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In this study, a state-space pole placement approach is first proposed to design

high-order PID controllers for high-order processes. The methodmakes use of

a single parameter to determine the locations of closed-loop poles; thus, a

high-order PID controller can be tuned with this parameter. To implement the

high-order PID controller in practice, an observer-based PID structure is

proposed. The structure utilizes a model-free observer to estimate the plant

output and its derivatives, thus retaining the high-order PID structure but can

filter the measurement noise and make the high-order derivatives of the plant

output available for control. The proposed method is applied to design high-

order PID controllers for second-order processes with time delay. Simulation

results show that high-order PID can indeed improve the performance of

conventional PID controllers for second-order processes with time delay in

disturbance rejection and robustness.
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1 Introduction

Proportional–integral-derivative (PID) control is the most common feedback control

mechanism in the industrial process (Åström and Hägglund, 2001; Chen and Seborg,

2002; Åström and Hägglund, 2006). The reason is that the three parameters of the PID

controller have a clear relationship with the performance of the system, so it is easy to tune

online. However, with the increase in the complexity of industrial processes and the

uncertainties of the controlled plant, the traditional PID control may not meet the

requirements of control performance due to its structural characteristics. Some

limitations of the PID controller are illustrated in Oliveira et al. (2009). Some

techniques are proposed to improve the PID control, including adding integral

feedback, feedforward, or delay compensation to the traditional PID loop, which

makes the PID structure complicated and requires extra parameters (Duan et al.,

2008). On the other hand, control scholars put forward many advanced control

methods to replace PID control, such as LQG (Garrido-Moctezuma et al., 1997), H

infinity (Tan et al., 2006), and adaptive control (Mocci et al., 2020). Although these

advanced control methods improve the control performance, they are rarely used in
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practice due to implementation, tuning, and maintenance issues.

Therefore, more than 90% of the loops in the industrial process

still use the PID structure (Dash et al., 2015; Latif et al., 2020).

It is well-known that PI control is suitable for first-order

processes and PID control is suitable for second-order processes.

For second-order processes with time delays, will high-order PID

with a second-order derivative (PIDD2) improve the

performance of the conventional PID? When the control

performance for high-order processes can be improved by

increasing the controller order beyond the PID control, there

are few literature works investigating how to tune the parameters

of high-order PID to enhance the disturbance rejection ability.

Vrančić and Huba, (2021) show that the high-order PID

controllers can significantly improve the control performance of

various process models. Lin et al. (2021) illustrate that high-order

linear active disturbance rejection controllers (LADRCs) can be

interpreted as high-order PID with low-pass filters for speed

servo systems and position servo systems. Huba et al. (2021) find

that high-order PID control enables faster transients by

simultaneously reducing the negative effects of measurement

noise and increasing the closed-loop robustness. Huba and Vrani

(2018) extend the 2DOF PI and PID controller design for the

first-order time-delayed plant by the multiple real dominant pole

method to the 2DOF PIDD2 control. A novel optimal PID plus

second-order derivative controller for the AVR system is

proposed by Sahib (2015). An algorithm of optimal settings

for high-order PID in ship power plants is proposed with

perfect performance (Simanenkov et al., 2017).

In practice, PI controllers are used more often than PID

controllers, since the latter significantly increases the controller

output noise (Ediga and Ambati, 2021). One reason is that the

derivative term is very sensitive to the measurement noise, so an

appropriate filter can significantly improve the closed-loop

performance (Segovia et al., 2014). Naturally, with higher

degrees of controllers, the problem becomes aggravated.

Therefore, the appropriate high-order filter is inevitable in

practical applications. Furthermore, obtaining derivative and

high-order derivative signals may amplify sensor noises.

Therefore, the filter is usually considered an integral part of

the PID design, and the filter constants need to be selected as a

compromise between robustness and performance, so PID

tuning is essentially a four-parameter design procedure.

