)
contributed a survey on NCS fault detection and fault-tolerant
control. Another review on fault diagnosis for NCS can be found
in Aubrun et al. (2008) with the objective of reducing
performance degradation due to the different NCS
communication features. A dynamic observer is designed for
sensor fault detection under finite frequency disturbance and
noise in a linear NCS (Dai et al., 2021). In Ren et al. (2018), an
event-triggered H-infinity fault detection filter has been

contributed in order to reduce unnecessary communication in
the NCS dominated by time-varying latency and fading
phenomena. A Bayesian approach, on the other hand, is the
basis in Lami et al. (2020) for a fault detection proposal, in the
context of an NCS irrigation canal application, while Li et al.
(2009) use a Markov jumping linear system (MJLS) approach to
define their residual generator. An NCS robust fault-tolerant
control feedback loop is designed in Bahreini and Zarei (2019)
with faults also modeled as MJLS, but with incomplete
transition probabilities knowledge, for which Linear Matrix
Inequalities based sufficient conditions are then presented as
to ensure stochastic stability. In a multi-agent context, task
allocation is proposed in Schenk and Lunze (2020) to achieve
fault tolerance through the cooperation between a set of healthy
and faulty agents, instead of focusing on recovering nominal
performance; see also Wang et al. (2021). A nonlinear model
predictive control, subject to random network latencies and
random packet dropout phenomena, is used to design a fault-
tolerant control feedback loop in Wang et al. (2016) based on a
predictive observer with guaranteed input-to-state stability. On
the other hand, a class of nonlinear NCSs, where the nonlinear
terms is modeled using neural networks, has been studied by Ye
et al. (2021), and LMIs are used to obtain the fault detection
filter gains. Fault detection for nonlinear NCSs subject to
random delays has also been considered when using the
LMIs by Li et al. (2020), Huang and Pan (2020), and Gu and
Yao (2021). Finally, a robust neural network-based controller
was designed to detect and mitigate false data injection attacks
(which can be interpreted as malicious faults) in Sargolzaei et al.
(2020).

The current state of the art on fault mechanism designs for
NCS still lacks the option of an SNR approach-based fault
detection and identification mechanism. We also observe that
most of the reported NCS contributions include a
communication network simultaneously over the controller-
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FIGURE 2 | NCS SISO feedback loop with AWN channel over the P2C path.
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to-plant (C2P) and the plant to controller (P2C) paths
(Figure 1). However, when designing the NCS feedback
loop, there is always the potential to collocate either the
controller with the sensor devices, thus considering only the
C2P path, or the controller with the plant model, and only then
dealing with the P2C path for explicit AWN channel location.
In this work, we focus on the P2C path, since for fault detection,
the C2P path option, or the simultaneous presence of AWN
communication channels in both locations, can be addressed in
a similar manner.

Our first contribution in this article is to establish a fault
detection algorithm to determine the occurrence of faults based
on an finite time estimated AWN channel SNR. This for a SISO
LTI plant model with one unstable pole. Our second
contribution is to add to the previous detection algorithm, a
fault identification stage using the recursive least square (RLS)
algorithm which, upon a fault being flagged, can discriminate
faults consistent with the estimated AWN channel SNR. We use
examples, when appropriate, to further illustrate the proposed
contributions.

This article is organized as follows: Section 2 presents the
general assumptions, introducing the plant and AWN channel
models. We also present here the AWN channel SNR deduction
for a control feedback loop. Section 3 addresses the contributions
of this work; that is, we define in full the proposed finite time
AWN channel SNR estimation, the SNR-based fault detection
stage and the fault identification stage for the proposed plant
model. In Section 4, we discuss the possible avenues for
generalization in future research of the presented results and
summarize the present work.

2 METHODS

In the following subsection, we proceed to list the assumptions for
the present work.

2.1 Assumptions

- LTI plant model: The LTI plant model G(z) is assumed to be
an LTI model given by

G(2) = %-Gs(zx (1)

with K € R*, |p| > 1 and G,(2) is a known proper, stable rational
transfer function.

