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For industrial processes subject to input delay, a predictor-based phase-lead

active disturbance rejection control (ADRC) scheme is proposed in this article

for improving disturbance rejection performance by introducing a phase-lead

module for feedback control. First, an extended state observer (ESO) in

combination with a generalized delay-free output predictor is presented to

estimate the delay-free system state together with load disturbance lumped

with process uncertainties. To reduce the phase lag caused by not only ESO but

also the delay-free output predictor, a phase-lead module is then added into

the disturbance observation channel so as to expedite disturbance estimation

and thus improve the disturbance rejection performance. Consequently, the

ESO gain vector and feedback controller are analytically designed by specifying

the desired poles for the observer and the closed-loop system, respectively.

Moreover, a digital implementation of the proposed scheme is presented to

facilitate the practical applications, followed by a robust stability analysis of the

closed-loop systembased on the small gain theorem. Illustrative examples from

the literature are used to demonstrate the effectiveness and merits of the

proposed method over the existing methods.
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1 Introduction

Time delay, in particular for input/output delay, is pervasive in various industrial

processes owing to mass transportation, energy exchange, and signal processing. (Liu and

Gao, 2012). Control design without considering time delay usually degrades the system

performance and sometimes even destabilizes the controlled system. Over the past few

decades, a lot of effort has been devoted to developing advanced control methods for

industrial processes with time delay (Normey-Rico and Camacho, 2007; Zhou, 2014;

Fridman, 2014; Richard, 2003; Zhu et al., 2017; Cacase and Germani, 2017). It is well

known that the proportional-integral-derivative (PID) controller which is most widely
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adopted in practice could only be capable of controlling systems

without delay or with a small time delay (Ang et al., 2005). The

pioneering work of dealing with long-time delays could be dated

back to the well-known Smith predictor (SP) (Smith, 1957).

However, the original SP could only be applied to open-loop

stable processes owing to the internal stability issue (Normey-

Rico and Camacho, 2007). In the past decades, various modified

SPs have been developed for application to stable, integrating, or

unstable processes, such as filtered SP (FSP) (Normey-Rico and

Camacho, 2009), generalized predictor (GP) (Garcia and

Albertos, 2013), simplified generalized predictor (SGP) (Liu

et al., 2018), and generalized Smith predictor (Sanz et al., 2018).

Apart from time delay, disturbance rejection is another core

issue to be tackled in process control. The existing anti-

disturbance control methods can be roughly classified into

two categories: one is passive-type disturbance rejection based

on the classical unity feedback control loop, for example, PID

control and H infinity control, etc., and the other is active-type

disturbance rejection, for example, disturbance observer based

control (Li et al., 2016), equivalent-input-disturbance-based

control (Wang et al., 2021), active disturbance rejection

control (ADRC) (Han, 2009), etc. The former could

accommodate bounded disturbance to some extent or

eliminate constant-type disturbance by leveraging the integral

action. In contrast, the latter first estimates process disturbance

and then compensates it timely, such that the disturbance

rejection performance could be apparently improved in

comparison with the former. Therefore, active-type

disturbance rejection methods have received increasing

attention over the past 2 decades; see the survey paper (Chen

et al., 2016) and the references therein. Among the developed

active-type disturbance rejection methods, ADRC has received

adhoc attention in recent years (Huang and Xue, 2014; Chen

et al., 2020; Tan and Fu, 2016). The essence of ADRC is to treat

internal uncertainties (e.g., unmodeled dynamics and model

uncertainties) and external disturbances as a total disturbance

and then estimate it timely by an extended state observer (ESO)

for counteraction in the control law. However, most of the

existing ADRC methods were devoted to delay-free systems.

For the presence of time delay, Zhao et al. (Zhao and Gao,

2014) proposed a modified ADRC to tackle the time delay by

synchronizing the input signal in the controlled plant and ESO.

In Su et al. (2021), a standard robust tuning rule was developed

for a time-delayed ADRC structure based on a second-order plus

time delay process model, followed by a quantitative tuning rule

for a typical first-order plus time delay process model in (Sun

et al., 2022). In Fu and Tan (2017), a two-degree-of-freedom

(2DOF) control structure was studied for unstable time-delayed

systems. Recently, the analytical design of ADRC for nonlinear

uncertain systems with time delay was presented in Chen et al.

(2019). It should be noted that the abovementionedmethods may

not maintain the closed-loop stability in the presence of a large

time delay. To cope with this issue, a predictive ADRC scheme in

the combination of a standard Smith predictor with ESO was

proposed in Zheng and Gao (2014) for stable processes, such that

large time delays could be properly compensated. Based on the

internal model control principle, Zhang et al. (2020) investigated

the parameter tuning of SP-based generalized ADRC for time-

delayed processes. Recently, Liu et al. (2019) developed a

predictive disturbance rejection control (PDRC) method for

sampled systems by combining FSP with model-based ESO,

which could be applied for stable, integrating, or unstable

processes. For non-minimum phase systems with input delay,

a generalized PDRC method was proposed in Geng et al. (2019)

to improve system performance in aspects of set-point tracking

and disturbance rejection. Nevertheless, the existing predictor-

based ESOs (Zheng and Gao, 2014; Zhang et al., 2020; Liu et al.,

2019; Geng et al., 2019) inevitably suffer a phase lag in estimating

the total disturbance, which could affect the disturbance rejection

performance. To alleviate this deficiency, a phase-leading ESO

has been recently proposed in Wei et al. (2021) for a delay-free

nanopositioning stage, such that the accuracy of disturbance

estimation and disturbance rejection performance could be

evidently improved. However, it remains open as yet to

combine phase-lead compensation with a predictor-based

ADRC scheme to further improve disturbance rejection

performance for industrial processes with a large time delay.

