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This review aims at assessing the opportunities and challenges of creating and

using digital twins for process industrial systems over their life-cycle in the

context of estimation and control. The scope is, therefore, to provide a survey

on mechanisms to generate models for process industrial systems using

machine learning (purely data-driven) and automated equation-based

modeling. In particular, we consider learning, validation, and updating of

large-scale (i.e., plant-wide or plant-stage but not component-wide)

equation-based process models. These aspects are discussed in relation to

typical application cases for the digital twins creating value for users both on the

operational and planning level for process industrial systems. These application

cases are also connected to the needed technologies and the maturity of those

as given by the state of the art. Combining all aspects, a way forward to enable

the automatic generation and updating of digital twins is proposed, outlining the

required research and development activities. The paper is the outcome of the

research project AutoTwin-PRE funded by Strategic Innovation Program PiiA

within the Swedish Innovation Agency VINNOVA and the academic version of

an industry report prior published by PiiA.
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1 Introduction

Digital twins have gained widespread adoption as a tool for representing physical

assets from many industrial domains in a computer environment (Wright and Davidson,

2020). However, the definition of a digital twin is not unique and may vary from

application to application. For example, a digital twin may be a 3D CAD model of a

factory floor (Minos-Stensrud et al., 2018), a mechatronic model of an assembly line

(Oppelt et al., 2014; Rosen et al., 2019), a model of an aircraft (Liu et al., 2018), or a

simulation model for plant monitoring, control, and optimization (Santillán Martínez

et al., 2018a; Sierla et al., 2020). Boschert and Rosen, (2016) refer to the vision of a digital
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twin as “[. . .] a comprehensive physical and functional

description of a component, product or system, which

includes more or less all information which could be useful in

all—the current and subsequent—lifecycle phases [. . .]” and

point out the value of the simulation aspect of digital twins

(Boschert and Rosen, 2016).

In order to reflect the real-life asset, the digital twin needs to

contain a model of the asset as an integral part. The digital twin’s

simulation aspect relates to themodel’s execution with the help of

data from the asset, such as online, synthetic, or historic data.

Further, the digital twin should create value by providing the user

with actionable insights or taking action by itself. The insights or

actions are generated by algorithms making use of the embedded

models in the digital twin, representing some form of intelligence

providing answers to questions. These questions could be

predefined ones (reflecting a use-case) or, in a more flexible

scenario, open questions. In the latter case, the digital twin needs

to comprise learning and execution seamlessly integrated in the

digital twin to provide meaningful answers. In Figure 1, this

principle architecture is shown. From an estimation and control

perspective, the embedded models in a digital twin enable model-

based approaches, while it often remains unclear if these models

are feasible for use.

Consequently, a digital twin needs to be connected to its real-

life counterpart and adapt itself to track the life-cycle phases of its

counterpart. Figure 1 also shows that models need to be

generated, updated, and operate within the digital twin, where

the digital twin not only is a model, but also hosts several

technologies. These are needed for its description, like a blue

print, for the modeling of the physical asset, for the adaptation of

the models, and for the deployment of it to online operation. In

addition, an integration layer is needed that combines the needed

technologies to connect the digital twin with its real-life counter-

part.

This review focuses on digital twins in the form of an eco-

system of large-scale purpose-oriented dynamic models for

process industrial applications. A purpose-oriented dynamic

model is used for a specific purpose in the context of the

operation and maintenance of the plant. Examples are

production planning, service, and maintenance, or education

and training. The general requirements for such a model are that

it captures the underlying physical process sufficiently well,

ensures observability of the variables of interest, and can be

run sufficiently fast in relation to the required timescale (Wright

and Davidson, 2020). Furthermore, one should be able to

generate the model from a combination of static plant

information such as pumping and instrumentation diagrams

(P&IDs) or component descriptions, and historical and

current process measurement data (Sierla et al., 2020).

The contribution of this work is twofold: First, we summarize

the state-of-the-art of automatic model generation, calibration,

monitoring, and update for such scenarios, with a focus on the

current modeling and machine learning literature. Second, we

identify the research directions of interest in order to build a fully

autonomous toolkit for the automatic generation, calibration,

and updating of the resulting purpose-oriented digital twins.

Note that this also raises questions about interoperability,

communication, data management, and information access.

These issues are clearly very important for such a concept to

work, and it is assumed that such a system is in place. An

industry-oriented version of this study was formerly handed in to

the funding body and is also available at their site (Birk et al.,

2021).

The remainder of the article is organized as follows. The

technologies, asset information, and tools required to implement

such digital twins successfully are discussed in Section 2. The

specific use-cases and requirements are discussed in Section 3,

and the state-of-the-art survey is provided in Section 4. Finally,

Section 5 discusses the identified promising research directions

with respect to the above aims.

2 Technologies, information, and
tools

The engineering of digital twins has certain similarities to the

engineering of the plant that the digital twin is replicating. While

the digital twin is foreseen to facilitate the planning, operation,

maintenance, and engineering of the plant over its life-cycle, the

engineering might still be worthwhile. An improved scenario is

FIGURE 1
Illustration of a generic digital twin that takes asset data and user questions as inputs to provide answers about the asset.
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that the engineering of the digital twin is guided and automated

to a large degree, as well as the ability to keep itself up to date with

the real-life counterpart. Thereby, it is possible to create more

value with the digital twin.

Figure 2 envisions a framework for digital twins of process

industrial plants. There, the verticals relate to the actions that are

taken by the digital twin, which is the replication of the physical

asset, the monitoring/validation of the embedded models, the

FIGURE 2
A framework for digital twins considering the life-cycle phases of the physical asset.

FIGURE 3
Technologies (blue) and information (orange/yellow) embedded in a digital twin along with the tools (green) needed to create value during
operation.
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update of the models during the life-cycle phases of the real-life

counterpart and the value creation, occurring during the live

operation of the digital twin.

Figure 3 now provides a more detailed view of the different

technologies that are needed. It illustrates how such a purpose-

oriented model is generated. In particular, the description layer

consists of a set of static plant descriptions, ranging from P&IDs

to GIS plant data and model libraries (e.g., Modelica). This static

information is the input to the modeling layer, where large-scale

models are automatically generated from the plant data. These

models are too general to be used in practice, and thus, the

models have to be simplified and pruned for a particular purpose,

yielding the purpose-oriented model. This model may be further

approximated, taking the added uncertainty into account, before

it can be calibrated (and validated) using actual plant data. At this

point, the model is ready to be used for the specific purpose

defined by the use-case, and the model maintenance phase

begins. During this phase, the model parameters must be kept

up to date to account for environmental factors or equipment

wear (re-calibration) and constantly be monitored to detect

model inaccuracies, or when the model is not valid anymore.

This also includes aspects such as the detection of operating

points not covered by models.

As stated earlier, the primary usage of DTs is for the value

creation using automated tools, as exemplified by the green boxes

in Figure 3. These tools include several mechanisms that help the

DT users to take decisions in the operation of the process. In this

case, these tools are directly connected to the application case

that the users are interested in. For example, for planning a

maintenance operation, the users will be interested in using the

DT in a long-term plant simulation and analyzing the wear and

tear of the critical plant components. Thus, the DT will

incorporate the remaining useful life model calculating/

estimating the remaining useful life of components. Also, to

initialize the model with proper information from historical data

will be required to estimate the current status of the designated

components. Here, an appropriate definition of the required

tools, models, and simulation scenarios is needed.