- AWN channel model: The AWN channel model is
characterized by its channel input power constraint P and
channel additive noise n(k). The channel input power
constraint is such that distortionless transmission is
achieved both at nominal and faulty conditions.

- Channel additive noise process n(k): The channel additive
noise process n(k) is assumed, to be in this work, as a zero
mean, independent and identically distributed, white noise
process. The noise variance ¢ is assumed to be known.

- Reference signal: The reference signal is assumed to be
constant and of value r € R.

The plant LTI model, AWN channel model, and channel
additive noise process assumptions are in line with the SNR
approach and can be traced to the seminal work of Braslavsky
et al. (2007). The reference signal is adapted from the work of
Rojas (2021).

2.2 Signal-to-Noise Ratio Constrained
Control Approach

We now proceed to illustrate the SNR constrained control
approach. For this, we take the case of r = 0.

From Figure 2, we have that the channel input power P is
calculated as || y|13,,, 2 limy—E{y? (k)}. The power at the plant
output ||y||§)ow, to guarantee a distortionless transmission,
cannot exceed the channel input power constraint
77>||y||1230w. Under stationary condition (see Astrom, 1970,
§4.2), the channel input power can also be stated as
Iyl300 = IT (2)I30%, where

- CRGE

T 1+C(2)G(z) @

Here T(z) is the complementary sensitivity function feedback
loop transfer function with output y(k) and input r(k). We can
then restate the channel input power inequality as an SNR
inequality by means of the H, norm of T(z)

P . N
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where IC is the set of stabilizing controllers. From the previous
equation, we have that the SNR inequality highlights a lower
bound defined over the set of stabilizing controllers /C; for
example, see Rojas (2012). When the plant model is unstable,
this lower bound cannot be zero and thus will become a
fundamental limitation for unstable plant models.

2.3 Finite Time Approximation

For designing a fault detection scheme, we cannot in practice
guarantee k — oo to compute the channel input power definition
from the available measurement of y(k). To achieve this, we
introduce the following definition:

Definition 1. L is the sample length on which the stationarity
assumption for the control feedback loop signals (in particular,
the channel input signal) holds for a given tolerance value e
defined by the user.

Based on Definition 1, we then propose an L sample length
moving average of the channel input signal y(k) as its finite time
approximation version

Ty ()

T 4

yi(k) =

We are then left with appropriately selecting the value of L.

For this, we propose to use the averaged signal variance

such that oiL <e for a given tolerance value € defined by

the user. To perform this selection of L, we then introduce
Algorithm 1.

Algorithm 1. Estimation of L.

Algorithm 1: Estimation of L

Result: L

Initialize: r, p, K, o, L, iter, T'sim, €;

Tss = floor(Tsim/10);

for i = 1:iter do
seed = abs( floor(abs(rand) * 10000));
sim('example_filter');
N = floor(Tsim/2) — L;

fork =1: N do

| yL(k) = mean(y(T'ss + k+1:Tss+k+ L));
varyL(i) = var(yL);

if varyL(i) > e, then

L L=L+1;

else

Starting with the initialization stage, Algorithm 1 runs an outer
for loop of a simulation based on Figure 2, evaluating the infimal
SNR over an AWN channel over the P2C path (using, for
example, MATLAB). Then, the inner for loop retrieves the
simulated output vector y(k) data to repeat the y; calculation a
total of N times over a rolling time-window of selected length L,
from Tss + k+ 1to Tss + k + L. T, is a time value set so as to avoid
any initial conditions in transient. The selections for the inner for
loop will test the candidate value of L through a specific channel
noise realization, when the closed-loop dynamics have settled (by
means of Ty). The outer for loop completes the algorithm by
averaging the selection of L through a number of noise
realizations determined by the parameter iter and by testing
the e stopping condition with the sample variance of y;(k)
obtained from the inner loop. If the sample variance fails the
test, then we add one to the working value of L and repeat each of

SNR-Based Fault Detection and Identification

the steps. If the sample variance satisfies the € stopping condition,
we then output the last working value L as the selected time
window length in Eq. 4.