In fact, the use of a delay-free output predictor for dealing with

input delay to design ESO for disturbance rejection, as studied in

recent articles (Geng et al., 2019; Liu et al., 2019), may provoke a

larger phase lag for disturbance estimation in comparison with

the developed ADRC methods (Zheng & Gao, 2014; Zhang, Tan,

& Li, 2020; Wei, Zhang, & Zuo, 2021), where the phase lag is

merely caused by ESO. This motivates our study in this article.

In this article, a modified predictor-based phase-lead ADRC

scheme is proposed for industrial stable, integrating, and

unstable processes with input delay by plugging in a phase-

lead module for expediting disturbance estimation, such that the

disturbance rejection performance of the controlled processes

could be significantly enhanced in comparison with the existing

predictor-based ADRC methods (Zheng and Gao, 2014; Zhang

et al., 2020; Geng et al. 2019). In contrast to the recently

developed phase-lead ADRC method (Wei et al. 2021) for

delay-free systems, the proposed design is capable of dealing

with industrial processes with large input delays. A novel

predictor-based phase-lead ESO (PLESO) is constructed to

improve the estimation accuracy of system state and

disturbance based on a generalized predictor for delay-free

output prediction. Accordingly, the observer and the feedback

controller gains are analytically designed by specifying the

desired poles for the observer and the closed-loop system,

respectively. Meanwhile, the robust stability condition of the

proposed closed-loop control structure is established in terms of

nonlinear inequality constraints based on the small gain theorem.

For clarity, the remainder of this article is structured as

follows: in Section 2, a problem statement and some
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preliminaries are presented. The proposed predictor-based

phase-lead ADRC scheme along with its digital

implementation is detailed in Section 3. The control

constraints for holding the closed-loop robust stability are

analyzed in Section 4. In Section 5, three illustrative examples

from the existing literature studies are given to validate the

proposed method. Finally, some conclusions are drawn in

Section 6.

2 Problem statement and some
preliminaries

Consider the following second-order process with input

delay widely adopted to describe the industrial processes:

€y(t) + a1 _y(t) + a0y(t) � b0u(t − θ) + f(y, u, w) (1)

where y(t), u(t), and w(t) denote the process output, control

input, and external disturbance, respectively; a1, a0, and b0 are

the nominal system parameters and θ is the input delay;

f(y, u, w) represents the total disturbance composed of

external disturbances and unmodeled process dynamics.

Hereafter, f(y, u, w) is rewritten as f(t) for the notational

brevity.

For the convenience of control design in this study, the

nominal model of the process in Eq. 1 is expressed by the

following transfer function:

P(s) � G(s)e−θs � b0
s2 + a1s + a0

e−θs (2)

where G(s) stands for the delay-free part. Denoted by

x(t) � [x1(t) x2(t) ]T, the state vector of G(s), a controllable

state-space realization can be expressed by Cm(sI2 − Am)−1Bm

with

Am � [ 0 1
−a0 −a1 ], Bm � [ 0

b0
], Cm � [ 1 0 ]

By regarding f(t) as an extended state, an augmented state-

space description of the abovementioned process in Eq. 1 can be

formulated as follows:

{ _X(t) � AeX(t) + Beu(t − θ) + Ee
_f(t)

y(t) � CeX(t) (3)

where X(t) � [ x1(t) x2(t) x3(t) ]T, x3(t) � f(t) and

Ae � ⎡⎢⎢⎢⎢⎢⎣ 0 1 0
−a0 −a1 1
0 0 0

⎤⎥⎥⎥⎥⎥⎦, Be � ⎡⎢⎢⎢⎢⎢⎣ 0b0
0

⎤⎥⎥⎥⎥⎥⎦, Ce � [ 1 0 0 ], Ee � ⎡⎢⎢⎢⎢⎢⎣ 00
1

⎤⎥⎥⎥⎥⎥⎦
Note that the existing ESO for delay-free systems cannot be

directly applied to the augmented system in (Eq. 3) due to the

time-wise misalignment of control input, especially in the

presence of a large time delay. To circumvent this issue, an

artificially delayed input was introduced in the conventional ESO

(Tan and Fu, 2016) to make the control input synchronous.

However, only real-time system state and total disturbance could

be estimated for control design, which is also not applicable to

system with large time delays. To tackle the abovementioned

issues, a predictor-based ESO has recently been developed in

recent work (Liu et al., 2019), which will be briefly introduced

below for designing the proposed predictor-based PLESO,

_Z(t) � AeZ(t) + Beu(t) + L[yp(t) − CeZ(t)] (4)

where Z(t) � [ z1(t) z2(t) z3(t) ]T is the estimate of X(t + θ),
yp(t) is the delay-free output prediction. L � [ l1 l2 l3 ]T is the

observer gain, which can be simply designed by deploying the

eigenvalues of Ae − LCe at −ω0, where ω0 > 0 is the observer

bandwidth, which could be monotonically tuned to realize a

trade-off between the state estimation performance and closed-

loop stability, that is, a smaller ω0 will generally improve the

disturbance rejection performance but degrade the robust

stability of the closed-loop systems in the presence of process

uncertainties, and vice versa. Specifically, the observer gains can

be analytically determined as follows:

⎧⎪⎨⎪⎩
l1 � 3ω0 − a1,
l2 � 3ω2

0 − a1l1 − a0,
l3 � ω3

0.
(5)

To obtain a delay-free output prediction yp(t), the recently
developed generalized predictor (Sanz et al., 2018) is adopted. To

this end, the nominal system model in Eq. 2 is decomposed as

follows:

P(s) � G(s)e−θs � N(s)
D(s)e

−θs � ~G(s)Γ(s)e−θs (6)

where

Γ(s) � N+(s)N−
Γ(s)