In Figure 3 technologies, pieces of information, and tools that

are needed to generate and operate the digital twin connected to

the real-life counterpart are depicted. The plant and process

information (orange boxes) needs to be available through a plant

information system that the digital twin can access, either based

on a local database or remotely through an application

programming interface (API). In the latter case, the plant

description system will be a front-end for the user or the

digital twin to interface to the complete plant information.

Thus the plant information system is a required technology

that needs to be in place for the generation, update, and

operation of digital twins. Furthermore, since the plant

information system requires input from a variety of different

data sources, interoperability between the different underlying

systems becomes a key requirement. Moreover, in Figure 3, there

are two technologies indicated for the plant information system

which is the description verification and the description update.

Such technologies are essential for a plant information system

but are assumed to be an integral part and will not be further

discussed within this review.

The needed technologies to generate, update and operate

digital twins are given in Table 1. The order of the technologies

can also be seen as a workflow for implementing a systematic

and potentially automated approach for deploying and

maintaining of estimation and control solutions in process

industrial systems.

Clearly, the purpose of a digital twin is to create value within

a specific use-case. Depending on the use-case, there is more or

less interaction with the user. In the case of simulation, the user

monitors the simulation and also interprets the outcome, while a

soft sensor use-case means that the digital twin operates fully

autonomously. In the latter, the purpose oriented models need to

be complemented by tools. An example of that case is the well-

known Kalman filter that estimates a process’s internal states

using a purpose-oriented model.

3 Potential application cases and
prerequisites

A model-oriented way of working means that models

become a central representation of the process industrial plant

that is operated, maintained, and managed over its life-cycle and

needs to stay up to date all the time. This alignment of the virtual

representation and the real-life counterpart enables the use of

more advanced and high performing methods to operate,

optimize, control, monitor, maintain, and predict on all levels

of the industrial plant. It not only enables new application cases

to be realized, but also to become more efficient in terms of

resource usage.

The digital twin is a natural extension of a model where,

besides replicating the real-life system in terms of a model, user

value creating functionalities along with mechanisms to monitor

and update the models are realized. The digital twin further

exhibits the ability to operate in parallel with the real life system

and in an offline setting. The latter enables typical what-if

analyses or investigations relating to different scenarios that

may have rare occurrences.

3.1 Relationship between application
cases and purposes

Generally, the models are an abstract description of a system

with a wide area of application. An application case can be

supported by models but will put requirements on the models

used. Essentially, there is a purpose for the model, and there can

be several purposes for models within an application case.
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As an example, consider model-based control of the

concentrate quality in a flotation process as depicted in

Figure 4. The application case would then involve the

estimation of the concentrate quality and the subsequent

control using actuators like agitator speed, feed, and air

supply. Measurements on foam properties bubbling intensity

as feed properties could then serve to provide the estimates.

Clearly, the model for estimating the concentrate quality has a

very different purpose compared to the model for controlling the

quality.

In classic textbook examples, the suggested models would

often serve both purposes, which is often not realistic or the

model will have different levels of fidelity for the two purposes.

Thus, using several models with a dedicated purpose for the

TABLE 1 Required technologies.

ID Name Description

1 Plant information system Hosts all information relating to the process, plant, or site and provides a complete and up to date description of all assets

2 Meta model generation Creates a representation of the structure and components’ characteristics for the complete plant. Preferably model prototypes are
included but not parameterized

3 Model instantiation Using the requirements a model instance is generated that contains a set of models for the components, which may also be
interconnected. The instances are either generated in a an automated way and by guiding the user in the generation. Either way the
instances should fulfill the requirements

4 Purpose-oriented model Instance of a meta model that is fit for a purpose determined by the engineering requirement and an associated application case.
The application case will essentially determine the characteristics that need to be fulfilled in order to make the model useful. A good
understanding of the characteristic of the models is usually supported by the application case

5 Calibration Using the objectives, the purpose oriented model is calibrated. Here the objectives are mathematical formulations that can be
assessed and are based on the requirements. Such an objective aids in avoiding metrics for the calibration that have a weak relation
to the model’s value

6 Validation Similar to the calibration, models are validated on a second set of data using the same objective as used for the calibration. Standard
metrics like time series related quantification such as the RMSE should be used with care. The objective together with the associated
metrics need to be used further downstream in the monitoring of the models

7 Purpose oriented DT Integration of the different components of the digital twin and deploying them for real time operation. The components are the
purpose-oriented model, the tools that operate on the model and the data for the use-case and the monitoring and update
mechanisms for the digital twin

8 Monitoring The objectives from the calibration and the validation are used for the monitoring. The monitoring will trigger update mechanisms
either within the DT or outside when a self-correction will not be successful

9 Self-correction Online validation of the model using the monitoring mechanisms indicate that the validation criteria is no longer fulfilled and the
DT should update the model on the basis of the online data. This has large similarities to adaptive control approaches where the
model is adapted in the closed loop operation. The self-correction occurs locally within the DT.

10 Updating If the self-correction is not sufficient than the models need to be updated outside the DT, resulting in a new generation of the DT. It
might only require a re-calibration as in 5, but might go all the way up to the meta model generation

11 Branching The currently operating DT need to be copied to a new branch for development or analysis purposes

FIGURE 4
Principle sketch of a flotation process as discussed in Krivoshapkina et al. (2019).
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different parts of the application cases seems to be the right way

forward. As such, the purpose might directly overlap with the

application cases but generally, there could be multiple purposes

associated with an application case. A purpose-oriented model is

then a model tailored for a specific part of a application case,

which implies that a model for a certain purpose may be

worthless for another.

3.2 Identified application cases

We will now summarize identified application cases where

estimation and control play an important role. Thus, digital twins

reflecting the dynamic behavior of a process industrial system are

targeted, aiding in understanding planning, operation and

maintenance of the system. The application cases are

organized in the following five categories:

1) Process and production development,

2) process and production control,

3) production planning,

4) service and maintenance, and

5) education and training.

Each of these categories contains several application cases

impacting the efficiency and efficacy of the production system.

Each of the application cases, in turn, imposes requirements on

the needed models, their properties, and purpose. An individual

use-case might require several models with different

characteristics.

3.2.1 Process and production development
Process and production development aims at the steps

resulting in a process or production and usually have no real-

life counterpart in place. Thus, the digital twin is not used in live

operation or online in this case, representing the first life-cycle

phase of a process. Potential process and production

development applications are:

• Process or site design. A process or site is designed for a

purpose. A DT can be used for analysis during the design

phase enabling better design choices, consensus, and

understanding within the team or organization. The DT

will also reduce subjectivity and decisions made on the

basis of personal opinion or preference.

• Bottleneck analysis. The DT can be used to assess different

operational scenarios and thereby identify and aid in

investigating bottlenecks. A fully developed DT can be

used to monitor bottlenecks and also to identify them

faster, which could become a monitoring tool in real-life

operation. This is related to what-if analysis.

• Investment decision making. Investment decisions

depend on correct insights with regards to processes

and production. A DT can lower the investment risk

since the outcome could be quantified beforehand.

Insights are usually derived by performing different

studies for the investment and those studies can be

performed in a shorter time and at a lower cost.

• Developing control strategies. Control strategies should

be developed using models representing a process, which is

rarely available during design. A better performing strategy

reduces start-up times and enables well performing

processes right from the start. The DT enables the

development of control strategies with high confidence

on their performance. Tests and trials are immensely

reduced. This can be used for a running plant as well.