3 RESULTS

By considering the value of L settled using Algorithm 1, we now
move on into providing a lemma for SNR-based fault detection.

Lemma 1. SNR Fault Detection. The Fault Flag (FF) variable is
raised to 1 when a fault is detected in an NCS feedback loop as
shown in Figure 2; that is,

0 if SNR,(k)<T,+C

1 if SNR,(K)>T,+C’ )

FF (k) = {

where SNR; (k) is the finite time SNR approximation defined as

Yz (j)

Iy1150, = SNRy (k) £ 2

, (6)
and T, is the nominal theoretical SNR (with no faults), with L
chosen using Algorithm 1. In turn, the confidence level C is
selected as

C= a% (7)

equal to o times the ratio between oy, the theoretical stationary
standard deviation of the channel input y(k), and o, the channel
noise n(k) standard deviation.

The fault detection mechanism proposed in Lemma 1
constitutes the first contribution of the present work.

Remark 1. We observe that the proposed SNR fault detection
mechanism is transparent to the simultaneous presence of the
AWN channels over the C2P and P2C paths. The presence of
both AWN channels will result in a different value of I',, which is
predicted to be (for example, see Rojas, 2013):

2 2

r o
T, = To (1)’ 5— + IS:GI5=2 + I T 13 (8)
P2C Opac

where T,(z) is the nominal complementary sensitivity (without
faults), 02, is the C2P additive channel noise variance, and 0%,
is the P2C additive channel noise variance.

Remark 22 Since ||2y||2§,ow =&y} = oi + ;4; and yi = ITO'(I)Ing,
we have 0y = I T,ll50%. Thus, the confidence level defined in Eq. 7
can be interpreted as the ratio between the feedback loop channel
input power part due to the channel noise and the channel noise

variance, which can then be rewritten as

C = al|Ts . ©)

Remark 3. The value of a, on the other hand, is a design
parameter for the fault detection mechanism, highlighting a
trade-off between the rate of false positive fault detection
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TABLE 1 | Parameters values for Example 1.

Parameter Value Parameter Value

r 1 P 3

K 2 g 1

L 92 iter 500

Tsim 5,000 € 0.0333

. 2 Gl s

Ki 0.05 C@) <f;;<1)), (1+52). G @)

(detecting a fault when there is none) and false negative detection
(not detecting a fault when there is one). Therefore, the a
parameter needs to be selected with care depending on the
specific problem. If o is too small, then the noise level will
trigger more false positive detections. This could still be
traded-off against a larger value of L, but would imply an
increased delay in detecting a fault when it occurs, due to the
need of averaging a larger number of samples to obtain SNR;. On
the other hand, if the value of a is too large, there will be an
opposite effect; that is, it would increase the occurrence of false
negatives (the claim that there is no fault when there is really one).
We would expect that if the expected fault SNR level is big with
respect to the nominal SNR level I',, then larger values of a could
be used because there would be a less likelihood of false negatives.
On the other hand, if there exists previous information of a
smaller fault SNR level with respect to the nominal SNR level T,
then a smaller a should be used, with a lower limit imposed by the
presence of the channel noise.

Remark 4. We observe that the SNR approach behind Lemma 1 is
a stationary approach. As a consequence, assuming stability of the
control feedback loop, the same proposed detection mechanism
could potentially be applied to nonlinear plant models, since it is
well known that a nonlinear state trajectory can be approximated
by a linear state trajectory in the vicinity of a stable
equilibrium point.

We now address, in the next lemma, our second contribution
which consists of adding to the previous SNR-based detection
algorithm a fault identification stage based on the process
identification RLS algorithm.