D−
Γ(s)

Q(s, λ)
W0(s) (7)

~G(s) � N ~G
−(s)

D+(s)D ~G
−(s)

W0(s)
Q(s, λ) �

~C(sI − ~A)−1 ~B � ~N(s)
~D(s) (8)

N+(s) and D+(s) contains all non-minimum phase zeros and

unstable poles of G(s), respectively, the minimum phase zeros

and stable poles collected in N+(s) and D+(s), respectively, are
arbitrarily partitioned as D−(s) � D−

Γ(s)D ~G
−(s) and

N−(s) � N−
Γ(s)N ~G

−(s), Q(s, λ) is another filter to be

designed, ( ~A, ~B, ~C) is a minimum-order state-space model of
~G(s), andW0(s) is the Laplace transform of external disturbance,

for example, W0(s) � 1/s for a step-type disturbance. For

practical applications, it is generally suggested to take the

form of a filter Q(s, λ) as

Q(s, λ) � 1

(λs + 1)nq (9)

where λ> 0 is a user-specified tuning parameter, which could

be monotonically adjusted to obtain a trade-off between the
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prediction performance and closed-loop stability against

process uncertainties. The filter order nq can be taken from

the interval [z+ + nw0 − p−, p + nw0 − 1], where z+, nw0, p
−, and

p represent, respectively, the number of non-minimum phase

zeros, the relative degree ofW0(s), the number of stable poles,

and the number of total poles.

Denote another transfer function by

~G*(s) � ~Ce
~Aθ(sI − ~A)−1 ~B � ~N*(s)

~D(s) (10)

Then, the delay-free output prediction can be constructed by

yp(s) � F1(s)u(s) + F2(s)y(s) (11)
where

F1(s) � ~C(I − e−(sI− ~A)θ)(sI − ~A)−1 ~BΓ(s) (12)

F2(s) �
~N*(s)
~N(s) (13)

3 Predictor-based phase-lead ADRC

The proposed predictor-based phase-lead ADRC

(PLADRC) scheme is shown in Figure 1, where F1(s) and

F2(s) are two stable filters to generate the delay-free output

prediction (yp(t)); k1 and k2 are two feedback control gains

responsible for maintaining the stability of the closed-loop

system; kf is the set-point gain for eliminating the steady-state

tracking error; FPL(s) is the phase-lead module for reducing

the phase lag in the estimation of total disturbance so as to

improve the disturbance rejection performance.

For better understanding, the proposed control scheme,

together with its digital implementation, will be detailed in the

following subsections, respectively.

3.1 Proposed predictor-based PLADRC
scheme

Motivated by the fact that fast disturbance estimation could

facilitate control counteraction and therefore improve

disturbance rejection performance, enhanced disturbance

estimation denoted by z4(t) is designed herein for phase-lead

disturbance counteraction, instead of taking z3(t) for this

purpose as studied in the existing predictor-based ADRC

(Zheng and Gao, 2014; Zhang et al., 2020; Liu et al., 2019;

Geng et al., 2019). To this end, let the transfer function

between z3(s) and z4(s) be
z4
z3

� FPL(s) � τs + 1
γτs + 1

(14)

where z3(s) and z4(s) are the Laplace transforms of z3(t) and
z4(t), respectively, τ is the phase-lead parameter to be specified,

and γ ∈ [0, 1] is a multiplier. In particular, when γ � 1, no phase-

lead action takes effect, that is, z4(s) � z3(s). Similar to the

observer bandwidth ω0, the disturbance estimation error could

be effectively reduced by decreasing the multiplier γ.

It follows from the transfer function in (Eq. 14) that

_z4(t) � 1
γ
_z3(t) + 1

γτ
(z3(t) − z4(t)) (15)

Combining Eq. 4 and Eq. 15 yields

_z4(t) � −l3
γ
z1(t) + 1

γτ
z3(t) − 1

γτ
z4(t) + l3

γ
yp(t) (16)

FIGURE 1
Block diagram of the proposed control scheme.
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By regarding z4(t) as another augmented state of predictor-

based ESO in Eq. 4, a new predictor-based PLESO is proposed as

follows:

_̂Z(t) � ÂeẐ(t) + B̂eu(t) + L̂[yp(t) − CeẐ(t)] (17)
where

Âe �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

−a0 −a1 1 0

0 0 0 0

0 0
1
γτ

− 1
γτ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, B̂e �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0
b0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, Ĉe � [ 1 0 0 0 ],

L̂ �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

l1

l2

l3

l3
γ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Based on the improved estimation of the θ-step ahead

disturbance f and system state x, the feedback control law in

the proposed control scheme is designed as follows:

u(t) � k1
b0
r̂(t) − K̂Ẑ(t) (18)

where K̂ � [ k1 k2 0 1 ]/b0 � [K0 0 1/b0 ] is the feedback

controller gain. Similar to the design of feedback controller

gain in the conventional ADRC scheme, K0 is designed to

deploy the eigenvalues of A − BK0 at −ωc, where ωc > 0 is the

controller bandwidth, which could be monotonically tuned to

realize a good compromise between the control performance and

closed-loop stability. Consequently, the feedback controller can

be analytically determined as

{ k1 � ω2
c − a0

k2 � 2ωc − a1

and r̂(t) is referred to as a modified reference signal derived by

r̂(t) � kf r(t), where kf is the set-point gain for eliminating the

steady-state tracking error (Zhang et al., 2020), which can be

determined by

kf � lim
s ���→ 0

1

Cm(sI − Am + BmK0)−1Bm

(19)

Remark 1. Note that the PLESO gain L̂ in Eq. 17 contains the

same parameters as those in L in Eq. 4. Similarly, the feedback

controller gain in Eq. 18 shares the same parameters as those in

the conventional ADRC.