3.2.2 Process and production control
Process and production control aims to keep a process

efficient over its life-cycle and production according to targets.

Here, the digital twin is supposed to operate in parallel with the

process and provide actionable insights. Typical process and

production control applications are:

• Monitoring and diagnostics. Here, the aim is to monitor

the process and its operation continuously. Deviations in

the process can be detected and related to adverse

operating modes or faulty equipment. Deviating process

performance can be detected and extended periods with

sub-optimal performance can be avoided. The

performance can be monitored and related to the

theoretical optimum. High level control loop monitoring

enables controller adaptation to avoid sub-optimal

settings. Monitoring can also be used as a soft sensor

providing new data for control purposes.Anomalies

from unknown circumstances or events can trigger

process development and improved risk

management.Monitoring can also target quality from an

objective perspective.

• Prediction. The aim of the DT is to predict the production

in real-time and one can test how different courses of

action will affect the predicted outcome (production). This

enables better choices for actions that relate to production

efficiency and efficacy.

• Control. The real-time engagement of the DT enables the

development of data-driven (machine-learning-based) and

self-learning control strategies. The focus is on resource

efficiency and renders increased utilization of raw material

and generates more income per time unit.

• Real time decision support for process optimization.

This application case focus is on the operators and to guide

them in their decision making. When the DT is sufficiently

validated and guides to the correct actions, autonomous

decision making can be started. Thus the DT takes its own

decision independently. The application case enables a

better decision making in complex situations and the
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operators can focus their attention on more important

tasks.

• Quality and safety. A DT will limit the influence of

personal opinions and subjective decision making in

production. The DT is also able to perform repeatable

in accordance with the best possible line of action.

3.2.3 Production planning
Production planning aims at a plant- or company-wide

planning of the production such that an economic optimum

is achieved, taking possible constraints into account. A solution

can start out from a process or process section to then scale up to

the whole plant and company levels. The digital twin should then

reflect the product in accordance with the scale and comprise

models feasible for economic optimization or plant wide

production planning. In particular, specific applications are:

• Holistic optimization. Production is planned such that an

economic optimum is achieved on the chosen scale, and

thereby limiting sub-optimal production plans.

• Overall equipment efficiency analysis.Overall equipment

efficiency (OEE) depends not only on the performance of

the plant while it is producing but also when unit processes

are loosing uptime. The weakest link is usually the limiting

process and reducing OEE. A digital twin than can predict

the OEE given different scenarios and unit process

availability can provide the needed insights to prioritize

the actions/improvements that matter most.

• Optimize maintenance from an overall perspective.

Related to OEE but more focusing on maintenance

actions. When and where to put effort on a plant-wide

scale. The digital twin needs to understand process

degradation and from that, predict degraded states to

determine an effective maintenance plan. In the long

term multiple sites could be considered and their

interrelation, but that requires multi-site models for the

production system.

3.2.4 Service and maintenance
Service and maintenance aims at efficient and in-time

maintenance actions and providing the engineers with

information and support on the spot. The specific application

cases are:

• Predictive maintenance. Condition-based maintenance

where the degraded system condition is foreseen with

confidence enables the planning of maintenance actions

such that downtime of the asset is minimized and aligned

with planned maintenance windows or non-sensitive

production. It also facilitates a balanced maintenance

approach prolonging process life-cycle while considering

cost. On the basis of the both operational and degradation

related models in the DT, it is possible to state an

optimization problem that is continuously solved by the

DT and providing decision support for the engineers and

operators.

• Virtual expert assistance. A DT with a descriptive model

of the asset can reflect the current state of condition with

potential failure or degraded states. Combining virtual or

augmented reality technologies, a remote expert (from a

supplier or similar) can support the maintenance or

corrective action by supervising local personnel.

3.2.5 Education and training
Education and training is essential for operators and

engineers to understand the strategies of planning, operation,

and maintenance of a process, plant or site. Simulator-based

training using a digital twin enables not only the simulation, but

also the assessment of the trainees’ performance. Moreover,

decided practices can be conveyed in a more realistic manner

reducing misunderstandings and limiting decisionmaking on the

basis of personal opinion or preference. An up to date DT for a

specific site will enable site specific training and the training will

remain relevant. Actionable knowledge can thereby be gained in

a safe and secure way.

3.3 A mock-up for assessment and
readiness

As a specific example, we consider the material

transportation to the refining stage including the ore storage

at Boliden’s Aitik mine. The ore storage is illustrated in Figure 5.

The purpose of a mock-up is to have a specific case to test our

assumptions and concepts against. This limited scale pilot plant

is used to explore and characterize the pre-requisites and

requirements.

While this plant can appear relatively simple, the use-case

determines the complexity that is encountered when it comes to

models and availability of data. Below, two application cases, how

they would be supported by an automatically generated digital

twin, and their requirements are discussed: Soft sensing with

material tracking, and predictive maintenance. The application

cases are chosen to reflect two different operations and

maintenance aspects.

1) Soft sensing of the material amount and the composition in

the ore storage could be treated as a local unit process problem,

which is not highly interacting with the prior and later process

stages. Moreover, soft sensing is broad and rather unspecified as

such and a clear requirement set would be needed. Depending on

the physical property that needs to be estimated by the soft

sensor, there is either an abundance of models and data available

or none at all (see, for example, Lin et al. (2007); Zhang S. et al.

(2019)). This variability creates a problem in the automatic

model generation part of the digital twin, as there might be

model prototypes available or not for the model instantiation.
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If no model prototypes are available, then, the automatic

generation might fail, as data-driven model generation is the only

viable approach depending on labeled data sets and a large

amount of historic data. Even the historic data might be

fragmented as soft sensing usually targets an issue which has

been observed but has not yet been targeted for a solution. An

obvious hinder here is the lack of plant information and problem

related to data, information, and domain knowledge which is

usually represented in the plant information system.

Nevertheless, before fully automated model generation can

be realized, a guided approach would be the first step. It would

support the user creation of the models rendering prototypes for

later similar problems. These models could then be both data-

driven or physics-based.

2) Predictive maintenance of the mockup targets an increased

availability of the transport and storage system reducing the

amount and time of unplanned stops. The models needed to

understand the degradation and condition of the assets involved

in the transport can be both data-driven models and physics-

based models. A good example with the mockup process is the

BT2030 conveyor belt system which could be modelled purely on

the basis of data that reflects the operation, breakdown

characteristics of components and exogenous data. From such

data and annotated maintenance information a degradation

model could be learned that predicts component condition

and remaining useful life.

On the other hand, physics-based degradation models for

drums, rollers, the belt, and the drive system could be established

on the basis of the mechanical stresses that occur. These models

could then be complemented by condition data that is acquired,

for example from vibration sensors, and operational data such as

bulk feeding, belt speeds, mass distribution, or belt tension. The

calibrated models could then be used to estimate the remaining

useful life and condition of the assets in the system.

The issue here is the complexity in the derivation of the

models and the availability of the needed information that would

allow an automated modeling approach. Again, guided modeling

could be a first step.

Both cases are affected by similar challenges, while the

involved models are very different. The joint challenge for a

framework that supports the automated generation is the

diversity of the application cases and how to support

various modeling approaches with a variety of hyper-

parameters. When models are in place and validated for

the targeted purpose, then the monitoring and update is

somewhat more straightforward. Nevertheless, the

automation of that step is still depending on high quality

data and a decision making which is not negatively affected by

the involved uncertainties, like unmodelled disturbances and

the question if the plant has changed or is temporarily affected

by faults.