However, noise is not considered in high-order PID at

present. In view of this, considering the form of the high-

order PID controller and ensuring the selection of its

adjustable poles should be an improvement way that can be

considered. Therefore, a high-order PID design method and

noise suppression method are proposed in this study.

In this study, an observer is used to estimate the output and

derivative of the system, and a high-order PID control structure

is proposed, which does not depend on the controlled plant

model and retains the traditional PID control structure but

increases the controller’s disturbance rejection ability. Usually,

a time delay is an approximation of high-order dynamics of the

controlled plant except the pure transport delay. So, a process

with time delay is in fact a high-order system; thus, a high-order

PID controller can be used to achieve better control performance.

The goal of the study was to propose a practical control structure

that can utilize high-order derivatives of the process to improve

the control performance, as compared with the conventional

three-term PID controller, and we tried to design the controller

via the modern control method. The structure and the design

method can build a link between the modern control theory and

classical control theory. The main contributions of this study are

as follows: 1) an observer-based PID structure is proposed to

improve the performance of conventional PID by providing

high-order derivatives. The proposed observer-based PID

structure is an extension of the conventional PID + filter

FIGURE 1
Structure of the observer-based PID.
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structure in which high-order derivatives can be incorporated

into the structure and the measurement noise can be handled

through the extended state observer. 2) A state-space pole

placement method is proposed to directly design PID gains,

thus linking the modern control theory with the classical control

theory. It retains the essential terms of conventional PID. To

obtain a PID controller gain, the trick is to transform the model

into the canonical observable form. The method is applied to

second-order processes with time delay, and the simulation

results show that the structure can achieve better performance

than other variations of PID, and the design is in the usual

modern control theory framework.

The structural arrangement of this study is as follows: in

Section 2, the high-order PID controller is proposed to design

through the pole placement method; in Section 3, an observer-

based PID is proposed to implement high-order PID in practice;

the structure and tuning of high-order PID for a variety of

second-order timed-delayed systems are tested in Section 4;

finally, conclusions are given in Section 5.

2 Design of high-order PID
controllers via pole placement

There are many methods to get the parameters of an ideal

PID. It is possible to apply the state feedback design in the PID

design which is a convenient and useful control design method in

the modern control theory. It is shown that the available plant

model information used in the high-order PID design can

guarantee the stability of the actual plant. Suppose the

controlled plant has a minimal state-space realization as follows:

{ _x � Ax + Bu,
y � Cx.

(1)

In this study, we will propose a method to design a high-

order PID controller. Our idea is to obtain a state feedback

control law u � Kx using the well-known pole-placement

method. However, since the state vector x is not necessarily

composed of y and its derivatives,K is not a PID control gain. To

solve the problem, consider the canonical observable form of the

controlled plant which is used to make sure that the state-

feedback gain is the PID gain:

{ _z � Aoz + Bou,
y � Coz,

(2)

where z � [z1 z2 / zm]T is the state vector, and

Ao �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 / 0
0 0 1 / 0
..
. ..

. ..
.

1 ..
.

0 0 0 / 1
−a0 −a1 −a2 / −am−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
m×m

,Bo �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1

d2

d3

..

.

dm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
m×1

,

�Ce � [ 1 0 / 0 0 ]1×m,
(3)

Ao � TAT−1, Bo � TB, Co � CT−1, (4)

where T is a state transformation matrix and the observability

matrix of (1). In this canonical form, the state vector z has a clear

physical meaning, and its elements are:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
_z1 � z2 + d1u,
_z2 � z3 + d2u,

..

.

_zm−1 � zm + dm−1u.

(5)

Since y � z1, then

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
z2 � _z1 − d1u � _y − d1u

z3 � _z2 − d2u � €y − d1u − d2u

..

