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Because of their enhanced performance, the fractional order proportional-

integral (FOPI) controllers are becoming an appealing choice for controlling

induction motor speed. To implement FOPI controllers, several fractional order

integral approximations are available in the literature. The approximation used,

and the order of approximation affects the speed tracking, transient response,

and induction motor power consumption. This further affects the energy

consumption analysis if simulations are conducted based on such

approximations. In this paper an electric vehicle (EV) traction system is

simulated to investigate the effect of such approximations on the

simulations of a battery powered, induction motor driven EV system. The

system consists of an indirect field-oriented induction motor, a lithium-ion

battery bank, and a three-phase inverter. This work presents a quantitative

analysis of the performance of FOPI controllers using different approximations,

and order of approximations is presented. The controllers are evaluated based

on speed tracking, transient response, computational time, and power

consumption. Both step functions and standard drive cycles are used as the

speed reference signal to evaluate the effects of using different approximations

and different orders of approximation, when different references are used. This

work establishes a reference set of simulations that can be used to infer the

amount of error in battery state of charge, and state of health analysis

conducted on such an EV system, when dealing with FOPI controllers under

different approximations and related settings.
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Introduction

Integer order PID controllers are a common choice for

different control applications in the industry because of their

simplicity of design and ease of implementation (Kalangadan,

Priya and Kumar, 2015; George and Kamath, 2020). The

performance of integer order PID controllers is impacted by

the system non-linearities and uncertainty in parameters. The

fractional order PI (FOPI) controllers allows to have fractional

order integral in the control law. The order of the integral can be

tuned which results in higher degree of flexibility. Thus, the FOPI

controllers are more flexible as compared to integer order ones

(HosseinNia et al., 2011). This added flexibility and tuning ability

helps in achieving better dynamic response (Viola, Angel and

Sebastian, 2017). Recently, the FOPI controllers have replaced

traditional PID controllers for many speed control

applications because of their better speed tracking

performance and higher degree of flexibility (Dulau et al.,

2017). The FOPI controllers have recently gained

considerable attention in a variety of control applications.

The fractional order controllers can help in achieving

efficient control actions as the order of the fractional

integral or derivative can be varied (Podlubny, 1999).

An intuitive explanation of fractional order PID (FOPID)

controllers is given in (Tejado et al., 2019). Before going into

FOPID controllers, first the classical PID controller is discussed.

Classical PID controllers consist of three control actions,

proportional, integral and derivative. The present

(proportional action), the past (integral action) and predicted

future (derivative action) error are all taken into account. The

control law of a PID controller is given by:

u(t) � Kpe(t) +Ki∫t

0
e(τ)dτ +Kd

de(t)
dt

(1)

where e(t) is the error signal and u(t) is the control signal. The

proportional component produces an output proportional to the

current error; however, proportional action alone is not enough

to eliminate steady state error. The integral term accumulates

past error, and its main role is to guarantee the elimination of the

steady state error. Lastly, the derivative action is a crude

prediction of future error, the slope of the e(t) curve can be

thought of as a linear extrapolation of the error at that point. The

contributions of each control action are added, and the result is

the control signal. FOPID controllers are the generalization of

classical PID controllers to include non-integer order integrals

and derivatives. The control law of an FOPID controller is

given by:

u(t) � Kpe(t) +KiD
−λe(t) +KdD

μe(t) (2)

where λ and μ are the non-integer orders of the fractional integral

and derivative terms respectively.D is the fractional operator and

is defined as follows:

D−nf(t) � 1
Γ(n)∫

t

0
f(τ)(t − τ)n−1dy (3)

FOPID controllers are similar to PID controllers, in that they

also take into account the past, present and future errors;

however, due to the non-integer order, the integral and

derivative actions are different than in the classical PID case.

The fractional integral term is no longer the typical area

under the curve; however, it can be viewed as the area under a

projection of the e(t) curve onto a plane which is determined by

the order of integration. In doing so, the fractional integral action

results in having a selective memory of the past error values.

The fractional derivative term can also be viewed as a

prediction but does not use the slope and the tangent line

passing through the point e(t), as in the case of the classical

derivative action. The prediction in the fractional derivative case

can be thought to be made through a non-tangent line passing

through the point e(t), the slope of the line corresponds to the

fractional differentiation with the order μ at that point. Another

way of viewing the fractional derivative action is as if it is a non-

linear extrapolation of the error as opposed to the linear

extrapolation in the classical PID case. The non-linear

extrapolation is based on the order of the fractional derivative.