Lemma 2. Fault Identification. Consider that a fault takes place
in the plant model Eq. 1 due to a simultaneous change AK in the
value of K and Ap in the value of p when in feedback loop
(Figure 2) with the controller defined as

(pz_l).<1+ Kiz)_Gs—l(z)’ (10)

Clz) = pK z-1

where K; is known as the integral action gain. The above
controller is assumed to stabilize the nominal feedback loop
and the faulty feedback loop. The fault identification
mechanism (Figure 1) has access to the values of u(k) and
y(k) and can identify the fault values AK and Ap, when the
FF(k) in (Eq. 5) is 1, by means of a finite memory recursive least
square (FM-RLS) algorithm as

SNR-Based Fault Detection and Identification
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FIGURE 3 | Evolution of the estimated value of L as per Algorithm 1.
TABLE 2 | Fault values for example 1.
Fault AK; Api
i=1 0.2 0.85
i=2 -0.15 -1.415

u(k-L-1) yk=L-1)T\"
[AK]_[K]([us(kLl)...us(kl)]'[ ‘ _ D .
Ap | k—-L-1) ... k-1 : :
p P ¥( ) y(k=1) w1y
(1

_|:us(k—L—1) us(kl)]|:

y(k-1L)
yk=L-1) ... ytk-1) : }

()

where ug(k) is the output of the stable part of the plant model, that
is, ug(k) = gy(k) * u(k), with g, (k) = Z7{G, (2)}.

Proof. When the AWN channel is over the P2C path, the
complementary sensitivity function describes the feedback loop
relationship between y(k) and n(k) (bar a negative sign), as well as
the feedback loop relationship between y(k) and r(k). Given the
proposed controller structure, the theoretical channel SNR will be
defined as
2 2
r= Moy o (12
Due to the channel noise being white, we satisfy the condition
of persistent excitation for closed loop identification. In the
presence of a fault due to a simultaneous change AK and Ap,
if signals y(k) and u(k) are available, then it is a matter of
observing the correct regressor matrix to identify the changing
values of the parameters K(k) and p(k) (time-varying values due
to the faults) together with a FM-RLS. The use of process
identification methods, such as RLS, for a correct fault
identification is suggested, for example, in Isermann (2006,
Ch. 9). Observing that Gy(z), the stable part of the plant
model, is not subject to change, we can then filter u(k) and
obtain u (k) = g(k) * u(k). The resulting regressor matrix for a
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vector parameter 0 = [ K (k) p(k) 17, with memory length L, is
then given by:

u(k—=L-1) y(k—-L-1)

o = (13)

y(k.— 1)

The estimated parameters vector is then 6= (o d)L)_ld){;/
as in Eq. 11, with ;/ =[y(k-L) ... y(k) 1T which concludes
the proof.

The fault identification mechanism proposed in Lemma 2
constitutes the second contribution of the present work. We now
illustrate these two mechanisms with an example.

U (k.— 1)

Example 1. We proceed with the present example by stating the
values for the proposed parameters of this example in Table 1.

The parameters values in Table 1 are a representative
selection. The greater the values of r, p, and K, the greater
value of the nominal SNR T,. The values of the parameters
iter, Tsim, and € related to Algorithm 1 are such that we
achieve convergence of L to the value of 92. The plant model
parameters Gg(z) and controller C(z) are such that we have
control feedback loop stability at nominal and faulty
conditions. The controller C(z) contains integral action to
achieve reference signal tracking.

In Figure 3, we have the numerical evaluation for the
proposed plant model:

2(z-0.3)
G2 = (z-3)(z-0.1) (14

The plant model has one unstable pole as to have nominal SNR
I, greater than one (see Braslavsky et al., 2007 for more details).
The other pole and transmission zero are stable.

The plant model in Eq. 14 is then put in a feedback loop
together with the proposed controller:

4 (1.05z-1)(z-0.1)
T3 (z-1)(z-0.3)

C(z) (15)

The proposed controller above is such that it grants tracking of
the proposed constant reference signal r = 1 due to the pole at z =
1, as well as invert cancel out the stable part Gy(z) of the
plant model.