.

zm � _zm−1 − dm−1u � y(m−1) − d1u
(m−2) −/dm−1u

(6)

Define a new variable zm+1 as

_zm+1 � z1 � y . (7)

Here, zm+1 is the integral of y, and the extended state-space

model of the controlled plant is

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[ _z
_zm+1

] � [Ao 0
Co 0

][ z
zm+1

] + [Bo

0
]u,

y � [Co 0 ][ z
zm+1

]. (8)

Suppose a state-feedback control law Ko �
[ k1 k2 / km km+1 ] has been designed for (8), then

u � k1 + z1 + k2z2 +/ + kmzm + km+1zm+1
� k1y + k2( _y − d1u) +/

+ km(y(m−1) − d1u
(m−2) −/ − dm−1u) + km+1 ∫

t

0

y(τ)dτ.
(9)

To obtain a static state feedback gain with only derivatives

and integral of y, by ignoring the derivatives of u, then we have

u �
k1y + k2 _y +/ + kmy

(m−1) + km+1∫t

0
y(τ)dτ

1 +∑m

i−2kidi−1
. (10)

Here, u is the combination of the derivatives and integrals

of y. It is in the form of a high-order PID control, with gain.

�Ko � [ km / k2 k1 km+1 ]
1+∑m

i−2kidi−1
� : [Kd,m−1 / Kd2 Kd

KpKi].

TABLE 1 Comparison of different controllers’ performance in
Example 1.

Controller MS ITAE TV ITAE (noise) TV (noise)

OB-PID 1.59 467.2368 1.06 3341.7 329.90

PID-N 1.64 470.4819 1.68 3369.5 505.79
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For the second-order system (m = 2), (10) is the conventional

PID control, with

Kp � k1
1 + k2d1

, Ki � k3
1 + k2d1

, Kd � k2
1 + k2d1

. (11)

For the third-order system (m = 3), (10) is PIDD2. A PIDD2

form extends the conventional PID structure with a second-order

derivative. Gains have clear physical meaning and are directly

related to the performance of the closed-loop system, with

Kp � k1
1 + k2d1 + k3d2

, Ki � k4
1 + k2d1 + k3d2

, Kd � k2
1 + k2d1 + k3d2

Kd2 � k3
1 + k2d1 + k3d2

.

(12)

The state-feedback law (9) can be designed by the well-

known pole-placement method. It is well-known that the

dominant poles determine the rise time and damping of the

closed-loop system, so they can be used to tune the parameters of

high-order PID. To design different-order controllers, different

numbers of poles are selected as suggested in (13). The two poles

(s1, s2) are dominant poles, and others (si, i � 3, . . . ,m + 1) are
located in the same place with a larger real part that is determined

by the parameter �α. For example, to design a second-order

controller (PID), three poles (a pair of dominant poles + a

negative real pole) can be used in the pole-placement method.

To design a third-order controller (PIDD2), four poles (a pair of

dominant poles + two (same) negative real poles) can be used.

For simplicity, the poles can be chosen as:

s1,2 � −�ωc(�ξ ± ������
1 − �ξ

2
j

√ ), si � −�α�ωc(i � 3,/, m + 1) . (13)

From extensive simulations, in order to have good damping

and fast settling time in the disturbance rejection response, the

damping ratio �ξ of the dominant poles can be chosen as 0.8 and �α

FIGURE 2
Responses for Example 1. (A) Nominal plant. (B) 20% variations in model parameters. (C) Bode plots of controllers. (D) Measurement noise.
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can be chosen as 2 for other poles so that the disturbance

rejection response has a good damping and fast settling time.

So, we need only one parameter �ωc to tune the high-order PID

gain �Ko.

3 Practical implementation of high-
order PID controllers

In the previous section, ideal PID and PIDD2 controllers

were designed and tuned. It is well-known that the derivative

action is sensitive to measurement noise, so in practice, filters

should be used to implement ideal PID and PIDD2

controllers.

In this study, we try to estimate the derivatives of the output

via an observer instead of using filters. Consider the ideal

PIDDm−1 controller:

u � Kpy +Kd _y +/ +Kd,m−1y(m−1) + Ki∫
t

0

y(τ)dτ . (14)

It can be treated as the state-feedback gain u � �Kox for the

following state-space model.