The fractional order PI controllers can be estimated as a

product of multiple poles and zeros. Thus, it can replace a lead-

lag compensator with only three parameters to be tuned

(Oustaloup et al., 2000). The FOPI controllers have been

successfully applied for many practical applications including

induction motor control, servo systems, hard disk drives and

control of power electronic converters (Calderón et al., 2006; Luo

et al., 2013; Tepljakov et al., 2016). The FOPI controllers have the

ability to perform better as compared to the integer order PI

controllers for the speed control of induction motors. The reason

is that induction motor has a non-linear model (Upadhyaya and

Gaur, 2021). The FOPI controllers are an extension of standard

PI controllers introduced to improve the stability and robustness

for the complex industrial and commercial systems with

uncertain paraments (Upadhyaya and Gaur, 2021). In integer

order PI controllers, the control signal is obtained by adding two

terms. The first term is proportional to the error and the second

term is proportional to the first order integral of error. The

fractional order PI controllers also have control signal as sum of

two terms. The first term is proportional to the error while the

second term is proportional to the fractional order integral of the

error (Duarte-Mermoud et al., 2010).

There are different approximations available for the

fractional order integral term in the FOPI controller. The

approximations considered in this paper are the Crone,

Carlson and Matsuda approximations. The number of terms

in the various approximations can also vary. The choice of

different approximations and the number of terms can have

an impact on the performance of FOPI controller for different

applications. There is not much work available in the literature
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for the performance analysis and comparison of the different

FOPI approximations. The goal of this work is to implement and

compare the different available approximations of the FOPI

controller on a simulation of an EV traction system. The EV

model used in the simulations includes an induction motor

powered by a lithium-ion battery bank. A simplified vehicle

dynamics model is used for the estimation of the load torque

on the induction motor (Chauhan, 2015). The simulations are

carried out for different approximations of the FOPI controller

using different number of terms. The EVmodel is simulated with

different drive cycles and the performance of different FOPI

approximations is analyzed. Themetrics used for the comparison

include speed error and the battery energy consumption. This

work will help to determine which approximation of the FOPI

controller is ideal for EV traction system control applications.

Fractional order integral
approximations

FOPI controllers are more suited for non-linear systems

where it can compensate for the variation of system

parameters in addition for having better disturbance rejection

(Usman et al., 2019). The main disadvantage of FOPI controllers

is that they are more difficult to implement, and tune compared

to linear PID controllers. However, many tools were created to

ease this process at least in simulation such as the “Ninteger

toolbox” (Valerio, 2005).

Different methods exist to approximate fractional order

integrals and derivatives, three of which were tested, and their

results analyzed in this work. The goal of a fractional order

integral approximation is to provide a transfer function that is an

approximation of the following transfer function shown below

(Valerio, 2005):

C(s) � ksv, v ∈ R (4)

Note that v here can be any real number and can take non-

integer values. Three well known approximations are

investigated in this work, the Crone, Carlson and Matsuda

approximations. Note, the order of approximation is

determined while designing the controllers (See the FOPI

Controller Design Section for more details).

Crone approximation

The crone approximation is defined below (Oustaloup,

1991):

C(s) � k′∏N
n�1

1 + s

ωzn

1 + s

ωpn

(5)

Where N is the order of the approximation and k′ is an

adjustment gain used so that the gain of the resultant transfer

function is 0 dB at a frequency of 1 rad/s. Here ωzn and ωpn are

the zeros and poles of the transfer function. The poles and zeros

of the transfer functions are calculated as shown below:

α � (ωh

ωl
)

v
N

(6)

η � (ωh

ωl
)

1−v
N

(7)

ωz1 � ωl
�η√

(8)
ωpn � ωz,n−1α, n � 1, . . . , N (9)
ωzn � ωp,n−1η, n � 2, . . . , N (10)

The poles and zero frequencies are within ωh and ωl, and the

frequency range [ωl , ωh] is the frequency range for which the

approximation is valid. The Crone approximation uses a

recursive method to obtain the locations of the poles and

zeros of the approximate transfer function, and the logarithms

of the poles and zero frequencies will be equidistant. Note that if

the value of v is negative then the roles of the poles and zeros are

interchanged.

Carlson approximation

The Carlson approximation provides an approximation of a

fractional order power of a transfer function using Newton’s

iterative method (Carlson and Halijak, 1964). The power must be

the inverse of an integer, as shown below:

C(s) � g
1
a(s) (11)

where g(s) in this case is taken to be s and with that an

approximation for the following transfer function is obtained.

The Carlson approximation is used to approximate a fractional

order integral; however, the order of integration has to be the

reciprocal of an integer “a.” If the order of integration cannot be

expressed as a reciprocal of an integer, the nearest integer

reciprocal is used, this is taken care of by the “Ninteger

Toolbox” and “a” is chosen such that its reciprocal is the

nearest to the desired order of approximation.