As the iterations in Algorithm 1 increase (Figure 3), the L
value for the finite time approximation is tested and, failing the
comparison with the stop value of €, is then increased to the final
selected value of L = 92 after the set of 500 iterations. It is
reasonable to assume convergence is achieved, since for the last
300 iterations, the value of L grew less than 10%. Notice from
Figure 3 that the value of L is also effectively updated when the
variance of yr(k) exceeds the threshold limit defined by e in
Table 1(shown by the horizontal orange dashed line).

We consider the effect of two faults for the proposed time
model, described by the values in Table 2.

Observe that the proposed faults focus on AK, which can be
interpreted as an input fault, and on Ap, which is a fault that more
directly affects the SNR level under faulty conditions. We do not
consider here, and leave as future research, the case of fault changes

SNR-Based Fault Detection and Identification

on the stable part G,(z) of the plant model since this would affect
the controller stable cancellation of it and might result in an
unstable control feedback loop under faulty conditions.

The feedback loop starts in the nominal condition until time
sample k = 5,000 when the first fault, described by the pair (AKj,
Apy), takes place. The first fault ends at time sample k = 10,000,
recovering nominal conditions. At time sample k = 15,000, the
second fault described by the pair (AK,, Ap,) now takes place up to
time sample k = 20,000. We then recover again nominal conditions
up to time sample 25,000 when the simulation concludes. The
theoretical SNR at nominal conditions is 9.9474, whereas the
theoretical SNR under the first fault condition is 60.7302, while
the theoretical SNR for the second fault is 60.9940.

We now consider the application of Lemma 1 to detect the
proposed faults. Notice that with G(z) in Eq. 14 and the controller
C(z) in Eq. 15, the nominal feedback loop complementary sensitivity
T, will have an H, norm of 2.9912. Thus, the confidence level is
obtained as C = 5.982 4. In Figure 4A, we report the estimated finite
time SNRp, from an output signal y(k) realization, when the
feedback loop is subjected to the two described faults, shown as a
blue solid line. The use of Lemma 1 is reported by an orange solid
line, and correctly reports the fault occurrences, with a few instances
of false negative detections (not detecting a fault when a fault is
present) and instances of false positive detections (detecting a fault
when no fault is present) at the end of each fault period.

To illustrate the trade-off behind the value of a selection, we test
the confidence level for different values of a versus false positives
and false negative probabilities in Figure 4B. We also report in
Figure 4A two examples of how the confidence level affects the two
occurrences of false negatives and false positives, for alternative
values of a = 1, black solid line, and a = 4, green solid line. As a
increases, and thus the confidence level C also increases, the fault
positive probability (defined as the ratio between the number of
fault positive samples and the number of samples under nominal
conditions) decreases, blue solid line in Figure 4B. However, as o
increases, and the confidence level C increases, we now have that
the fault negative probability (defined as the ratio between the
number of fault negative samples and the number of samples under
faulty conditions) increases, red dashed line in Figure 4B. Clearly,
the best value of a to set the confidence level C is one that trades off
the improvement in false positive probability reduction versus false
negative probability reduction, which corresponds to the a value
when the two lines cross each other. For this example, this value is
approximately 2.5. This confirms, a posteriori, that the working
choice of a = 2, was reasonable.

Once a fault has been detected, we now use Lemma 2 to
identify the said faults. In Figure 5, we report the successful
identification of both faults using the proposed FM-RLS
approach. The result is quite good for both parameters, but it
is not instantaneous as the zooming on the right panels in
Figure 5 show. In this identification, there is another trade-off
between the value of L, the quality of the identification, and the
lag in correctly identifying the amount of the fault, AK and/or Ap.
The bigger the value of L, the better the quality, the longer the lag,
and vice versa. Observe that, after the recursive estimates have
settled, the identified fault parameters are the exact values
reported in Table 2. Thus, if we were to check the expected
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SNR under these two identified faults, we would observe values
that would be in agreement with the SNR;, previously observed in
Figure 4A during faults.