Remark 2. In the ideal case, that is, z1(t), z2(t), and z4(t)
exactly estimate the future system states x1(t + θ), x2(t + θ), and
the disturbance f(t + θ), respectively, the closed-loop system

consisting of the process in (Eq. 1) and the controller in Eq. 18

could therefore be expressed in the following form:

_x(t) � (Am − BmK0)x(t) + k1r̂(t − θ)
which implies that the input delay is fully compensated for

control implementation.

By taking the Laplace transforms of the state-space

realization in Eq. 17 and the feedback controller in Eq. 18, it

follows that

⎧⎪⎪⎨⎪⎪⎩
sẐ(s) � ÂeẐ(s) + B̂eu(s) + L̂[yp(s) − ĈeẐ(s)]
u(s) � k1

b0
r̂(s) − K̂Ẑ(s)

(20)

where Ẑ(s) and r̂(s) are the Laplace transforms of Ẑ(t) and r̂(t),
respectively. Then, it can be deduced that

u(s) � C1(s)r̂(s) − C2(s)yp(s) (21)
where

C1(s) � k1
b0
[1 − K̂(sI − Âe + B̂eK̂ + L̂Ĉe)−1B̂e] (22)

C2(s) � K̂(sI − Âe + B̂eK̂ + L̂Ĉe)−1L̂ (23)

Therefore, the proposed predictor-based PLADRC

scheme can be implemented by C1(s) and C2(s),
respectively, in practice. As a consequence, the proposed

control scheme is equivalent to the predictor-based two-

degree-of-freedom (2DOF) control structure depicted in

Figure 2.

Based on the PESO in Eq. 4, one has

z3(s) �
l3[(s2 + a1s + a0)yp(s) − b0u(s)]

(s + ω0)3 (24)

Suppose that the delay-free output prediction denoted by

yp(t) � y(t + θ) could be accurately obtained, there follows

z3(s) � ω3
0

(s + ω0)3 · f(s)e
θs (25)

where f(s) is the Laplace transform of f(t). Therefore, it is easy
to derive

z4(s) � ω3
0

(s + ω0)3 ·
τs + 1
γτs + 1

· f(s)eθs (26)

To be specific, if the disturbance is of step-type with

amplitude of A, that is, f(s) � A/s, it follows that

z4(s) � ω3
0

(s + ω0)3 ·
τs + 1
γτs + 1

· A
s
eθs (27)

Correspondingly, the steady-state estimation error on the

delay-free disturbance is derived as follows:
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e4(0) � lim s
s→0

[f(s)eθs − z4(s)]
� lim

s ���→ 0
s[A

s
eθs − ω3

0

(s + ω0)3 ·
τs + 1
γτs + 1

· A
s
eθs]

� A · lim
s ���→ 0

(s + ω0)3(γτs + 1) − ω3
0(τs + 1)

(s + ω0)3(γτs + 1) eθs � 0

(28)

which indicates that zero prediction error on a step-

type disturbance is guaranteed by the proposed control

scheme.

If the disturbance is of ramp-type with an amplitude of A,

that is, f(s) � A/s2, it follows that

z4(s) � ω3
0

(s + ω0)3 ·
τs + 1
γτs + 1

· A
s2
eθs (29)

Correspondingly, the steady-state estimation error on the

delay-free disturbance can be derived as follows:

e4(0) � lim
s ���→ 0

s[f(s)eθs − z4(s)]
� lim

s ���→ 0
s[A
s2
eθs − ω3

0

(s + ω0)3 ·
τs + 1
γτs + 1

· A
s2
eθs]

� A lim
s ���→ 0

[(s + ω0)3(γτs + 1) − ω3
0(τs + 1)

s(s + ω0)3(γτs + 1) eθs]
� A(ω0γτ − τω0 + 3)

ω0

(30)

It is seen from Eq. 30 that there exists an evident steady-state

estimation error 3A/ω0 when the existing predictor-based ESO

(Zheng and Gao, 2014, Zhang et al., 2020, Geng et al. 2019) is

applied, corresponding to γ � 1 in the proposed phase-lead

module in Eq. 14. In contrast, such a steady-state estimation

error is eliminated by taking the phase-lead parameter τ in Eq. 14

as follows:

τ � 3
ω0

· 1
1 − γ

(31)

This indicates that a more accurate disturbance estimation

could be acquired by the proposed PLESO. In practice, it is

suggested to take the phase-lead parameter τ in the form of Eq. 31

for simplifying the parameter tuning of the proposed PLESO.

Consequently, the transfer function from the future disturbance

f(s)eθs to its estimation z4(s) is simplified as follows:

z4(s)
f(s)eθs �

ω3
0

(s + ω0)3 ·
3s + ω0(1 − γ)
3γs + ω0(1 − γ) (32)

The frequency response of the abovementioned transfer

function in Eq. 32 with respect to the tuning of γ is shown in

Figure 3 by taking the observer bandwidth as ω0 � 8 for

illustration. It is seen that the amplitude and phase properties

of the proposed PLESO could be optimized by tuning γ in the

middle frequency band. Specifically, a smaller γ could result in a

larger observer bandwidth and thus a faster estimation of the

total disturbance. It should be noted that the frequency response

of the proposed PLESO (i.e., the estimation performance) is

independent of the process to be controlled.

Remark 3. Note that the robust stability of the closed-loop

systemmay be degraded if a smaller γ is taken for obtaining more

aggressive phase-lead compensation for faster disturbance

estimation and vice versa. It is, therefore, necessary to make a

trade-off between the closed-loop stability and disturbance

rejection performance in practice.