C(s) � s
1
a (12)

Note that here the fraction has to be the inverse of an integer

and is rounded off to the nearest inverse of an integer. The

following recursive expression is used to obtain the

approximation, as shown below

Cn(s) � Cn−1(s) (a − 1)Ca
n−1(s) + (a + 1)g(s)

(a + 1)Ca
n−1(s) + (a − 1)g(s), n � 1, . . .N

(13)
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where N is the order of the approximation, the Nth expression

obtained from the recursive method above is a fractional integral

approximation. This is an iterative process with the number of

iterations being the order of the approximation. In the initial

iteration the value of C0(s) is equal to 1.

Matsuda approximation

The Matsuda method is used to approximate a function f(x)

whose value is known for a set of points x0, x1, x2, . . . , xN. The

following set of functions (d0,. . .,dN) are defined recursively as

shown below (Matsuda and Fujii, 1993):

d0(x) � f(x) (14)
dk+1(x) � x − xk

dk(x) − dk(xk), k � 0, 1, 2 . . . (15)

Using this set of functions, the function f(x) is approximated

as shown below:

f(x) � d0(x0) + x − x0

d1(x1) + x − x1

d2(x2) + x − x2

d3(x3) + x − x3

. . .

(16)

This method can be used to approximate the transfer

function C(s) � ksv, v ∈ R. To do so, first, the substitution s �
jω is made, as shown below;

C(ω) � k(jω)v, v ∈ R (17)

The value of the transfer function is computed at a set of N

logarithmically evenly spaced frequencies. Where N is the order

of the approximation.

d0(ω) � C(ω) (18)
dk+1(ω) � ω − ωk

dk(ω) − dk(ωk) (19)

C(ω) � d0(ω0) + s − ω0

d1(ω1) + s − ω1

d2(ω2) + s − ω2

d3(ω3) + s − ω3

. . .

(20)

For all three approximations, the parameters of the

approximation are the frequency range, the order of the

approximation and the fractional order of integration. The

frequency range was chosen such that the frequency components

of the input signals will be well within the frequency limits. There are

three controllers based on the field-oriented control scheme used in

this paper, an outer speed controller, an inner iqs controller and an ids
controller. For the case of the outer speed controller the fastest

changing input is the NEDC drive cycle which provides the

reference speed signal for the motor to track. This input speed

reference is analyzed in frequency domain and it is found that the

input speed reference is mainly comprised of low frequency

components, with practically nothing beyond 1 Hz. The ids

controller has a constant DC reference of 6A. For the inner iqs
controller, the frequency content of the reference iqs corresponding

to the NEDC drive cycle is analyzed. The frequency components of

the reference iqs signal also mainly consist of low frequency

components with practically no components above 5 Hz or

approximately 32 rad/sec. A safety margin was added and the

frequency range was chosen to be between 0 and 100 rad/s

which is more than a three times safety margin. This work

focuses on the effect of the order of approximation and the

approximation method on the speed tracking, transient response,

and the energy consumption of a simulated EV traction system.

System modelling

This section discusses the theory and the modelling required

to simulate an EV traction system using MATLAB. First, the

theory behind the indirect field-oriented control scheme (used to

control the speed of the induction motor) is given. Next, the

vehicle dynamics modelling is discussed and how these dynamics

translate into a load torque on the induction motor of the EV.

Moreover, the modelling of a lithium-ion battery is discussed.

Lastly, the overall Simulink block diagram of the EV traction

system is given and discussed, along with the modelling

parameters (induction motor parameters, vehicle model

parameters and the battery model parameters)

Field oriented control of induction motors

Field Oriented Control (FOC) is a common motor control

scheme used in high-performance drives. It offers better dynamic

response and robustness in comparison with simpler scalar

control schemes such as V/F, while at the same time adding

more complexity to the system. However, advancements in the

processing power of microcontrollers which can handle intensive

mathematical operations made it possible for FOC to proliferate

in the industry. The main principle of FOC is decoupling the

torque and the magnetizing flux, thus allowing for direct control

of the needed torque at any speed while maintaining the desired

rotor flux. Decoupling is done through the control of stator

currents, after transforming the three-phase time variant system

into a two-phase time invariant system represented by d (the flux

component) and q (the torque component) coordinates (Akin

and Bhardwaj, 2019). Different types of controllers can be used to

regulate the rotor flux, which is represented by isd, which makes

torque control linearly related to the value of isq. One major

requisite of FOC is aligning the rotor flux with the stator’s

rotating synchronous reference frame. Different methods were

developed to achieve this but we can group them into two

categories: Indirect FOC (IFOC) and Direct FOC (DFOC). In

DFOC, aligning of the rotor flux is implemented through direct

sensing or estimating the flux in the air gap. This method might
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require the usage of physical sensors in the machine which makes