To conclude, the assessment shows that the readiness level is

generally low for the needed technologies, both from an

organizational as well as from an information perspective.

4 State of the art review

The main focus of this state of the art review is automated

DT generation, monitoring, and update in accordance with the

building blocks illustrated in Figure 3. Hence, this section first

briefly touches upon interoperability as an enabling technology,

which is followed by the review of the main components,

namely:

FIGURE 5
Illustration of the ore storage (Courtesy of Boliden AB).
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• Model generation and approximation,

• model calibration and validation, and

• model monitoring and update.

4.1 Interoperability

Interoperability can be defined as the ability of (IT) systems

to interact and collaborate. Hence, when systems are required to

work together, interoperability is central. Without standardized

interoperability, the solutions are at risk of continuously loosing

functionality and requiring continuous updates due to changing

interfaces.

International standardization in interoperability has been

ongoing for several decades. The oil and gas industry, led by

Norway and the USA, has done pioneering standardization work

in the area of industrial interoperability. This has lead to the

International Standardisation Organisation (ISO) standard ISO

15926 managed by the ISO technical committee (TC) ISO/TC

184/SC 4 (“Industrial data”) (International Standardisation

Organisation, 2018a). Currently, ISO 15926 includes the

following parts of relevance to this study:

• Part 2: Data Model;

• Part 4: Reference Data;

• Part 7: Templates;

• Part 8: Implementation in RDF;

• Part 9: Triple Store (under development);

• Part 10: Conformance Testing (under development).

One of the core parts in ISO 15926 is Part 4, reference data. It

defines the common ground for the information exchange

between the different systems and their interoperability based

on reference data libraries, with a reference data service hosted by

the POSC Caesar Association (POSC Caesar Association, 2021).

In addition to ISO 15926, which defines interoperability of

asset data (plant data), the standard ISO 10303 (International

Standardisation Organisation, 2014) defines interoperability

standards for product data. Furthermore, a combined

standard to define the structure is given by the joint

International Electrotechnical Commission (IEC)–ISO

standard IEC/ISO 81346 (International Standardisation

Organisation, 2018b).

Furthermore, the ISO/TS 18101 describes how to integrate a set

of existing standards to achieve systems-of-systems interoperability

in the oil and gas, petrochemical, power generation, public utilities,

and other asset-intensive industries. It incorporates the use of a

standardized connectivity architecture and a use-case architecture to

describe a supplier-neutral, open industrial digital ecosystem and the

interoperability requirements of standardized industry use-cases

(International Standardisation Organisation, 2019). The Open

Industrial Interoperability Ecosystem (OIIE) provides an example

of the proposed, supplier-neutral industrial digital ecosystem. Key

inter-enterprise relationships for the process industry digital

ecosystem have been modeled in standard use-cases as illustrated

in Figure 6 (OpenO and M, 2021).

In summary, to solve the problem of industry information

exchange, standards and reference data are required. In

particular, international standards need to be adopted and

integrated in our systems, instead of re-inventing new

solutions to the same problem.

4.2 Model generation and approximation

The first step in automatically generating a purpose-orientedDT

is to generate a (large-scale) process model from several sources of

plant description. Such sources include static plant structure

information, P&IDs, and component models. The latter may be

based on anything ranging from first-principles (white-box) models,

hybrid (grey-box) models, or purely machine learning (e.g., deep

learning) models. This typically results in a very detailed process

model. In fact, the resultingmodelmay be unnecessarily complex for

the considered purpose. For example, the model could include a

component that depends on an infinite-dimensional partial

differential equation model (e.g., from fluid dynamics), which

makes the model computationally demanding, even though that

component does not contribute significantly to the overall model.

Hence, the automatically generated models can be reduced in order

to approximate the model to fit the particular purpose of the DT.

Naturally, this model approximation step includes the trade-off

between simplifying the model structure and keeping the right

amount of detail.

The field of automatic model generation and approximation

from process and plant information is not new. Significant

progress has been made in the past and this is already used in

industry to some extent. Below follows a brief overview of these

fields. Note that traditional learning of individual component

models (e.g., using machine learning or system identification) is

not part of model generation in the sense outline here and thus

not discussed at this point.

4.2.1 Model generation
The idea of automatic model generation is not new. However,

it has only recently gained a significant interest in industry. This

trend is probably due to the increased use of model-based design

technologies and the emergence of DTs as a transformative

technology (Shafto et al., 2012). In the vision of DT,

automatic model generation means that models are

maintained over the entire life-cycle of the plant in a cost-

efficient way (Oppelt et al., 2014). Methods for automatic

modeling include the model generation from computer-aided

design (CAD) diagrams using, for example, Matlab and Simulink

(Hermansson et al., 2018), using information mapping

algorithms for automatic generation of models from 3D plant

diagrams and equipment information (Santillán Martínez et al.,
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2018a; Santillán Martínez et al., 2018b), or generation of

Modelica models from P&IDs (Cavron et al., 2017).

The abstract structure, behavior, properties, and

requirements of a DT model can be defined using a meta-

model. Such meta-models can be developed using meta

languages such as SysML, which is widely used in various

domains (Nikolaidou et al., 2016). Additionally, SysML has

recently received many efforts for automatic generation of

models. In AutoTwin, meta-models are exploited for

automatic model generation by leveraging results of

previous projects such as AutoMod-PRE (funded by the

Swedish Agency for Innovation Systems; VINNOVA), OPTi

(funded by Horizon 2020), and Arrowhead (funded by

Horizon 2020).

4.2.2 Model reduction and approximation
A limitation of most traditional analysis, control, and

optimization techniques is that they require the availability of

certain classes of models such as linear models with low order.

This implies that models generated dynamically cannot be

directly exploited by such techniques due to their large

complexity or model order. Therefore, model reduction must

precede the application of the aforementioned techniques. These

approximations have to achieve a desired accuracy with a

minimum degree of complexity.

In the literature, there are two approaches to decrease the

complexity of the models: model simplification and model

approximation (Upreti, 2017). In model simplification the

following strategies are typically used (Surovtsova et al., 2012;

Upreti, 2017): Linearization of non-linear models around

operating conditions, scaling analysis to identify and resolve

numerical weaknesses, and separation of time scales.

On the other hand, model approximation strategies include:

• Dimensional analysis for reducing the number of variables

through representations based of dimensionless numbers

such as Mach and Reynolds (Szirtes, 2007),

• parameter number reduction using model fitting methods

such as the MIMO ARX–Laguerre model for large-scale

processes (Bouzrara et al., 2013),

• model order reduction such as interpolation-based

methods (Antoulas et al., 2010) and H2 optimal model

approximation,

• multi-model approaches to replace unique nonlinear

representations by a piece-wise combination of linearized

models around operating conditions (Elfelly et al., 2012), and

• distillation of knowledge by training a set of machine

learning models and compressing them in a single

model, such as neural networks (Hinton et al., 2015).

4.3 Model calibration and validation

4.3.1 Background
The parameters of automatically generated digital twin

models need to be calibrated for the model to reflect the

processes’ operational state and operating point. This is

achieved by using an estimation or learning algorithm (Kay,

1993; Van Trees et al., 2013; Gelman et al., 2015), and thus, the

problem can be considered a parameter estimation problem. In

FIGURE 6
OIIE inter-enterprise interoperability architecture OpenO and M, (2021)
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the context of dynamic systems and control systems, this is also

part of system identification (Söderström and Stoica, 1989; Ljung,

1997; Pintelon and Schoukens, 2001). Note, however, that system

identification typically also includes design of input and output

signals for model identification and model identification itself,

and not only estimation of the model parameters.