{ _x � �Aex + �Beu,
y � �Cex,

(15)

where the state vector is defined as

x � ⎡⎢⎢⎢⎢⎢⎣y(m−1) / _y y ∫t
0

y(τ)dτ ⎤⎥⎥⎥⎥⎥⎦
T

(16)

and the controller gain is

�Ko � [Kd,m−1 / Kd Kp Ki ] , (17)
and the state-space matrices are

FIGURE 3
Responses for Example 2. (A) Nominal plant (b) 5% variations in model parameters. (C) Bode plots of controllers. (D) Measurement noise.
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TABLE 2 Comparison of different controllers’ performance in Example 2.

Controller MS ITAE TV ITAE (noise) TV (noise)

OB-PID 11.74 825.37 1.96 788.92 12688

PID-N 10.71 837.48 2.75 1670 50855

TABLE 3 Comparison of different controllers’ performance in Example 3.

Controller MS ITAE TV ITAE (noise) TV (noise)

OB-PID 3.58 451.19 4.53 21733 811.92

PID-N 6.91 450.78 7.90 17905 809.07

FIGURE 4
Responses for Example 3. (A) Nominal plant. (B) 5% variations in model parameters. (C) Bode plots of controllers. (D) Measurement noise.
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�Ae �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 / 0 0
1 0 / 0 0
0 1 / 0 0
..
. ..

.
1 ..

. ..
.

0 0 / 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(m+1)×(m+1)

, �Be �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
b0
0
0
..
.

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(m+1)×1

�Ce � [ 0 / 0 1 0 ]1×(m+1).

(18)

The state vector (1) contains the (high-order) derivatives and
integral of y. An extended Luenberger observer (Du et al., 2022)

can be used to observe the state variables, so the derivatives and

integrals of y can be estimated instead of using a filter.

_�x � ( �Ae − �Lo
�Ce)�x + �Beu + �Loy (19)

with the observer gain �Lo, where

�Lo � [ �β1 �β2 / �βm 1 ]T . (20)

TABLE 4 Comparison of different controllers’ performance in Example 4.

Controller MS ITAE TV ITAE (noise) TV (noise)

OB-PID 2.33 459.99 3.73 459.93 1739.2

PID-N 2.43 460.02 4.75 459.96 5043.6

FIGURE 5
Responses for Example 4. (A) Nominal plant. (B) 10% variations in model parameters. (C) Bode plots of controllers. (D) Measurement noise.
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For simplicity, the observer gain �Lo (20) can be tuned via the

bandwidth idea (Gao, 2003). The poles of the observer are all

placed at the same location (−ωo), so the observer gain can be

found from:

�βi � Ci−1
m ωm+1−i

o (i � 1, . . . , m) , (21)

when the observer gain is chosen properly, �Ae − �Lo �Ce is

asymptotically stable, and

�x1(t) → y(m−1)(t),/, �xm(t) → y(t),
�xm+1(t) → ∫t

0

y(τ)dτ. (22)

Combining the state feedback control and the observer, a

state-space realization (mth-order) of PIDD(m−1) (hereafter, it

will be referred to as an observer-based PID (OB-PID)) is

obtained as:

{ _�x � ( �Ae − �Lo
�Ce)�x + �Beu + �Loy,

u � �Ko(�r − �x). (23)

Note that (23) is a standard state-feedback-observer form;

however, the novelty is that the state-feedback gain can be

interpreted as the (high-order) PID gain due to the special

state-space coefficients, and thus it builds a link between

modern control and classical control theories. Not every state-

feedback-observer form can be interpreted as this. It is a practical

implementation of the ideal PIDD(m−1) (an extension of

traditional PID with high-order derivatives).