it more difficult to implement both hardware and software wise,

because the data gathered by the sensors needs to be processed

and integrated in the control loop. One of the advantages of

DFOC is that it is less affected by motor parameters variation and

requires less knowledge about the parameters in general

(Tripathi and Vaish, 2019). IFOC works without the need for

sensing the actual flux, for it can be derived from the values of

stator current, voltage and motor shaft speed (Tripathi and

Vaish, 2019). In order to get accurate results for flux

calculation, the controlled motor parameters must be fed to

the control system. Which means that any variations in these

values during different operation envelopes can degrade the

performance of the drive system if not tuned with those cases

in mind.

The work presented in this paper was implemented using an

IFOC system. Two inner FOPI control loops regulate the values

of isd and isq based on the reference values fed by the outer speed

control loop in the case of isq, or a fixed step command reference

for isd. The outer speed control loop is implemented using an

FOPI controller. The electromagnetic torque produced by the

induction motor and its mechanical model are given by:

Te � 3pL2
m

2Lr
isdisq (21)

J
dωr

dt
� Te − bωr (22)

where Lm and Lr are the mutual inductance, J is the motor inertia,

b is coefficient of viscous friction, p is the number of pole pairs

and ωr is the motor shaft speed. The overall block diagram of the

IFOC of an induction motor is shown in Figure 1.

Vehicle modelling

The motor and the battery are the main components of

the electric vehicle. The load torque can be defined as the

rotational force required by the wheels to keep the vehicle

moving. In an electric vehicle, the motor does not operate

under no-load conditions. Load torque is applied to the

motor depending on several factors, including weight, tire

size, type of terrain, slope, and acceleration required

(Chauhan, 2015).

Rolling resistance
The rolling resistance is the resistance between the vehicle

rolling wheel and the road surface on which the vehicle is

moving. The motor must overcome this resistance to keep the

wheels of the vehicle rolling. The rolling resistance depends on

the type of terrain and tires and is also proportional to vehicle

weight. The higher the rolling resistance, the higher the power or

torque required from the motor. The relation for the rolling

resistance is given by:

Rolling Resistance (RR) � GVW ×Crr (23)

where GVW is the gross weight of the vehicle and Crr is the

rolling surface friction coefficient. The RR is the rolling friction

on the wheels in Newtons.

FIGURE 1
IFOC overall block diagram.
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Grade resistance
The slope of the surface plays an important role in the

tractive force required by the electric vehicle. Gradient

resistance is a form of gravitational force. The force applied to

move the object up the inclined plane must overcome the vertical

component of the weight. The mathematical relationship for

grade resistance is given by:

Grade Resistance (GR) � GVWsin(θ) (24)
where GR is the grade resistance to the uphill movement of the

electric vehicle in Newtons. The angle θ is the slope of the terrain

on which the car is moving on.

Acceleration force
The acceleration force required for the vehicle is equal to the

product of the vehicle mass and the acceleration required. The

acceleration that the electric vehicle can achieve is proportional

to the torque of the motor. The acceleration force required for the

vehicle is calculated using the following:

Acceleration Force (AF) � GVW

g
a (25)

In the above equation, g is the gravitational force and a is the

acceleration required by the vehicle. The AF is the corresponding

acceleration force.

Air drag
Aerodynamic forces act as braking forces on the vehicle and

tend to slow its motion. At low speeds, aerodynamic drag is

negligible, but at high speeds it increases significantly. The

mathematical relationship is given by:

Air Drag (AD) � 0.5ρCAv2 (26)

In the above equations, ρ is the air density (1.2754 kg/m3), C is

the vehicle air drag coefficient (typically 0.15), A is the vehicle

frontal area, and v is the vehicle velocity.

Total tractive force
The total tractive effort (TTE) in newtons can be defined as

the sum of all forces. The torque required by the vehicle is the

product of the total tractive force and the radius of the wheels

(Chauhan, 2015) as seen below:

Total Tractive Effort (TTE) � RR + GR + AF + AD (27)
Load Torque (Tc) � TTE × Rwheel (28)

where Rwheel is the radius of the wheels of the vehicle.

Battery modelling

In order to simulate a real-life EV traction system, an

equivalent circuit model (ECM) of a lithium-ion battery

(Chen and Rincon-Mora, 2006) is used. The model takes the

load current as an input and captures the voltage transients of a

lithium-ion battery (Chen and Rincon-Mora, 2006). Figure 2

shows the ECM used to model the lithium-ion battery used in

this work.