In particular, a digital twinmodel is typically parametrized by

a set of parameters θ. Then, to calibrate the model, we have to

determine the parameters θ given a set of process input-output

data {un, yn}Nn�1 to enable purpose-oriented prediction for new

input data u+. In general, we can distinguish two approaches for

estimating the parameters θ and making predictions for new

inputs u+:

1) Approaches that yield a point estimate of the parameters. This

is typically the case when using approaches from frequentist

statistics such as the least squares or maximum likelihood

methods, but also when using parameter regularization,

which can be seen as a Bayesian approach. Point estimates

are typically easy to implement and computationally efficient

but provide no or only limited information about parameter

uncertainty. Thus, parameter uncertainty is not taken into

account when using the point estimates for prediction. Point

estimates are obtained when using optimization-based

approaches.

2) Approaches that yield a posterior distribution over the

possible parameter values. This is the case when using a

fully Bayesian approach and provides richer information

about the parameter values themselves, but also takes the

parameter uncertainty into account when predicting new

outputs. This is at the expense of computational complexity.

4.3.2 Optimization-based calibration
Methods that yield point estimates typically minimize a cost

function J(u1:N, y1:N; θ) of the data parametrized by the

parameters θ, that is,

θ � argmin
θ

J u1: N, y1: N; θ( ).

Closed form solutions to this type of minimization

problems can only be found for a very limited number of

models (e.g., linear models). Instead, this often results in a

numerical optimization problem, which can be solved using

traditional optimization methods such as gradient descent

(Gustafsson, 2013), the Gauss–Newton algorithm

(Gustafsson, 2013), the Levenberg–Marquart algorithm

(Levenberg, 1944; Marquardt, 1963; Nocedal and Wright,

2006), or interior-point methods (Boyd and Vandenberghe,

2004). However, some of these methods require the analytical

expressions for the Hessian matrix, which may be difficult to

obtain. Instead, so-called quasi-Newton methods such as the

Broyden–Fletcher–Goldfarb–Shanno (BFGS) method, may be

used (Nocedal and Wright, 2006). Quasi-Newton methods use

the gradient evaluations of subsequent iterations to

numerically estimate the Hessian, which yields second-

order optimization algorithms that only require the

gradient. However, either type of optimization approach

can be implemented using automatic differentiation

(Brücker et al., 2006; Baydin et al., 2018), which does not

require manual derivation of the gradient and Hessian matrix.

One particularly important issue when using numerical

optimization methods to obtain point estimates of the

parameters is the problem of this kind of methods finding

local minima of the cost function. However, more recently,

stochastic optimization methods have shown that they avoid

getting stuck in local minima (Bottou et al., 2018). The basic idea

of stochastic optimization methods is to exploit that the cost

function J(u1:N, y1:N; θ) in many cases can be written as an average

of K terms, that is,

J u1: N, y1: N; θ( ) � 1
K

∑
K

k�1
Jk uk, yk; θ( ).

Here, uk and yk denote subsets of size M of the whole input-

output dataset u1:N and y1:K. (Note that ifM = 1, we have that K =

N and each input-output pair contributes to the cost function

independently.) Then, instead of solving one large optimization

problem, K smaller optimization problems are solved

sequentially, where the parameters θ(k) at the kth iteration are

a function of the current term Jk(uk, yk; θ) as well as the previous’

iterations parameters, that is, θ(k−1).

One of the most prominent stochastic optimization

approaches is stochastic gradient descent (SGD), which is the

stochastic variant of the ordinary gradient descent method. SGD

has successfully been applied to many large-scale parameter

estimation problems, for example in training of deep artificial

neural networks (Bottou, 2010; Bottou and Bousquet, 2011;

Goodfellow et al., 2016). Successful SGD-based methods are,

for example, ADAM (Kingma and Ba, 2014) or AdaGrad

(McMahan and Streeter, 2010; Duchi et al., 2011).

The sequential nature of the parameter updating strategy of

SGD-based methods implies two things. First, the iterative

procedure can be interpreted as the solution of an ordinary

differential equation (Barrett and Bherin, 2020). This means that

this kind of methods could possibly benefit of recent

developments in probabilistic differential equation solvers, for

example, Bosch et al. (2020); Tronarp et al. (2021). Second, such

algorithms can actually be interpreted as a (Kalman) filtering

problem (Chen et al., 2020). This implies that this approach can

be extended to other approaches of Kalman filtering for

nonlinear systems such as unscented or cubature Kalman

filtering (Julier and Uhlmann, 2004; Arasaratnam and Haykin,

2009), or more general statistical linear regression approaches

(Arasaratnam et al., 2007; García-Fernández et al., 2015). These

methods are based on so-called sigma-points, which do not

require the analytical expression of the gradient of the cost
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function, but use numerical integration instead (quadrature).

This potentially yields more accurate SGD-type of methods, at

the expense of slightly increased computational complexity

(which can be alleviated by exploiting model structure,

though; Hostettler and Särkkä, (2019)).

From an automated model generation and calibration point

of view, stochastic optimization methods are the most promising.

This mainly due to the fact that they are more robust towards

local minima and the fact that they already have shown great

success in calibrating large-scale models in the form of deep

artificial neural networks.

Prediction is done by simply using the estimated parameter

values in the predictive model. This neglects possible uncertainty

in the calibrated parameters and only takes uncertainty of the

prediction model into account.

4.3.3 Fully bayesian calibration
A simple form of obtaining Bayesian estimates of the

parameters, that is, parameter estimates that are not only

based on the data itself but also on any (possibly vague) prior

knowledge about the parameters, is by using point estimate

methods (i.e., optimization methods) together with cost

functions that include a regularizing term (see, e.g., Calvetti

and Somersalo, (2018)). This yields the maximum posteriori

(MAP) parameter estimate (Kay, 1993). While conceptually

simple and easy to implement (the only thing that changes is

the cost function, which can be used together with a standard

optimization method), this does not leverage the full power of

Bayesian methods.

Instead, the full power of Bayesian methods lies in their

ability to estimate the posterior distribution of the parameters,

that is,

p θ | y1: N( ) � p y1: N | θ( )p θ( )
p y1: N( )

,

where p(θ) is the parameters prior distribution, p(y1:N|θ) the
likelihood (measurement model), and p(y1:N) the marginal

likelihood (or evidence) (Gelman et al., 2015). Estimating the

posterior distribution rather than a point estimate not only gives

the most likely parameter values, but also the uncertainty about

the parameters. While conceptually simple, the posterior

distribution can not be calculated for most models. Instead,

one often has to resort to either assumed density methods or

Monte-Carlo-based methods (simulation methods), see Gelman

et al. (2015).

Assumed density methods are based on the assumption that

the posterior density follows a certain distribution, for example a

Gaussian distribution or a Student’s t distribution. This

assumption may be valid or not, and entirely depends on the

data model. Inference then amounts to estimating the parameters

of the posterior distribution. Typical inference methods include

the Laplace approximation and integrated nested Laplace

approximations (INLA; Rue et al. (2017)), expectation

propagation (Minka, 2001), or posterior linearization

based on statistical linear regression (Arasaratnam and

Haykin, 2009; García-Fernández et al., 2015), mainly for

Gaussian assumed density methods (Gaussian densities are

particularly interesting because they admit closed-form

solutions when the prior is Gaussian and the likelihood is

linearized.) Furthermore, variational inference is used in

cases when the posterior is assumed to factorize over the

different parameters (Blei et al., 2017; Zhang C. et al., 2019),

that is,

p θ | y1: N( ) � ∏
M

m�1
p θm | y1: N( ).