3.2 Digital implementation

For the convenience of practical applications, a digital

implementation of the proposed control scheme is shown in

Figure 4, where C1(z) and C2(z) are the discrete-time

counterparts of C1(s) and C2(s), respectively.
To alleviate the sensitivity of the prediction scheme when the

process has non-minimum phase zeros and unstable poles as

FIGURE 2
Equivalent representation of the proposed scheme.
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studied in Sanz et al. (2018), the continuous-time predictor filters

F1(s) and F2(s) in Eq. 12 and Eq. 13 are replaced by their

discretized forms denoted by F1(z) and F2(z) that may be

designed directly based on the discrete-time process model.

Assume that the time delay is a multiple of the sampling

period, that is, θ � Tsd for some d ∈ N, where Ts is the sampling

period. Then, the discrete-time counterpart of Eq. 2 is

expressed by

P(z) � G(z)z−d � b1zz + b0z
z2 + a1zz + a0z

z−d � N(z)
D(z)z

−d (33)

where G(z) is the delay-free part of the process in the discrete-

time domain. Decompose G(z) as

G(z) � ~G(z)Γ(z)
where

FIGURE 3
Frequency responses of the proposed PLESO with different γ.

FIGURE 4
Implementation structure of the proposed control scheme.
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Γ(z) � N+(z)N−
Γ(z)

D−
Γ(z)

· Q(z, λ)
W0(z) (34)

~G(z) � N ~G
−(z)

D+(z)D ~G
−(z)

W0(z)
Q(z, λ) �

~Cz(zI − ~Az)−1 ~Bz �
~N(z)
~D(z)

(35)
All the unstable poles and non-minimum phase zeros of

G(z) are collected inD+(z) andN+(z), respectively, stable poles
and minimum phase zeros contained in D+(z) and N+(z),
respectively, are partitioned as D−(z) � D−

Γ(z)D ~G
−(z) and

N−(z) � N−
Γ(z)N ~G

−(z), Q(z, λ) is the discretized counterpart

of Q(s, λ) in Eq. 9, ( ~Az, ~Bz, ~Cz) is a minimal state-space

realization of ~G(z), and W0(z) is the z-transform of the

external disturbance.

Moreover, denote another transfer function by

~G*(z) � ~Cz
~A
d

z(zI − ~Az)−1 ~Bz �
~N*(z)
~D(z) (36)

Then, the discrete-time realization of the delay-free output

prediction is given as follows:

yp(z) � F1(z)u(z) + F2(z)y(z) (37)
with the stable filters

F1(z) � ~Cz∑d
j�0

~A
j−1
z

~BzΓ(z) (38)

F2(z) �
~N*(z)
~N(z) (39)

Note that there is one tuning parameter λ implicitly involved

in F1(z) and F2(z), which could be monotonically adjusted to

achieve a trade-off between the prediction performance and

closed-loop robust stability against plant uncertainties.

4 Robust stability analysis

Due to the fact that the filters F1 and F2 must be

implemented in the discrete-time domain to guarantee stable

delay-free output prediction, especially for open-loop unstable or

non-minimum phase processes, the robust stability of the overall

closed-loop system is therefore analyzed in the discrete-time

domain, where the sampling uncertainty between the

continuous-time processP(s)and its discrete-time counterpart

P(z)is lumped into the process uncertainties to treat with.

Given the process uncertainties of the discrete-time process

with time delay in Eq. 33 described in a multiplicative form

Δ(z) � [P(z) − G(z)]/G(z), it can be derived from Figure 4 that

the transfer function from the output to the input of Δ(s) is

M � F2
C2Gz−d

1 + C2G
≜ F2Tdz

−d (40)

where Td can be calculated as follows:

Td � C2(z)(b1zz + b0z)
z2 + a1zz + a0z + C2(z)(b1zz + b0z) �

∑4
i�0
qi(ωc,ω0, γ)zi

∑6
j�0
pj(ωc,ω0, γ)zj

(41)
where qi(ωc,ω0, γ), i � 1, 2, 3, 4,and pi(ωc,ω0, γ), i �
1, 2, ..., 6 are the expansion coefficients of the numerator and

denominator of Td, respectively. Note that the orders of

numerator and denominator of C2(z) could be simply

determined from Eq. 23.

According to the small gain theorem (Morari and Zafiriou,

1989), the closed-loop structure in Figure 4 holds robust stability

if and only if

‖F2TdΔ‖∞ < 1 (42)

Substituting Eq. 23, Eq. 33, and Eq. 39 into Eq. 42 gives the

following closed-loop robust stability constraint:�������������������
~N*(z)∑4

i�0
qizi

~N(z)∑6
j�0
pjzj

�������������������∞
< 1

‖Δ(z)‖∞ (43)

which can be further reformulated as follows:�������������������
∑4
i�0
∑2
j�0
qiαjzi+j

λ2∑2
i�0
βi∑6

j�0
pjzj

�������������������∞
< 1

‖Δ(z)‖∞ (44)

where αj(λ), j � 0, 1, 2 and βi(λ), i � 0, 1, 2 are the expansion

coefficients of ~N*(z) and ~N(z), respectively.
Consider the following descriptions of the process

uncertainty that are often adopted for assessment in

engineering practice,

Δ(z) � Δkp
kp

(45)

Δ(z) � z−Δd − 1 (46)

Δ(z) � (1 + Δkp
kp
)z−Δd − 1 (47)

Based on the fact that a rational Z-transform (i.e., z � ejωTs )

is a periodic function with respect to the frequency ω, the robust

stability constraints can be correspondingly derived by defining

z � eφTs(0<φ< 2π) and substituting Eq. 45–Eq. 47 into Eq. 44

!!!!!!
x2
1 + x2

2

√
λ2

!!!!!!!!(x2
3 + x2

4)√ < kp
Δkp

(48)
!!!!!!
x2
1 + x2

2

√
λ2

!!!!!!!!(x2
3 + x2

4)√ < 1!!!!!!!!!!!!!!!!!!!!!!!(cosΔdφ − 1)2 + (sinΔdφ)2√ (49)
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!!!!!!
x2
1 + x2