The left side of the ECM captures the state of charge of the

battery as well as the self-discharge of the battery. The self-

discharge resistance is ignored and is accounted for by

multiplying the SOC by a factor f, which in this work is taken

to be 1. The right side of the ECM captures the voltage

characteristics of the lithium-ion battery. The voltage source

(E0) represents the open circuit voltage of the battery, Rs captures

the battery series resistance, the Rts||Cts RC branch captures the

short-term terminal voltage transient and the Rtl||Ctl RC branch

captures the long-term terminal voltage transient of the battery.

The state space equations of the ECM are shown below:

_x1(t) � − 1
Cc

i(t) (29)

_x2(t) � − x2(t)
Rts(x1)Cts(x1) +

i(t)
Cts(x1) (30)

_x3(t) � − x3(t)
Rtl(x1)Ctl(x1) +

i(t)
Ctl(x1) (31)

y � E0(x1) − x2(t) − x3(t) − i(t)Rs(x1) (32)

where Cc is the battery capacity. Moreover, the circuit parameters

(Rts, Cts, Rtl, Ctl, Rs, E0) are all functions of the battery SOC given

as follows:

Rts(x1) � a1e
−a2x1 + a3 (33)

Rtl(x1) � a4e
−a5x1 + a6 (34)

Cts(x1) � −a7e−a8x1 + a9 (35)
Ctl(x1) � −a10e−a11x1 + a12 (36)
Rs(x1) � a13e

−a14x1 + a15 (37)
E0(x1) � −a16e−a17x1 + a18 + a19x1 − a20x

2
1 + a21x

3
1 (38)

where a1, a2, . . . , a21 are positive constants. By knowing the

values of these constants, the electrical characteristics and

output voltage of a lithium-ion battery can be modeled. The

output voltage of the battery model is used as an input to a

controlled DC source block in Simulink which simulates a

voltage equal to that of the input. Furthermore, the resulting

DC current is measured and is fed back to the battery model

in order to capture the battery voltage transients.

Overall system

After implementing the individual parts of the simulations

discussed above using MATLAB and Simulink, the individual

components were combined to obtain a simulated EV traction

system. This EV system employs an IFOC scheme to control an

induction motor which drives the vehicle. Furthermore, the EV
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system captures both the vehicle and the battery dynamics. The

overall Simulink block diagram is shown in Figure 3.

At the bottom of Figure 3 the motor speed error is input to

the outer FOPI speed controller. The outer controller

produces the iqs reference signal which along with the

constant ids reference is fed into the current regulator. The

current regulator block contains 2 FOPI controllers as shown

in Figure 1. In the IFOC control scheme. From the two current

FIGURE 2
Battery Equivalent Circuit Model (ECM).

FIGURE 3
Simulink block diagram of the overall EV traction system.
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controllers the vsd
p and the vsq

p signals are obtained, which

are then converted from the d-q axis values to abc 3 phase

voltages. The 3 phase voltage signals are used along with a

triangular waveform to implement sinusoidal pulse width

modulation from which the inverter gating signals are

obtained. The 3-phase inverter powers the induction

motor, it is controlled using the gating signals produced

from the IFOC control scheme and is powered by a

controlled DC voltage source. The voltage of this voltage

source is set to be equal to the output voltage of the battery

model. The battery model takes the current drawn as an

input and gives the corresponding voltage output. Lastly, we

have the vehicle dynamics equations implemented in the

MATLAB function block seen at the top of Figure 3. The

function block takes the vehicle speed, vehicle acceleration

and road slope angle as inputs and uses the vehicle dynamics

equations to obtain the corresponding load torque on the

induction motor. The vehicle and induction motor

parameters used in the simulation are summarized in

Table 1. Also, the battery model parameters obtained

from (Ali, Mukhopadhyay and Rehman, 2016) are also

given in Table 1.

A transmission gear ratio of 5 was determined to be ideal for

the given induction motor, as it will allow the motor to reach

speeds close to the rated speed of the motor for a vehicle speed

within 40 km/h. The vehicle speed is calculated from the motor

speed, assuming the wheels do not slide on the surface, as shown

below:

v � ωr

G
(39)

where v is the vehicle speed (m/s), ω is the motor speed (rad/sec),

r is the radius of the wheel (m) and G is the transmission gear

ratio.