This is particularly useful when the different parameters have

different characteristics and need to be described by different

(assumed) posterior distributions.

Monte Carlo methods on the other hand approximate the

posterior density not analytically, but by simulation. That is,

instead of imposing an assumed posterior density onto the

model, the posterior density is approximated by generating

(weighted) samples that are (approximately) distributed

according to the posterior distribution (Andrieu et al.,

2003; Geyer, 2011). This can be achieved by using relatively

simple methods such as rejection or importance sampling, or

more advanced methods such as Gibbs sampling or the

Metropolis–Hastings algorithm (Geyer, 2011; Gelman et al.,

2015). Of these, the Metropolis–Hastings algorithm can be

widely employed, but great care has to be taken in the choice of

the algorithms parameters.

All these approaches can be applied to the problem of high-

dimensional models for digital twins. From a practical

perspective, assumed density methods are the most practical

ones. They might also be sufficient in capturing the problem’s

associated uncertainty.

Prediction based on a Bayesian posterior estimate is

achieved by marginalizing with respect to the parameters.

This yields a prediction which also takes the uncertainty of

the parameter estimate, that is, the uncertainty of the

calibration into account. This in turn gives a better estimate

of the uncertainty of the prediction, compared to point-

estimation methods.

4.3.4 Re-calibration
The system’s parameters will inevitably change over time, for

example due to varying external conditions or component wear,

which requires re-calibration of the parameters. Re-calibration

can be achieved in several ways. First, current parameter

estimates can be discarded entirely, and a new calibration can

be done using one of the approaches discussed above. This is

mainly useful in scenarios where large and significant parameter

variations can be expected. Otherwise, useful information form
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the previous calibration is discarded, which increases the

uncertainty of the calibration.

Second, the current (outdated) parameter (or posterior)

estimate can be used as a regularizing term for the updated

parameters. This approach can be developed further such as to

actually model the dynamics of the parameters at a relatively slow

time-scale, for example as a random walk. Then, sequential

Bayesian estimation methods such as filters can be used,

which yields an efficient system (Särkkä, 2013). For large-scale

systems, assumed density methods (e.g., Gaussian filters) are

most directly applicable. From a research perspective, research in

high-dimensional sequential Monte Carlo methods is of interest

in this context, see, for example, (Septier and Peters, 2015; Septier

and Peters, 2016; Naesseth et al., 2019).

4.3.5 Validation
To quantify howwell amodel is calibrated, the calibration has to

be validated. Formally, the basic idea of validation is to analyze the

posterior predictive power of a model, that is, to check the capability

of a calibrated model to make predictions about other input data.

This is achieved by using a dataset that is different from the

calibration (or training) data set. The validation dataset may be

an entirely different dataset, or a subset of the whole calibration data

(cross-validation) (Hastie et al., 2017; Gelman et al., 2015). The

former approach ensures a clear separation between calibration and

validation, but gives only limited insight into the actual quality of the

calibration quality as the validation is only performed on a single

validation dataset, which does not provide any uncertainty

information about the calibration.

Cross-validation can be divided into two approaches (Hastie

et al., 2017; Gelman et al., 2015): Leave-p-out cross-validation and

k-fold cross-validation. Leave-p-out cross-validation uses all

permutations of the dataset where p datapoints are used for

validation and the remaining datapoints for calibration. This is

computationally expensive as there are a large number of ways to

partition the dataset. A somewhat simplified version (leave-one-

out cross-validation; LOO cross-validation) uses p = 1, that is,

one datapoint is used for validation and the remaining for

calibration. k-fold cross-validation on the other hand divides

the dataset into k equally sized subsets. Then, k − 1 subsets are

used for calibration and 1 subset is used for validation. This is

repeated for all combinations of calibration and validation

subsets (i.e., k times) and the results are averaged over the

individual runs to obtain the average validation performance

and uncertainty. These methods are well-established. However,

recent research related to the large-scale digital twin models

considered in this project includes the particularities of cross-

validation for large data (Magnusson et al., 2019; Magnusson

et al., 2020) or uncertainty quantification in model comparison

(Sivula et al., 2020).

In the context of large-scale DTs, a major problem lies in the

validation objective: A model validated using these validation

approaches might yield poor validation performance but still be

useful in practice. Hence, the challenge here is to formulate

proper requirements and validation criteria to ensure that the

model is fit for the particular purpose. This is not straight-

forward and should be investigated.

4.4 Model monitoring and update

To ensure the safety and reliability of the systems, prognostic

and health management (PHM) is essential. The aims of PHM

are as follows (Booyse et al., 2020):

• Detection of anomalous or faulty behavior of the system

based on its intrinsic degradation mechanism and

operating data,

• diagnostics as differentiating various types of anomalous

events or failure modes, and

• prognostics, that is, providing a measure of system health.

Early detection and diagnosis of process faults can help to

avoid progressing abnormal events and can reduce productivity

loss. In general, the process faults comprise sensor faults, actuator

faults, and the faults that can occur in the components or

parameters of the plant dynamics. Parameter failures arise

when a disturbance enters the process through one or more

exogenous variables, for example, a change in the concentration

of the reactant from its normal or steady state value in a reactor

feed (Venkatasubramanian et al., 2003). Sensor faults (e.g., offset

faults and drift faults) typically manifest as additive faults, while

actuator faults (e.g., clogging faults and constant gain deviations)

manifest as multiplicative faults (He et al., 2019). The PHM

system should detect and diagnose faulty events quickly. This

characteristic can make it sensitive to high frequency influences

and noise. This system should be robust to various noise and

uncertainties. Then, there is a trade-off between robustness and

performance. PHM strategies have to distinguish between

different failures and faults and identify their source.

Furthermore, the ability to identify multiple faults is an

important but difficult requirement due to the interacting

nature of most faults (Venkatasubramanian et al., 2003). The

application of DTs in PHM technology consists mainly of

condition monitoring, fault diagnosis and prognosis, and

remaining useful life prediction (Yu et al., 2021).

Methods for monitoring and fault diagnosis and prognosis

can be classified into data-driven, physics-based, and hybrid

methods. Data-driven methods rely on statistical models and

are including various approaches, such as Bayasian network (Yu

et al., 2021), generalized likelihood ratio (GLR) (He et al., 2019),

principal component analysis (PCA), partial least squares (PLS)

(Ding et al., 2011; Yin et al., 2012), fisher discriminant analysis

(FDA) and support vector machine (SVM) (Severson et al.,

2016), general soft sensor technologies (Kadlec et al., 2009)

and machine learning methods (Zhang and Zhao, 2017; Lu
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et al., 2018; Pan et al., 2019; Xu et al., 2019; Booyse et al., 2020).

Physics-based methods rely on the understanding of the system

and the degradation mechanisms and may offer a greater degree

of interpretability, reliability, and predictive capability (Magargle

et al., 2017; Aivaliotis et al., 2019; Johansen and Nejad, 2019).

Considering uncertainty, incompleteness of data and different

data distribution in data-driven methods as well as high

computational complexity of physics-based approaches in

large-scale systems, hybrid methods formed by the

combination of the data-driven and physics-based approaches

can obtain a more robust health assessment of the system and

provide more robust predictions and deal with computational

issues (Cubillo et al., 2016).