The successful use of Lemma 2 as reported in Figure 5 is tied
to having access to signal u(k) at the process input (Figure 1).
However, the presence of an AWN channel model over the P2C
path, as in Figure 2, suggests that signal u(k) can only be available
at the same location as signal y(k) (to then inject into the fault
identification mechanism) if transmitted by an independent
network. This is so because if u(k) was perfectly available at
the process output, it would mean that the controller is also
collocated with the plant output, and then there would be no real

need for an AWN channel model over the feedback loop. We test
this in Figure 6, by assuming that u(k) is transmitted through a
secondary AWN channel model with independent noise channel
with respect to the already stated AWN channel model over the
P2C path. The channel noise variance of this secondary AWN
channel is assumed to be 2% of ¢°, and even for this, the
application of Lemma 2 considering this transmitted version
of u(k) results in far more noisier and biased estimates of the
two faults; see the left panels in Figure 6. The bias effect can be
ameliorated somehow by evaluating it during the nominal
operation (no faults) and then subtracting it from the obtained
estimations when the faults are present; see the right panels in
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FIGURE 6 | AK(k) and Ap(k) estimates with noisy u(k), left panels in blue. Detrended AK(k) and Ap(k) estimates with noisy u(k), left panels in red.

Figure 6. We can observe from the same figure for these two
faults that AK is the fault component that is most affected by the
noise presence in u(k). This suggests that to implement a fault
identification mechanism based on Lemma 2, the transmission
quality for the signal u(k) needs to be in the order of magnitudes
better than the ones operating inside the feedback loop.

4 DISCUSSION

In this work, we present an SNR-based fault detection and fault
identification mechanisms for an NCS feedback loop, when the
network is represented by an AWN channel over the P2C path.
To the best of the authors” knowledge, the stated contribution is
novel in as much that in the current state of the art no fault
mechanism designs for NCS uses the SNR approach nor deals
with the AWN channel model. The steady-state SNR approach
required the introduction of a finite time approximation to
estimate the relevant feedback loop signals, which we
developed here. We also considered a fairly general LTI plant
model containing one unstable pole. The faults that we studied
were represented by sudden changes in both the plant model gain
and/or the unstable pole values. The fault detection was achieved
comparing with T, the AWN channel nominal SNR over the P2C
path. The effect of the inclusion of an optimal tracking objective
or the potential inclusion of simultaneous channels in the C2P
and P2C paths can also readily be included in the proposed SNR
of the AWN channel nominal SNR over the P2C value T,

On the other hand, the fault identification was performed here
using an FM-RLS approach, when a fault has been previously
detected. We showed with an example that the proposed SNR-

based fault mechanism (fault detection plus fault identification)
was capable of processing the proposed faults, with the caveat of
almost perfect access to the signal u(k) at the process input. The
SNR-based fault detection mechanism was not compared with
other NCS-based fault mechanisms because, as far as the authors
have surmised from the current state of the art, no other
comparable results exist for AWN channel models subject to a
power constraint (the core of the SNR approach). There are
indeed other fault detection and identification solutions for NCS,
as presented in the Introduction, but they focus on different
communication features (channel latencies, erasure, fading, etc.).
More so, even if a comparison with other NCS fault detection
results was feasible, considering the result of Example 1, the fault
detection response of our contribution successfully detects the
proposed faults, and other methods could only perform equally as
good. This is in the on-off nature of the fault detection question,
either there is a fault or not, and at best, the answer from any
other method would be the same. With respect to the SNR-based
fault identification mechanism, the comparison with other
methods could indeed be more nuanced, but again considering
the results in Figure 6, we obtained an excellent fault
identification result when using the FM-RLS approach here, a
performance which could only be tied at best by other current
NCS fault identification methods if they were actually comparable
(which they are not, because they consider different
communication network features, than additive channel noise
and channel input power constraint).

Future research should consider relaxing the requirement on
u(k) for fault identification, propose a different fault identification
mechanism using perhaps a priori knowledge on the types of
faults to be expected, the case of fault changes on the stable part
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G,(z) of the plant model, and consider the case of other types of
communication channel models. For example, if we want to
consider optimal output tracking over erasure channels, we
can adapt the results in Jiang et al. (2021) to obtain a new
analytical expression for a power constraint expression akin to I',,.
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