2

√
λ2

!!!!!!!!(x2
3 + x2

4)√ < 1!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!![(1 + Δk
k ) cosΔdφ − 1]2 + [(1 + Δk

k ) sinΔdφ]2√
(50)

where

x1 �∑4
i�0
∑2
j�0
qiαj cos[(i + j)ϕ], x2 �∑4

i�0
∑2
j�0
qiαj sin[(i + j)ϕ]

x3 �∑2
i�0
∑6
j�0
βipj cos[(i + j)ϕ], x4 �∑2

i�0
∑6
j�0
βipj sin[(i + j)ϕ]

Note that the abovementioned robust stability constraints

in Eq. 48–Eq. 50 are typical nonlinear inequalities in terms of

adjustable parameters λ in αj(λ), j � 0, 1, 2 and βi(λ),i � 0, 1, 2,

ωc, and ω0 and γ in qi(ωc,ω0, γ), i � 1, 2, ... . . . , 4 and

pj(ωc,ω0, γ), j � 1, 2, ..., 6. With the specified ωc, ω0, and γ,

λ could be monotonically tuned to achieve a good compromise

between the closed-loop control performance and its robust

stability. Similarly, the phase-lead parameter γ can be

monotonically adjusted to meet a good trade-off between

disturbance rejection performance and robust stability of

the closed-loop system when these parameters ωc, ω0, and λ

are specified. In practice, given an upper bound of Δ(z) as
shown in Eq. 45–Eq. 47, the corresponding robust stability

constraints in Eq. 48–Eq. 50 can be numerically

verified if the abovementioned four parameters are properly

tuned.

5 Illustrative examples

In this section, two commonly used performance indices,

that is, integral-of-absolute-error (IAE) and total variation (TV),

are adopted to assess the control performance of the proposed

method.

Example 1. Consider a stable process with time delay studied in

Tan and Fu (2016)

P(s) � 2

(3s + 1)(s + 1)e
−s

With a sampling period of Ts � 0.1(s), the corresponding

discrete-time model is obtained as follows:

G(z) � 0.003189z + 0.00305
z2 − 1.872z − 0.8752

z−10

In the proposed scheme, F1(z) and F2(z) are configured by

the formulae in Eq. 38 and Eq. 39 with λ � 3.2 and nq � 2:

F1(z) � ~Cz∑d
j�0

~A
j−1
z

~BzΓ(z), F2(z)

� 0.55898(z − 0.9669)(z − 0.9488)
(z − 0.9692)2

where ~Cz � [ 105.6505 −204.8000 99.2495 ] and

~Az � ⎡⎢⎢⎢⎢⎢⎣ 2.8721 −2.7472 0.8752
1 0 0
0 1 0

⎤⎥⎥⎥⎥⎥⎦, ~Bz � ⎡⎢⎢⎢⎢⎢⎣ 10
0

⎤⎥⎥⎥⎥⎥⎦,
Γ(z) � 0.00003019z2 − 0.000001312z − 0.00002887

z2 − 1.938 + 0.9394

For the purpose of illustration, a unit step change is added

to the system input at t � 0(s) and then a load disturbance with
a magnitude of -0.5 is added to the process input at t � 50(s).
For fair comparison in terms of the similar rising speed of set-

point tracking, the tuning parameters in the proposed scheme

are taken as b0 � 2/3, ω0 � 4.0,ωc � 0.5, and γ � 0.86. Based on

the formulae in Eq. 22 and Eq. 23, C1(s) and C2(s) are

computed as follows:

C1(s) � s4 + 12.22s3 + 50.6s2 + 74.42s + 13.89
s4 + 11.88s3 + 46.89s2 − 0.7898s + 5.862 × 10−15

C2(s) � 93.57s3 + 129.6s2 + 49.14s + 5.209
s4 + 11.88s3 + 46.89s2 − 0.7898s + 5.862 × 10−15

whose discrete-time counterparts for digital implementation are

given as follows:

C1(z) � z4 − 3.041z3 + 3.334z2 − 1.662z + 0.2899
z4 − 3.041z3 + 3.386z2 − 1.65z + 0.3047

C2(z) � 5.509z3 − 15.77z2 + 15.03z − 4.776
z4 − 3.041z3 + 3.386z2 − 1.65z + 0.3047

Correspondingly, the set-point gain kf is calculated as

kf � 0.3750. The SP-based ADRC (SP-ADRC) in Zheng and

Gao (2014) and the SP-based generalized ADRC (SP-GADRC)

in Zhang et al. (2020) are performed for comparison, where

the parameters therein are taken as b0 � 2/3, ωo � 0.98,

ωc � 1.5, bo � 2/3, ω0 � 1.8, and ωc � 0.5, respectively.

Moreover, the generalized predictor-based ADRC (GP-

ADRC) in Geng et al. (2019) is also conducted for

comparison by taking b0 � 0.00305, βo � 0.79, βc � 0.85,

λf � 0.965, nf � 1, λ � 0.973, and nk � 0 according to the

guidelines given therein. The control results are shown in

Figure 5 along with the IAE and TV indices listed in Table 1

for set-point tracking and disturbance rejection. It is seen that

the recovery of disturbance response by the proposed

method is evidently faster than that by the cited

methods (Zheng and Gao, 2014; Zhang et al., 2020; Geng

et al., 2019).