To ensure that the DT can accurately track the state of the

physical system in real-time, it is important to update the DT.

Model updating can be studied from various perspectives such as

soft sensor adaptation (Kadlec et al., 2011), concept drift

adaptation (Gama et al., 2014), state estimation (Maasoumy

et al., 2013), adaptive control (Dougherty and Cooper, 2003),

and disturbance model adaptation (Wang et al., 2012).

In AutoTwin, DTs need to reflect the state of the asset with

the required application accuracy throughout their life-cycle.

Thus, it is essential to continuously update the DT to meet

the changing needs and improve performance in terms of

efficiency, flexibility, and reliability. DT updates can be done

manually by a user (e.g., by replacing altered components with

updated ones) or automatically. The automatic approach has the

advantage that the validity of the DT is not dependent on the

user’s knowledge of the process, but on the ability of the DT for

self-adaptation (see Tomforde et al. (2014)).

Automatic DT updates can be triggered by several events

such as physical component wear, change of components,

process reconfiguration, or as a response to extrinsic

parameters. Changes in the plant can be identified by the

monitoring concept. Monitoring enables the identification of

these changes by continuously comparing the output data of DT

with those of the real plant and allows to validate that the plant in

its actual status still meets all requirements (Zipper et al., 2018).

Furthermore, periodic model validation is an essential part of any

automatic DT updating scheme in order to validate whether the

DT still captures process behaviour accurately (runtime

verification; Bu et al. (2011)).

Successful automatic DT updates rely upon the following key

aspects: Scope of the update, type of update, and computational

paradigm.With respect to the scope of the update, updates can be

performed on several layers of the DT, such as component and

model parameter updates, or a top-level update in DT structure

(Musil et al., 2017). Excessive use of model updates may result in

insignificant performance changes (Lee, 2015). With respect to

the type of the update, self-adaptation triggered by an external

factor such as wear or component change is reactive in nature

(Ditzler et al., 2015; Moreno et al., 2015). In contrast, passive

adaptation does not require the detection of triggering events.

Instead, passive adaptation continuously updates the DT models

based on the observed inputs (e.g., sensory data) using methods

such as online parameter estimation for component models

(Haykin, 2013; Kokkala et al., 2015). Furthermore, the DT

update methodology should also consider a horizon of validity

of the DT in order to be usable for predictions.

Finally, with respect to the computational paradigm, there is

a strong dependency on the use case. Some use cases (e.g.,

simulation or what-if analysis) require a centralized DT. In

such a scenario, all the components of the DT are centrally

managed. This also implies that updates of the DT should be

managed and performed centrally, with access to all of the DT’s

components, models, and data. For other use cases (e.g.,

monitoring and fault detection or predictive maintenance),

however, the DT might be decentralized with its components

and models being managed in a distributed manner (e.g., by

subsystems). In this case, even the DT update can be performed

decentralized (e.g., using edge computing) and the updated

components can immediately be used by the corresponding

tool chains (see, e.g., McMahan et al. (2017); Stankovic et al.

(2011)).

Technical solutions, platforms, and software, in particular,

should enable the continuous adaption and evolution of DTs

over the long term. There are several methods for updating

DTs. The approach applied to update the model depends on

the size of the data used for updating and the number of

parameters that should be updated. Some of the most common

approaches applied to update the models are based on

machine learning algorithms, such as optimal trees

(Kapteyn et al., 2020b), probabilistic learning on manifolds

(Ghanem et al., 2020), or Gaussian processes (Chakraborty

and Adhikari, 2021). Due to the modeling ability of artificial

neural networks (ANN), they have served as a basic tool for

various applications in the process industry. In the context of

DTs, adaptive ANNs are used to design the DTs and adapt

them over time through continuous learning (Reed et al.,

2021). Moreover, Bayesian networks can be employed to

create and update the DTs. In these networks, the

parameters are updated in some ways, for example, the

prior known parameters can be updated in real-time by a

Gaussian particle filter, while Dirichlet process mixture

models can be applied to update the unknown parameters,

making the model have the ability to self-updating the

structure (Yu et al., 2021).

Bayesian algorithms are also used for online adaption of DTs

and soft sensors through an automatic mechanism of bias

updating based on continuous monitoring of the mean and

standard deviation of the prediction error (Sangoi et al.,

2021). A combination of Bayesian state estimation and a

library of component-based models can be applied to create

and update data-driven physics-based digital twins (Kapteyn

et al., 2020a). The component-based models scale to large and

complex assets, while the construction of a model library enables
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flexible and expressive model adaptation via parametric

modification and component replacement.

Furthermore, updating the DTs can be regarded as a solution

to an optimization problem that minimizes the difference

between the outputs of the DT and the physical system. The

optimization algorithms face great challenges to meet the real-

time requirements in such cases. If the number of parameters is

small, then some optimization approaches such as methods

based on parameter sensitivity analysis (Wang et al., 2019)

and differential evolution for parameter estimation in a sliding

window (Ohenoja et al., 2018; Nikula et al., 2020) may be

appropriate. When a system contains high-dimensional

variables, large computational overheads and memory issues

could lead to inefficient results. In these situations, suitable

approaches include decomposing the plant into meaningful

blocks associated with a physical unit and using adaptive

identification methods for every block (He et al., 2019), model

order reduction (Chinesta et al., 2011; Quarteroni and Rozza,

2014; Kapteyn et al., 2020b; Chinesta et al., 2020), or using

surrogate models or meta models (Yang et al., 2016; Nikula et al.,

2020; Chakraborty et al., 2021).

5 Suggested research activities

On the basis of the use-cases, the needed technologies, and the

state of the art, a way forward to achieve automated generation and

update of digital twins can be sketched out. Theway forward looks at

the needed technologies from the perspective of technology

readiness and what research and development is still required

together with the complexity of the task ahead.

Note that, as already pointed out before, access to complete

data and plant information are essential for any of the modeling

approaches that are targeted by AutoTwin. The information does

not need to be stored in a centralized way, but needs to be

accessible for the technologies. This requires solutions for

information storage, exchange and sharing between the

different tools (see, for example, Mogos et al. (2019)). During

the mock-up study it was confirmed that complete plant

information is a challenge onward and also a limiting factor

to achieve automated modeling for digital twins. The

development, deployment, and usage of a plant information

system is complex, both from a technical and organizational

perspective, and also hard to foresee when it is in place. There are

also commercial solutions available which at least partly provide

the needed features. Hence, this aspect is out of the scope of this

paper and it is therefore assumed that a plant information system

is available and that the developed technologies are setting up

requirements for such a plant information system.

There are also numerous ongoing research, development,

and standardization activities that focus on plant information

systems and interoperability, and will thus not be focused

on here.

5.1 Activities

From the gap analysis following the state-of-the-art analysis

and the insights created by the mock-up study, the research and

development activities in Table 2 should be prioritized. Each of

the activities by itself aims at methods and tool capable of

rendering a certain degree of autonomy for a DT. This means

the degree of supervision needed by the user or the guidance that

the user receives in the engineering task differs. In order to

achieve full autonomy, gaining the trust of the user is essential

and depends largely on the achieved performance of the methods

or tools during the validation or testing.