The structure of mth-order observer-based PID is shown in

Figure 1, where the derivatives of the signal r are set to zero for

step-like reference and α is a setpoint weight that can improve the

tracking performance significantly by reducing the overshoot for

integrating and unstable processes. By default, α � 1. Thus, as the

pole placement procedure shown in section 2, for mth-order

observer-based PID, one parameter ωc (controller bandwidth)

can be used to tune �Ko (17) and one parameter ωo (observer

bandwidth) can be used to tune �Lo (20).

It is noted that the output y(t) and its derivatives are

estimated from the canonical cascaded integral model in mth-

order observer-based PID:

y(m)(t) � b0u(t) , (24)

instead of using the true model. Thus, the model-independent

control structure of PID is retained.

b0 is a scaling coefficient of estimation of y, which can help

reduce the bandwidth of the observer when necessary. This can

be verified by the transfer function from y to u of observer-based

PID. The proposed design method relies on the order of the

system (in fact, on the model of the system), which is not

accurately known in a practical system. However, the

proposed observer-based PID structure is independent of the

detailed model, just like conventional PID. The difference is that

the conventional PID is restricted to second-order, while the

observer-based PID can be of any order. The order is the

information that the designer knows about the controlled

plant. For a high-order system, if a first-order model is used

to approximate it, then a first-order controller (PI) will be

obtained; if a second-order model is used, then a second-

order controller (PID) will be obtained; and if a third-order

model is used, then a third-order controller (PIDD2) will be

obtained. So the order can be chosen by the designer. In this

study, we are interested in the PIDD2 controller, so a second-

order model with time delay (the third-order model) is used in

the design. For example, when m � 2, the feedback controller

from y to u becomes

Kc(s) �
(Kdβ1 + Kpβ2 +Ki)s2 + (Kpβ1 + Kiβ2)s +Kiβ1

s(s2 + (β2 + Kdb0)s + (β1 + Kpb0 + Kdβ2b0)) ,

(25)
when Kd, Kp, Ki and �β1, �β2 are fixed, and a small b0 will make

the integral gain of Kc(s) approximate the integral gain Ki of the

ideal PID.

4 Simulation

This section verifies the high-order PID design for a variety of

second-order processes with time delay. To use the state-space

pole placement method, the delay can be approximated using the

first-order Pade approximation. As an application of the high-

order PID control, we consider disturbance rejection and

robustness analysis of different control methods. To measure

the robustness of the designed system, the peak of the sensitivity

function (Ms � S∞ � max
ω

| 1
1+L(jω)|) is used, where

L(s)� G(s)K(s) is the open-loop transfer function. It is to be

noted that the peak of S usually occurs at low- and mid-

frequencies, so Ms is a measure of system robustness against

low- and mid-frequency uncertainties. The larger the value of

Ms, the weaker the robustness and the better the disturbance

rejection. Similarly, the smaller the value of Ms, the better the

robustness and the worse the disturbance rejection performance.

Total variations (TV � ∑∞
1 |ui+1 − ui|) of the control input u(t)

for different controllers are also used in this study. They are

compromised with pole positions, which are determined by ωc in

(13) and ωo in (21). To evaluate the closed-loop load disturbance

attenuation performance, the integral of time and absolute errors

(ITAE) is considered, which is defined as:

ITAE � ∫∞
0

t|e(t)|dt, (26)

where e(t)� r(t) − y(t). For fair comparisons, in the following

simulations, ideal PID is implemented via the practical PID, with

the filter time constant Td/N (n = 20) if the references have not
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given the practical PID form. Also, since the initial response of a

PID controller is large without setpoint weighting, while the

proposed OB-PID has setpoint weighting, the control signals of

the simulations are plotted within a suitable limit to distinguish

them from the load disturbance rejection response. The

performance indexes, ITAE and TV, are computed only for

the load disturbance rejection response.