Then, assume that the process gain is actually 40% larger

and the process time delay is actually 50% larger than the

model. The corresponding control results are provided in

Figure 6, together with the resulting IAE and TV indices

also listed in Table 1, well demonstrating good robust

stability by the proposed method.

Example 2. Consider an integrating process with time delay

studied in García and Albertos (2013):
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FIGURE 5
Control results of Example 1 in the nominal case.

TABLE 1 IAE and TV for set-point tracking and disturbance rejection of Example 1.

Set-point tracking Proposed Zheng et al. Zhang et al. Geng et al.

IAE Nominal 5.0034 4.8086 5.0502 5.0308

Perturbed 4.3006 4.4087 4.3126 4.2790

TV Nominal 0.1523 3.8874 0.1588 0.4705

Perturbed 0.7492 6.2921 0.5986 1.2706

Disturbance rejection

IAE Nominal 2.5677 3.2452 2.8933 3.4980

Perturbed 2.5850 3.2928 3.1068 3.4981

TV Nominal 0.5129 0.5074 0.5100 0.5014

Perturbed 1.0503 0.9293 1.0672 1.2337
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P(s) � 1
s(s + 1)e

−4s

With a sampling period of Ts � 0.1(s), the discrete-time

counterpart of the abovementioned integrating process is

obtained as follows:

G(z) � 0.004837(z + 0.9673)
(z − 1)(z − 0.9048) z−40

Based on the formulae in Eq. 38 and Eq. 39, together with the

choice of λ � 4 and nq � 2 in the proposed scheme, F1(z) and
F2(z) are computed as follows:

F1(z) � ~Cz∑d
j�0

~A
j−1
z

~BzΓ(z), F2(z)

� 0.71787(z − 0.9909)(z − 0.9063)
(z − 0.9753)2

where ~Cz � [ 164.0504 −320 156.0496 ] and

~Az � ⎡⎢⎢⎢⎢⎢⎣ 2.9048 −2.8097 0.9048
1 0 0
0 1 0

⎤⎥⎥⎥⎥⎥⎦, ~Bz � ⎡⎢⎢⎢⎢⎢⎣ 10
0

⎤⎥⎥⎥⎥⎥⎦
Γ(z) � 0.00002949z2 − 0.0000009666z − 0.00002852

z2 − 1.951z + 0.9512

For illustration, a unit step change is added to the system input

at t � 0(s) and a disturbance with a magnitude of -0.1 is added to

the process input at t � 80(s). For fair comparison in terms of the

similar increasing speed of set-point response and the similar

disturbance response peak, the tuning parameters in the

proposed scheme are selected as b0 � 1, ω0 � 4.5, ωc � 0.48, and

γ � 0.86, respectively. Accordingly, C1(s) and C2(s) are derived as

follows:

C1(s) � s4 + 13.74s3 + 64.05s2 + 106s + 22.25
s4 + 13.7s3 + 63.77s2 − 0.06583s + 2.812 × 10−15

C2(s) � 106.9s3 + 138.8s2 + 45.77s + 5.127
s4 + 13.7s3 + 63.77s2 − 0.06583s + 2.812 × 10−15

whose discrete-time counterparts are given by

FIGURE 6
Control results of Example 1 in the perturbed case.

Frontiers in Control Engineering frontiersin.org11

Li et al. 10.3389/fcteg.2022.954164

https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fcteg.2022.954164


C1(z) � z4 − 2.909z3 + 3.12z2 − 1.456z + 0.2463
z4 − 2.924z3 + 3.102z2 − 1.432z + 0.254

C2(z) � 5.684z3 − 16.31z2 + 15.59z − 4.963
z4 − 2.924z3 + 3.102z2 − 1.432z + 0.254

Based on the selected parameters, the set-point gain kf is

calculated as kf � 0.2304. For comparison, the existing control

method in García and Albertos (2013) is performed, where the

controllers are taken as follows:

FIGURE 7
Control results of Example 2 in the nominal case.

TABLE 2 IAE and TV for set-point tracking and disturbance rejection of Example 2.

Set-point tracking Proposed García et al. Geng et al.

IAE Nominal 8.1753 8.3861 7.9623

Perturbed 9.1214 9.3909 9.8048

TV Nominal 0.2773 0.5094 0.5888

Perturbed 1.8345 1.1053 38.6369

Disturbance rejection

IAE Nominal 4.4817 7.0830 5.9407

Perturbed 4.9490 7.0686 5.9709

TV Nominal 0.2055 0.2357 0.1682

Perturbed 0.8376 0.5533 2.8370
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K(s) � 0.35(s + 1)(s + 0.05)
s(0.1s + 1) ,

Kf(s) � 0.1s4 + 1.1s3 + 1.35s2 + 0.3675s + 0.0175

(0.35s2 + 0.3675s + 0.0175)(1 + 1.4s)3

and λ � 0.7 based on the control design formulae given

therein. In addition, the control method in Geng et al. (2019)

is also performed by taking b0 � 0.004679, βo � 0.77, βc � 0.74,

λf � 0.97, nf � 1, λ � 0.98, and nk � 0 in terms of the guidelines

given therein.

The control results are shown in Figure 7, while the

corresponding IAE and TV indices for set-point tracking

and disturbance rejection are listed in Table 2. It is seen

that both the set-point tracking and disturbance rejection

performance have been evidently improved by the proposed

method, compared with the existing methods (García and

Albertos, 2013; Geng et al., 2019).

Then, assume that the process gain and time delay are

actually 10% larger and the process time constant is 25%

larger than those of the process model. The simulation results

are depicted in Figure 8 along with the resulting IAE and TV

indices for set-point tracking and disturbance rejection also listed

in Table 2, indicating that the robust stability of the closed-loop

system is maintained well by the proposed method. It should be

noted that the control signal by the method in Geng et al. (2019)

severely fluctuates in the perturbed case, which may not be

allowed in practice.