FOPI controller design

As mentioned in the System Modelling Section there are two

cascaded FOPI controllers in the IFOC scheme. The outer

controller is for the speed of the motor and the inner

controller controls the isq current which in turn controls the

motor torque. Furthermore, there is another controller to control

the isd current which in turn controls the magnetic flux of the

motor. To design these FOPI controllers a transient response-

based method along with appropriate tuning rules are used to

obtain the gains of each controller (Chen et al., 2008). These rules

are based on maximum sensitivity constrained integral gain

optimization (MIGO) tuning method; however, the tuning

rules were generalized to encompass fractional order PI

controllers. The rules were developed by maximizing the

integral gain (Ki) while imposing constraints on the maximum

output sensitivity and the resonance peak of the closed loop

system. The tuning method involves first obtaining a step

response of the plant that the controller will control. An

appropriate step input is given to the plant, in case of the isq
and isd controllers a vsd and vsq step is given respectively.

TABLE 1 Vehicle and induction motor parameters.

Vehicle parameters Induction motor parameters

Vehicle Mass (kg) 1000 Rated Power (kW) 60

Vehicle Frontal Area (m2) 2 Rated Voltage (V) 280

Wheel Radius (m) 0.3 No. of poles 4

Rolling resistance coefficient 0.01 Frequency (Hz) 60

Aerodynamic drag coefficient 0.3 Rotor resistance (Ω) 0.228

Transmission gear ratio 5 Rotor inductance (mH) 0.8

Wheel moment of inertia (kgm2) 1.667 Stator resistance (Ω) 0.087

Battery Capacity (Ah) 6.6 Stator inductance (mH) 0.8

Battery Nominal Voltage (V) 260 Mutual Inductance (mH) 34.7

Battery Parameters

Parameter a1 a2 a3 a4 a5 a6 a7

Value 0.556 29.99 0.056 5.61 149.9 0.063 759.26

Parameter a8 a9 a10 a11 a12 a13 a14

Value 10.67 684.61 5999.6 27.50 3666.6 0.496 33.07

Parameter a15 a16 a17 a18 a19 a20 a21

Value 0.065 1.031 35 3.685 0.216 0.118 0.3201
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Additionally, in the case of the outer speed controller an isq-ref
step is given. Using these responses an approximate first order

plus dead time (FPDT) model is fitted to the responses. The

transfer function of an FPDT model is shown below:

Gapprox(s) � Kprcs

Ts + 1
e−Ls (40)

whereKprcs is the process gain, T is the time constant and L is the

dead time of the FPDT model. After obtaining the transient

response corresponding to the isd controller the MATLAB PID

tuner toolbox was used to fit an FPDT model to the response and

obtain the values of Kprcs, T and L. The next step would be to use

these parameter values along with the tuning rules shown in

(41–45) to obtain the values of the proportional gain (Kp),

integral gain (Ki), and the fractional order of the integral (α).

The order of the fractional integral depends on the relative dead

time τ, as shown below. The authors in (Chen et al., 2008)

conducted several tests on a variety of systems with varying

values of τ and system delay L, from which the tuning rules were

determined.

τ � L

T + L
, α �

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1.1, τ ≥ 0.6

1,

0.9,

0.4≤ τ < 0.6

0.1≤ τ < 0.4

0.7, τ < 0.1

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(41)

Kp � 1
Kprcs

( 0.2978
L + 0.000307

) (42)

Ti � T( 0.8578

L2 − 3.402L + 2.405
) (43)

Ki � Kp

Ti
(44)

The same process is then repeated for the isq controller and

then the outer speed controller as well. The transient responses

used to tune the individual controllers along with the fitted FPDT

model responses are shown in Figure 4.

As seen from Figure 4, the original responses (i.e., the step

responses that were measured to obtain the FPDTmodel of the plant

for each of the three controllers) and the step response of the resulting

FPDT models do match up, supporting the claim that the FPDT

model is an approximate model of the plant. Table 2 summarizes the

FPDT parameter values for each of the three controllers along with

the calculated gains (Kp and Ki) and order of integration (α).

Results and discussion

The goal of this work is to thoroughly test the three FOPI

approximations (Carlson, Crone and Matsuda) and compare them

in terms of their speed tracking, power consumption and transient

response. Furthermore, the effect of the order of approximation on

FIGURE 4
FPDT tuning responses.
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the above-mentioned metrics is also analyzed for each of the three

approximations at hand. A 35 km/h step input was given as an input

reference to the system and the transient speed response was

collected and analyzed for various order of approximations

ranging between 4 and 14. This is to see the effect the order of

approximation has on the transient response (settling time, %

overshoot) and to also compare the three approximations against

each other. The same was also done with a 22.6 km/h square wave

and a 11.3 km/h square wave speed reference. Secondly, the NEDC

drive cycle was used as an input speed reference to the system, this is

to mimic real driving conditions which is more realistic than step

responses. The NEDC drive cycle represents the typical European

vehicle usage in urban and extra-urban (high speed situations)

conditions and was used as the speed reference. The same input

reference was applied for all the three approximations, each for

various values of the order of approximation. The mean absolute

speed error, the mean absolute power consumption, and the

remaining SOC in the battery at the end of the drive cycle were

obtained.