Example 1. Considering the following second-order plus time

delay (SOPTD) process

G1(s) � e−2s

(s + 1)(0.7s + 1) , (27)

a high-order PID control can be tuned with ωc � 0.62 for �Ko,

and we can get PIDD2 gain as

Kp � 0.7506, Ki � 0.3371, Kd � 0.5497, Kd2 � 0.1297 . (28)

The observer bandwidth �ωo � 10 is chosen for the extended

observer gain. Then, a third-order observer-based PID with the

following parameters can be obtained:

�Ko � [ 0.1297 0.5497 0.7506 0.3371 ], b0 � 1 ,

�Lo � [ 1000 300 30 1 ]T, α � 0.5 , (29)

where a setpoint weight α � 0.5 is used to reduce the overshoot of

the setpoint response. For comparison, consider the practical

PID (n = 20) for the ideal PID as follows (Wang et al., 2016):

KPID−N � 0.435(1 + 1
1.6532s

+ 0.4036s
0.4036/Ns + 1

) . (30)

The performance indexes for the two controllers are listed in

Table 1. It clearly shows that the observer-based PID (29) has

better disturbance rejection performance and robustness than the

practical PID (30). Figure 2A shows the responses of the closed-

loop system, where at t = 0 s, a unit step reference is inserted and

a step disturbance input of magnitude 1 is inserted at t = 40 s. The

red dotted dashed red line and black solid line represent the

responses of the practical PID form (30) and observer-based PID

(29), respectively.

It can be clearly seen from Figure 2A that the observer-based

PID has better disturbance rejection, faster response speed, and

smaller overshoot than the practical PID as shown in Wang et al.

(2016). The Bode plots (Figure 2C) show that the observer-based

PID (29) and the practical PID (30) roll off at high frequencies,

thus attenuating measurement noise as expected. The observer-

based PID has a larger roll-off rate; thus, the observer-based PID

has better performance against high-frequency noise. In

Figure 2D, the system with a white noise with the power of

0.0001 and a sampling period of 0.1 s is introduced into the

process output. It shows that the proposed observer-based PID

has better sensor noise rejection performance than the practical

PID (30). In the actual situation, there always exists a model

mismatch. In order to evaluate the robustness of the controller, a

20% increase in the process gain and time delay and a 20%

decrease in the two-time constants are considered, i.e., the

perturbed plant is G1
′(s) � 1.2e−2.4s/[(0.8s + 1)(0.56s + 1)].

The responses are shown in Figure 2B. ITAE, robustness

measure Ms, and TV of the control input u(t) for the

perturbed system are also listed in Table 1. The TV of the

observer-based PID is smaller and thus has better control

effort. The simulation results show that the proposed

observer-based PID gives better control performances in the

set-point tracking, disturbance rejection performance, and

robustness than the practical PID as given in Wang et al. (2016).

Example 2. Considering the unstable process with a large time

delay (USOPDT):

G2(s) � e−1.2s

(s − 1)(0.5s + 1) . (31)

To tune a high-order PID for this plant, ωc � 0.37 is chosen

with the desired pole of the closed-loop placed at -2 to cancel

0.5s + 1; finally, we get a PIDD2 with the following gains:

Kp � 1.1625, Ki � 0.0240, Kd � 1.1808, Kd2 � 0.3028 . (32)

The extended observer gain can be tuned with the observer

bandwidth �ωo � 50; thus, an observer-based PID with the

following parameters can be obtained:

�Ko � [ 0.3028 1.1808 1.1625 0.0240 ], b0 � 1 ,

�Lo � [ 125000 7500 150 1 ]T, α � 0 . (33)

Consider the controller designed by Shamsuzzoha and Lee

(2009). A practical PID (n = 20) is implemented in practice for

the controller:

KPID−N � 1.1165(1 + 1
61.3412s

+ 0.4983s
0.4983/Ns + 1

)( 0.6s + 1
0.0145s + 1

) .
(34)

The responses of the processes under the observer-based PID

(33) proposed in this study and practical PID in Shamsuzzoha

and Lee, (2009) are shown in Figure 3. Compared with the

practical PID, the observer-based PID can achieve better tracking

and disturbance rejection performance. The performance

indexes for different controllers are listed in Table 2. It clearly

shows that the observer-based PID (33) has better disturbance

rejection performance and better control effort with smaller TV

than the practical PID (34). Figure 3A shows the responses of

closed-loop systems, where at t = 0 s, a unit step reference is

inserted and a step disturbance input of magnitude 0.1 is inserted

at t = 100 s. The red dotted dashed red line and black solid line

represent the response of the practical PID form (34) and

observer-based PID (33), respectively.