5.2 Roadmap

The research activities themselves do not provide insights on

how the vision of the framework depicted in Figure 2 can be

achieved. The technologies view in Figure 3 provides a

decomposition where the individual components can be

realized by manual, guided and automated engineering efforts

and a combination of those, enabling a development roadmap

focusing on continuous value creation. For each of the

technologies, three levels of autonomy are therefore foreseen:

• Manual means that the engineering efforts are conducted

in a manual fashion. For online technologies it means that

manual monitoring, decision making, and updating are

realized,

• Guided means that the engineering efforts are supported

by tools that perform analysis and provide insights that

guide the engineer in their efforts to achieve good results.

For online technologies it means that the monitoring is

automated to some degree and that decision support is

provided.

• Autonomous means that the engineering efforts are fully

automated and eventual decision making is done by the

technologies themselves. Both offline and online

technologies should exhibit the same behavior with no

need for user interaction.

Thus, activities 1 and 2 can be performed independently of

3–5 as the latter could be operated on manually engineered

digital twins and their embedded models, minimizing risks for

long research activities with little industrial benefits. Further, the

basic idea of the roadmap is a bottom-up approach, meaning the

technologies needed for the online operation of DTs over a longer

time period need to be addressed first and need to achieve

autonomy first.

The outset for the roadmap is now the availability of a

plant information system and manual engineering efforts

representing the needed technologies and extends from

there as follows.
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1) Guided Monitoring and Validation. Systematic

description of validation criteria for models on the

basis of use-case requirements will enable automated

assessment of models where the user is guided in the

selection of data and interpretation of the outcomes. The

remaining technologies will be conducted in manual

engineering mode for both online and offline.

2) Autonomous Monitoring and Self-Correction. The

monitoring will then be further matured to allow for

an autonomous approach that will also capture the

ability to update the local models while in operation.

The initial DT is manually engineered such that the

models are possible to be used in self-correction. The

requirements on the models to enable autonomous

self-correction will be investigated and established.

This step also includes the validation of purpose

oriented models.

3) Guided Calibration and Update. The monitoring will

generate triggers for update mechanisms not possible to

accommodate by the self-correction. The algorithms used

in the self-correction will serve as a foundation to create

update and calibration algorithms that guide the user.

There will be numerous hyper-parameters that need to be

set and data selection for the update and calibration need

to be performed. The experience from the engineering in

setting these parameters will enable the development of

autonomous versions of these algorithms. The

prerequisites for methodologies feasible for both, a

guided or autonomous operation, will be investigated

and established. The applicable methodologies might

set up requirements on the modeling paradigms that

are used. The scope will be on purpose-oriented

models and it needs to be investigated to what degree

the approach can become generic.

4) Autonomous Calibration and Update. The algorithms

will be further developed to allow for autonomy of the

calibration and update for purpose oriented models.

Autonomy might only be achieved for certain purpose

oriented models which need to be investigated and

clarified. This step requires the involvement of the user

to understand the requirements for autonomy and to

build trust in the technology.

5) Guided Model Instantiation. The technology relates to

activity 2 and can be developed in parallel with the prior

steps. Purpose-oriented model generation depends on the

use case and the requirements on the models. Similarly,

the model instantiation depends on the plant information

system and the availability of modeling information. The

user will be provided with guidance on which information

is needed for the model generation and instantiation and

will be guided through the process of hyper-parameter

selection. The resultingmodels need to be compatible with

the calibration and validation. The objectives for the

calibration and validation are also prepared here and

the user is guided. It need to be investigated which

model types and paradigms can be used in the model

instantiation and generation.

6) Guided Meta Model Generation. Similar to the model

instantiation a guided approach for the model generation

is a first step, where the user interacts with the technology

and in part performs the engineering efforts manually.

The base of the development is on available technologies

TABLE 2 Proposed research and development activities.

Activity TRL Priority Description

1 Meta model generation 6–7 Medium Automated or guided model generation can be based on the further development of methods and
tools that are available. While there are unsolved research challenges and technical solution could
still be achieved for industrial use. There is a high dependency on a plant information system. The
result will be a meta model for the complete plant

2 Model instantiation and purpose oriented
model generation

4–5 Medium The model instantiation can be part of the automated model generation and can be hard to
distinguish given the currently available tools. The generation of the purpose oriented models is a
quite open field of investigation and the automation might be difficult and is use-case dependent.
A guided approach in a first stage is advised, but will also be use-case dependent

3 Calibration and validation 4–5 High Calibration and validation depend on the underlying objective that is used for assessment of the
performance. The choices are not clear and how the use-case and the requirements are correctly
reflected in the assessment. Also the choice of data and to understand the information theoretic
aspects of the calibration and validation process require research activities, i.e. when it comes to
large scale processes

4 Monitoring 4–5 High The monitoring can be further using the objectives from the validation and calibration as it will
be solving the detection, isolation and classification problem. Monitoring need to be working in
an online context and fully autonomous to support the self-correction and update of the digital
twin, by triggering actions within the digital twin but also outside the digital twin

5 Self-correction and update 4–5 High Self-correction and update mechanisms in an autonomous way are a prerequisite for the value
creation of a digital twin in the long run. It is important to trigger these activities in a proper way
and also assess the success of an update
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which solve the problem in part or for specific case studies.

The resulting learnings on requirements and scope aid in

the further development to autonomy. In the guided

approach the user will be provided with choices to

generate the meta model of a process of varying size

and complexity. The principles to engineer the

requirements for the model generation will be

investigated and established.

7) Autonomous meta model generation and model

instantiation. The requirements engineering step will

be further developed to result in requirements feasible for

the meta model generation. The requirements remain a

manual engineering effort as those are essential along the

complete technology chain. The guided algorithms will

be further developed to achieve autonomy where the

setting of the hyper-parameters for the algorithms is no

longer needed. Again, the trust of the user in the

technology and its explainability need to be

thoroughly investigated.

8) Integrated technologies. While the requirements are the

key to the interoperability of the technologies, the

integration might impose additional requirements on

the information that is generated within the

technologies and exchanged between. The integrated

framework need to be benchmarked and validated,

although the individual technologies have been validated

already.

During all steps of the roadmap, benchmarking and

validation of the resulting technologies need to accompany the

research and development activities. Pilot studies should

specifically focus on the value creation of the technologies and

the quantification of the increase in availability of digital twins.

Life-cycle aspects are essential to be investigated.

6 Conclusion

The aim of this study was to understand the research and

development challenges when it comes to the use of digital twins

for estimation and control of process industrial systems. The

paper first unveiled the complex nature of a digital twin which is

sometimes merely understood as a simulation model with

visualization capabilities for engineered systems of any kind,

especially when the digital twin should remain relevant over the

life cycle of a process industrial system. The key result of the

assessment is the introduction of a framework that comprises

interacting technologies that need to be in place to enable digital

twins for process industrial systems.

One of the most important aspects of digital twins is the

generation and update of them. While they can be engineer

similar to the process industrial system itself, the automation of

these steps is crucial to not only make them available in the first

place but also to keep them relevant as tedious manual labor is

not an option for large scale systems. The value creation that

becomes possible when they are available with up-to-date

embedded models of the real-life counter part is immense as

virtually all model-based methodologies in process automation

and control become applicable. The most relevant use-cases for

such digital twins have then been discussed and also highlight the

direction for the gap analysis and state of the art review.

For the needed technologies the state of the art is reviewed

where several gaps are identified hindering an efficient use of

digital twins for estimation and control. Subsequently,

suggested research activities or topics are summarized and

organized in a roadmap towards the automated model

generation and update of process industrial digital twins. It

can be in general concluded that manual model generation and

update is possible given the available methodologies, while

guided and automated approaches still require substantial

research to be conducted.
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