Step response and square wave tests

As mentioned, a 35 km/h step reference, along with a

11.3 km/h square wave (Square Wave 1) and a 22.5 km/h

square wave (Square Wave 2) speed reference were applied to

the system for all the three approximations and for a variety

of order of approximations. The isd, isq, vehicle speed, battery

current, battery voltage and battery consumed power are

plotted in Figures 5–7. Figures 5–7 show the isd, isq,

vehicle speed, battery current, battery voltage and battery

consumed power for only one case. The same procedure was

repeated for all three approximations for order of

approximations ranging between 4 and 14. The settling

time and maximum overshoot was noted in each case and

is depicted in Figure 8.

It can be observed from Figure 8 that for low orders of

approximation the Matsuda approximation yields a large

overshoot which decreases sharply with the lowest

overshoot being around an order of approximation of 6 or

8. The Carlson approximation does result in higher overshoot

at lower orders of approximation, and this is more evident in

the square wave cases than the step response case.

Furthermore, at low orders of approximation the Carlson

approximation yields a lower settling time in both the

square wave and in the step input cases.

Drive cycle tests

The second set of tests done were using the NEDC drive cycle

as an input speed reference, to emulate vehicle speed during

realistic driving conditions. The isd, isq, vehicle speed, battery

current, battery voltage and battery consumed power for the

drive cycle tests are shown in Figures 9–11.

Figures 9–11 show the isd, isq, vehicle speed, battery current,

battery voltage and battery consumed power for only one case.

The same procedure was repeated for all three approximations

for order of approximations ranging between 4 and 14. For each

case, the mean absolute speed error and mean absolute power

consumed from the battery were obtained and are shown in

Figure 12.

It can be observed from Figure 12 that the Carlson

approximation results in the lowest mean absolute speed

error, indicating better speed tracking performance.

However, the enhanced speed tracking comes at the price

of larger power consumption. The Carlson approximation

results in roughly a 5% lower speed tracking error at low

orders of approximation when compared to Crone or

Matsuda but, on the other hand, consumes roughly 0.3%

more power than the other two approximations. At higher

orders of approximation (12–14), the Crone approximation

performance in terms of speed error improves whereas it

worsens the case of Carlson and Matsuda. Nevertheless, the

Carlson approximation still results in 3.5% less speed

tracking error when compared to Crone and almost 7%

less speed tracking error when compared to Matsuda.

Additionally, as the order of approximation increases, it

can be observed that the power consumption for the Crone

and Matsuda approximations reduces while there is little to

no change in the case of the Carlson approximation. Also, the

Carslon approximation at high orders of approximation

(12–14) consumes 0.4% more power compared to Crone

and 0.6% more than Matsuda.

TABLE 2 FPDT parameter values and controller gains.

Controller FPDT model parameters Controller gains

Kprcs T L Kp Ki ɑ

isd 1506.9 0.47055 0.00021926 0.3755 2.2368 0.7

isq 2376.3 0.01931 0.0052647 0.022492 3.241463 0.9

Speed 6.4441 7.0777 0.0029791 14.063119 5.5473570 0.7
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The battery SOC at the end of the drive cycle tests is shown in

the left column for each approximation in the top section in

Table 3. Since, the same drive cycle was used, the same distance

will be covered at the end of the tests regardless of the

approximation. Therefore, for comparison purposes, the

distance covered while consuming quarter of the battery

FIGURE 5
Id and Iq response for step and square wave inputs.

FIGURE 6
Vehicle speed response for step and square wave inputs.
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FIGURE 7
Battery current, voltage and power for step input.

FIGURE 8
Settling time and overshoot of speed step response.
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capacity (i.e. starting from 100% SOC and ending at 75% SOC)

was noted and is given in the right column for each

approximation in the top section of Table 3. The results

shown in Table 3 solidify the findings that the Matsuda

approximation results in the least power consumption of the

three approximations. This can be observed by the larger distance

covered and the larger remaining SOC in the battery at the end of

the drive cycle test. Furthermore, Table 3 also shows an increase

in distance covered and increase in remaining SOC as the order

of approximation increases, indicating that power consumption

decreases as order of approximation increases for the Crone and

Matsuda approximations; however, this is not the case for the

Carlson approximation. This indicates the order of

approximation has a smaller effect on the power consumption

in the case of the Carlson rather than the Crone and Matsuda

approximations.