It can be clearly seen from Figure 3A that the observer-based

PID has better disturbance rejection and faster response speed

than the practical PID in Shamsuzzoha and Lee, (2009). The
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Bode plots (Figure 3C) show that the observer-based PID (33)

and the practical PID (34) roll off at high frequencies, thus

attenuating measurement noise as expected. The observer-based

PID has a larger roll-off rate; thus, the observer-based PID has

better performance against high-frequency noise. In Figure 3D,

the system with a white noise with a power of 0.00001, and a

sampling period of 0.1 s is introduced into the process output. It

shows that the proposed observer-based PID has better noise

rejection performance than the practical PID (34). In the actual

situation, there always exists a model mismatch. In order to

evaluate the robustness of the controller, a 5% increase in the

process gain and time delay and a 5% decrease in two-time

constants are considered, i.e., the perturbed plant is

G2
′(s) � 1.05e−1.26s/[(0.95s − 1)(0.475s + 1)]. The responses are

shown in Figure 3B. ITAE, robustness measureMs, and TV of the

control input u(t) for the system are also listed in Table 2. The TV

of the observer-based PID is smaller and thus has better control

effort. The simulation results show that the proposed observer-

based PID gives better control performances both in the setpoint

tracking and disturbance rejection performance than the

practical PID as given in Shamsuzzoha and Lee, (2009).

Example 3. The following second-order dead time process with

two unstable poles process (SODPTUP) is considered:

G3(s) � 2e−0.3s

(3s − 1)(s − 1) . (35)

A two-degree-of-freedom control structure with a

disturbance estimator in the form of the practical PID (n =

20) was proposed by Shamsuzzoha and Lee (2009) for this

process:

KPID−N � 3.5671(1 + 1
1.491s

+ 1.3364s
1.3364/Ns + 1

)( 0.15s + 1
0.0058s + 1

) .
(36)

To tune a high-order PID for this plant, choose �ωc � 1.35 and

we get PIDD2 with the following gains:

KP � 3.2194, Ki � 1.7917;Kd � 5.2097, Kd2 � 0.6010 . (37)

The extended observer gain can be tuned with the observer

bandwidth �ωo � 100; thus, the observer-based PID with the

following parameters can be obtained:

�Ko � [ 0.6010 5.2097 3.2194 7.1917 ], b0 � 1 ,

�Lo � [ 1003 3 × 1002 300 1 ]T, α � 0.2. (38)

The performance indexes for different controllers are listed

in Table 3. It clearly shows that the observer-based PID (38) has

better robustness and control effort than the practical PID (36).

Figure 4A shows the responses of the closed-loop system, where

at t = 0 s, a unit step reference is inserted and a step disturbance

input of magnitude 1 is inserted at t = 20 s. The red dotted dashed

red line and black solid line represent the response of the practical

PID form (36) and observer-based PID (38), respectively. The

Bode plots (Figure 4C) show that the observer-based PID (38) and

the practical PID (36) roll off at high frequencies, thus attenuating

measurement noise as expected. The observer-based PID has a

larger roll-off rate; thus, the observer-based PID has better

performance against high-frequency noise. In Figure 4D, the

system with a white noise with a power of 0.00001 and a

sampling period of 0.1 s is introduced into the process output.