Example 3. Consider an unstable process with time delay

studied in García and Albertos (2013):

P(s) � 2

(10s − 1)(2s + 1)e
−5s

Given a sampling period ofTs � 0.1(s), a discrete-time model

of the process is obtained as follows:

FIGURE 8
Control results of Example 2 in the perturbed case.
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P(z) � 0.0004934z + 0.0004869
z2 − 1.961z + 0.9608

z−50

By taking λ � 6.5 and nq � 2, it follows from the design

formulae in Eq. 38 and Eq. 39 that the predictor filters F1(z) and
F2(z) are configured as follows:

F1(z) � ~Cz∑d
j�0

~A
j−1
z

~BzΓ(z), F2(z)

� 1.3442(z − 0.9963)(z − 0.9527)
(z − 0.9847)2

where ~Cz � [ 429.0503 −845.0000 416.0497 ] and

~Az � ⎡⎢⎢⎢⎢⎢⎣ 2.9613 −2.9221 0.9608
1 0 0
0 1 0

⎤⎥⎥⎥⎥⎥⎦, ~Bz � ⎡⎢⎢⎢⎢⎢⎣ 10
0

⎤⎥⎥⎥⎥⎥⎦
Γ(z) � 0.00000115z2 − 0.00000001523z − 0.000001135

z2 − 1.969z + 0.9697

For the simulation purpose, a unit step change is added to

the system input at t � 0(s) and a disturbance with a

magnitude of −0.2 is added to the process input at

t � 80(s). In terms of a similar rising speed of the set-

point response and a similar disturbance response peak,

we take b0 � 1, ω0 � 0.64, ωc � 0.2, and γ � 0.1 in the

proposed scheme, resulting in the controllers C1(s) and

C2(s) as follows:

C1(s) � s4 + 3.84s3 + 4.915s2 + 2.261s + 0.5033
s4 + 3.84s3 + 5.005s2 − 0.1728s + 2.066 × 10−16

C2(s) � 27.58s3 + 19.3s2 + 3.148s + 0.2013
s4 + 3.84s3 + 5.005s2 − 0.1728s + 2.066 × 10−16

along with their discrete-time counterparts

C1(z) � z4 − 3.64z3 + 4.962z2 − 3.003z + 0.6805
z4 − 3.64z3 + 4.961z2 − 3.002z + 0.6811

FIGURE 9
Control results of Example 3 in the nominal case.
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TABLE 3 IAE and TV for set-point tracking and disturbance rejection of Example 3.

Set-point tracking Proposed García et al. Geng et al.

IAE Nominal 15.000 15.0497 14.6467

Perturbed 16.0632 16.1463 15.8906

TV Nominal 0.9002 1.2242 1.5071

Perturbed 0.9316 1.3830 1.6199

Disturbance rejection

IAE Nominal 4.6741 5.3075 5.4722

Perturbed 4.7097 5.1705 5.4607

TV Nominal 0.9631 0.8431 0.8783

Perturbed 1.1080 0.9697 0.9396

FIGURE 10
Control results of Example 3 in the perturbed case.
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C2(z) � 2.357z3 − 6.908z2 + 6.748z − 2.197
z4 − 3.64z3 + 4.961z2 − 3.002z + 0.6811

The corresponding set-point gain can be solved as kf � 0.400.

The GP method in (García and Albertos, 2013) is carried out for

comparison, where the controllers and parameters are taken as

K(s) � 2.9(2s + 1)(s + 0.1)
s(0.1s + 1) , Kf(s) � s3 + 9.9s2 + 4.8s + 0.58

5.8(s + 0.1)(1 + 5s)2

and λ � 0.98. Moreover, the control method in Geng et al.

(2019) is also performed by selecting b0 � 0.009373, βo � 0.938,

βc � 0.9, λf � 0.988, nf � 1, λ � 0.986, and nk � 0. The control

results are plotted in Figure 9; meanwhile, the IAE and TV for the

set-point tracking and disturbance rejection are detailed in

Table 3. It is seen that the disturbance rejection performance

is obviously improved by the proposed method in comparison

with the existingmethods (García and Albertos, 2013; Geng et al.,

2019).

Then, assume that the process gain and the coefficients in the

dominator of the process transfer function are all 10% larger and the

time delay is actually 5% larger than those of the model. The

corresponding control results are recorded in Figure 10, together

with IAE and TV indices for the set-point tracking and disturbance

rejection, which are listed in Table 3, indicating that the robust stability

of the closed-loop system is maintained well by the proposed method.

6 Conclusion

In this article, a predictor-based PLADRC scheme has

been proposed for open-loop stable, integrating, and

unstable industrial processes with input delay. It further

extends the recently developed PLADRC in Wei et al.

(2021) that could only be applied to delay-free systems.

By introducing a phase-lead module in the proposed

ADRC scheme, the phase lag for disturbance estimation

caused by not only ESO but also delay-free output

predictor could be apparently reduced, such that the

disturbance rejection performance could be evidently

improved in comparison with the existing ADRC

methods. To facilitate practical application, a digital

implementation of the proposed scheme is presented. It is

a merit that each controller or filter in the proposed control

scheme has a single parameter that could be tuned in a

monotonic way to procure a trade-off between its

performance and robustness against process uncertainties.

Meanwhile, the tuning constraints on the PLESO and the

feedback controller are analyzed for holding robust stability

of the closed-loop system in the presence of process

uncertainties. Illustrative examples from recent references

have well demonstrated the effectiveness and advantages of

the proposed control scheme in comparison with the existing

predictor-based ADRC methods (Zheng and Gao, 2014,

Zhang et al., 2020, Geng et al. 2019) that have already

demonstrated superiority over other methods.
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