To further show the effect of the choice of approximation

and order of approximation has on the energy consumption,

another test was conducted. The simulation was kept running

through multiple iterations of the NEDC drive cycle as an

input speed reference. The simulation was kept running with

the battery SOC initially set to 100% until the battery SOC

reached 20%.

It is clear from the results given in the top section of Table 3,

that the Crone approximation with an order of approximation of

four produces the least driving range and consumes more battery

charge for the same distance. The additional long-range tests will

compare the most energy efficient case for all three

approximations (order of approximation 14) with the overall

worst case which is using the Crone approximation with an order

of approximation of 4. Additionally, the tests were repeated for

higher orders of approximation such as N = 25 and N = 50. The

simulation was kept running until the stopping criteria (20%

FIGURE 9
Id and iq response for a NEDC drive cycle input.

FIGURE 10
Vehicle speed response for NEDC drive cycle input.
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FIGURE 11
Battery current, voltage and power for NEDC drive cycle input.

FIGURE 12
Mean absolute speed error and power consumption.
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battery SOC) was reached and the distance covered in each case

was noted.

In the least energy efficient case (Crone, N = 4), the vehicle

was able to cover a distance of 1812.16 m. The vehicle was able to

cover 1833.9, 1854.6 and 1929.2 m for the Crone, Carlson and

Matsuda cases respectively withN = 14. However, at larger orders

of approximation (N = 25 or N = 50) the distance covered using

the three approximations become very similar with all of them

covering roughly 1991.2 m, these results are summarized in the

bottom section of Table 3. This shows that the choice of

approximation and order of approximation has a greater

effect on the vehicle range at lower orders of approximations.

Although the computation time and effort are greatly increased

as the order of approximation increases.

At lower orders of approximation (up to N = 14), the choice

of approximation and order of approximation can lead to

discrepancies in the distance covered by up to 117 m in one

charge cycle of the battery (between the Crone approximation

with N = 4 and the Matsuda approximation with N = 14),

assuming the maximum depth of discharge of the battery of

80%. This is a 6% difference in the driving range and over

multiple charge cycle this will add up. The results indicate that

using theMatsuda approximation will lead to more energy saving

in the long run. Also, this will lead to less number of charge cycles

for the battery prolonging the battery life.

A trend of improved power consumption is observed as the

order of approximation increases, with the performance (in

terms of power consumption) being almost the same across

all approximations at larger order of approximation (N =

25 or N = 50). However, the Matsuda approximation resulted

in a larger improvement in the power consumption at lower

orders of approximation, i.e., imposing lower computation cost

and computational time requirements. Similar power

consumption can be achieved by the other approximations;

however, at larger order of approximation resulting in larger

computational time and effort. Therefore, the Matsuda

approximation may be preferred in applications where lower

computational time and effort is preferred as it resulted in the

least power consumption at lower order of approximation (up

to N = 14).

Conclusion

If fractional order speed controllers are used for

controlling the motor speed of an EV, the results indicate

that the order of approximation and method of

approximation used has definite effects on estimating the

driving range of an EV. This has the potential to accumulate

over time resulting in large effects on overall energy

consumption and reduced driving range compared to what

is expected. It is also seen from the results that there is a

tradeoff between power consumption and speed tracking

performance. Compromising on the motor speed tracking

performance has the ability to reduce power consumption

and improve driving range when a particular fractional order

TABLE 3 Remaining SOC at the end of drive cycle and distance covered using 25% SOC [SOC starts at 100% and goes to 75%] (top section).

Order of
approximation (N)

Carlson Crone Matsuda

Remaining SOC
(%)

Distance (m) Remaining SOC
(%)

Distance (m) Remaining SOC
(%)

Distance (m)

4 63.852 901.0705 63.962 904.6385 64.000 905.9067

6 63.852 901.0705 63.969 904.8594 63.984 905.2083

8 63.852 901.0705 63.989 905.5251 64.023 906.4501

10 63.854 901.2553 63.985 905.2174 64.027 906.5673

12 63.854 901.2553 63.994 905.5832 64.074 908.1862

14 63.854 901.2553 64.019 906.3712 64.083 908.3136

Long range tests

Order of approximation (N) Crone Carlson Matsuda

Distance Travelled (m)

14 1833.93 1854.64 1929.22

25 1991.06 1991.20 1991.20

50 1991.16 1991.21 1991.22

Distance covered using 80% SOC [SOC starts at 100% and goes to 20%] (bottom section).
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controller is used with a fixed and not very high order of

approximation.
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