In order to evaluate the robustness of the controller, a 20% increase

in the process gain and time delay and a 20% decrease in two-time

constant are considered, i.e., the perturbed plant is

G′
3(s) � 2.1e0.315s/[(2.85s − 1)(0.95s − 1)]. The responses are

shown in Figure 4B. ITAE, robustness measure Ms, and TV of

the control input u(t) for the system are also listed in Table 3. The

two controllers have almost the same TV, thus having almost the

same control effort when there is noise. The simulation results

show that the proposed observer-based PID gives good control

performances and good robustness and almost the same noise

attenuation compared with the practical PID given in

Shamsuzzoha and Lee, (2009).

Example 4. Considering the unstable process with an

integrator:

G4(s) � e−0.2

s(s − 1) . (39)

To tune a high-order PID for this plant, choose �ωc � 1.5 and

we get a PIDD2 with the following gains:

KP � 3.1320, Ki � 1.7084, Kd � 3.4771, Kd2 � 0.1564 . (40)
With �ωo � 50, we get a third-order observer-based PID with the

following gains:

�Ko � [ 0.1564 3.4771 3.1320 1.7084 ], b0 � 1 ,

�Lo � [ 125000 7500 150 1 ]T, α � 0.1 . (41)

For comparison, consider the two-degree-of-freedom control

structure with a disturbance estimator in the form of the practical

PID (n = 20) proposed by Shamsuzzoha and Lee, (2009) for this

process.

KPID−N � 3.0241(1 + 1
1.7941s

+ 1.058s
1.058s/N + 1

)( 0.1s + 1
0.0087s + 1

) .
(42)

The performance indexes for different controllers are listed in

Table 4. It clearly shows that the observer-based PID (41) has

better control effort than the practical PID (42) but disturbance

rejection performance and robustness similar to the practical PID.

Figure 5A shows the responses of the closed-loop system, where at

t = 0 s, a unit step reference is inserted and a step disturbance input

of magnitude 1 is inserted at t = 15 s. The red dotted dashed red

line and black solid line represent the response of the practical PID

form (42) and observer-based PID (41), respectively.
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It can be clearly seen from Figure 5A that the observer-based

PID has almost the same disturbance rejection performance as

the practical PID as shown in Shamsuzzoha and Lee, (2009). The

Bode plots (Figure 5C) show that the observer-based PID and the

practical PID roll off at high frequencies, thus attenuating

measurement noise as expected. The observer-based PID has a

larger roll-off rate; thus, the observer-based PID has better

performance against high-frequency noise. In Figure 5D, the

system with a white noise with a power of 0.0001 and a sampling

period of 0.1 s is introduced into the process output. It shows that

the proposed observer-based PID has better noise rejection

performance than the practical PID. In order to evaluate the

robustness of the controller, a 10% increase in the process gain

and time delay and a 10% decrease in the time constant are

considered, i.e., the perturbed plant is

G4
′(s) � 1.1e−0.22s/[s(0.9s − 1)]. The responses are shown in

Figure 5B. ITAE, robustness measure Ms, and TV of the

control input u(t) for the system are also listed in Table 4.

Simulation results show that the proposed observer-based PID

has almost the same performance in disturbance rejection and

robustness but better noise attenuation than the practical PID as

shown inShamsuzzoha and Lee, (2009).

5 Conclusion

A state feedback pole-placement method was proposed to

design high-order PID controllers, and an observer-based PID

structure was proposed to implement high-order PID controllers.

The observer-based PID can effectively suppress noise by

estimating the derivatives of the plant output through a

model-independent observer. It was shown that the observer-

based PID can be tuned with two parameters, ωc, for PID control

gain, and ωo, for observer gain. Simulations for second-order

processes with time delay showed that high-order PID may

achieve better performance than the traditional PID, and the

proposed observer-based PID can achieve a better tradeoff

among disturbance rejection, robustness, and noise attenuation.

It is observed that if a cost function is used in the state-

feedback design and observer design, then it can be directly

related to an optimal controller; thus, an observer-based PID can

also be designed via the well-known LQG method, which will be

investigated in the future.
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