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With a rapidly expanding global population placing an ever growing demand on

freshwater resources, an increased focus on irrigation techniques tailored to the

specific needs of plant appears as one solution to minimize overall freshwater

consumption. Precision irrigation methods seek to realize an acceptable

compromise between yield and irrigation water consumption through

control of the timing and quantity of water supplied to plants. The goal is to

maintain the water content of the soil, achieve specific water use efficiency with

regard to yield or maintain the physiological response of the plant to water

stress within predetermined limits. Reliance on soil moisture measurements to

establish irrigation water demand inadequately addresses heterogenous

distribution of water in soil. Growing research interest is observed detailing

the determination of plant water status directly from physiological responses.

This paper reviews irrigation control approaches based on different plant water

status assessment techniques. A distinct focus is made on application scale of

the discussed control approaches, an aspect that has not been considered

intensively enough in previous discussions of irrigation control approaches. A

discussion of the observed strengths and shortcomings and technological

advances supporting the various methods used to quantify plant water status

extends the review. Emerging trends that are likely to have an impact on plant

water status determination and optimal timing and quantification of irrigation

water requirements are integrated to show latest results. A peek into the future

of precision irrigation foresees greater reliance on plant-based signals, both in

characterization of the control variable, namely the plant water status, and in

generation of controller outputs in terms of quantity and timing.
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1 Introduction

As the world advances further into the 21st century, a rapidly

growing global population continues to exert greater demand on

agricultural food production (van Dijk et al., 2021). The effects of

climate change provide an additional challenge to traditional

rain- and reservoir-based crop production, making the case for

use of irrigation either exclusively throughout the growing

season, or as a supplement to natural precipitation (Wada

et al., 2013; Rosa et al., 2020). Maintaining crop yields from

the available land area, using a diminishing quantity of the

required freshwater for irrigation is a delicate balancing act

that has acted as a motivation for extensive research in

precision irrigation approaches, with the overall goal of

maximizing water use efficiency of irrigated crops, while

simultaneously meeting the rising global food demand.

While water treatment and desalination provide alternatives

to cover the freshwater need, existing techniques are costly and

energy intensive, particularly at low to medium scale (Arborea

et al., 2017; Hagenvoort et al., 2019; Arena et al., 2020;

Oubelkacem et al., 2020; Ofori et al., 2021). Concerns about

the safety of treated wastewater, even with application of

advanced treatment methods, have resulted in a call to more

rigorous regulation and combination of treatment processes

(Rizzo et al., 2020). Freshwater generation via atmospheric

water harvesting (Tu et al., 2018; Lu et al., 2022) offers a

novel, but energy intensive alternative which is currently

limited to smaller production units (LaPotin et al., 2021). As a

conclusion optimization of crop irrigation appears to be the most

suitable solution to achieve a sustainable compromise between

increasing freshwater demand for food production and the

associated energy and environmental costs to realize adequate

global food supply.

In the history of mankind, adequate food production has

been a fundamental requirement in the growth and advancement

of human society. As early as 5000 BC, early agricultural

civilizations in Egypt and Mesopotamia had come upon the

idea of expanding the extent of arable land through use of

irrigation, making use of the floodwaters of the Nile, Tigris,

and Euphrates which was diverted into arable farmlands

bordering the rivers through an extensive network of canals

(Bazza, 2007). Through the use of intricate systems of canals,

with later additions of reservoirs, dikes, and overflow canals,

flooding could be mitigated (Grenfell et al., 1900; Westermann,

1919). Similar implementation of surface irrigation was also

recorded in ancient China, Crete, India, and Persia (Biswas,

1970). Irrigation control in this case was focused on direction

of irrigation water to specific locations, regulation of irrigation

duration and mitigation of flooding. Surface irrigation methods

involving use of flooded basins, furrows, dykes, dams, and

artificial reservoirs remain the predominant form of irrigation

to date (Jägermeyr et al., 2015). Control methods aimed at more

efficient use of irrigation water have been targeted at regulating

the timing, duration, and frequency of supply to the fields

through control of gates, sluices, valves, and pumps.

Introduction of new methods of water application to

plants in the field, namely through sprinklers and drip

lines, provided new opportunities for more accurate control

of irrigation water supply, allowing the regulation of water

supply down to the individual plant level. These developments

on the actuation side of irrigation have been accompanied by

corresponding developments in sensing and control

approaches.

The incorporation of spatial variability in the management of

irrigation is a key concept in distinguishing between traditional

irrigation and precision irrigation (Sadler et al., 2005; Smith and

Baillie, 2009). In Smith et al. (Smith et al., 2010), a distinction is

made between traditional definitions of precision irrigation,

which focus on maximizing efficiency through precise

determination of volume, location and timing of irrigation,

with uniform application over the entire system, and an

updated definition that incorporates spatial and temporal

variation in irrigation treatment. The focus is shifted from

field level to management zones within the field (Gonzalez-

Dugo et al., 2014; Fernández, 2017), or to individual plant

level (Kizer et al., 2018; Klein et al., 2018). Camp et al.

describe precision irrigation as “site-specific water

management, specifically the application of water to a given

site in a volume and at a time needed for optimum crop

production, profitability, or other management objectives at

that specific site” (Camp et al., 2006). In this review, the

supporting technologies are considered with regard to their

flexibility in allowing variable precision irrigation of individual

plants or zones, rather than achieving efficiency through

generation of uniform irrigation schedules.

Traditional definitions of precision irrigation consider the

“precise amount” of water to be applied to be the full amount of

water required to meet the plant demand, which has commonly

been determined based on the relationship between crop

evapotranspiration and environmental factors (Morillo et al.,

2015; Morales et al., 2016). Current irrigation practices that

explore the cultivation of irrigated crops under regulated

water deficit provide a new Frontier for precision irrigation,

where the required amount to be delivered is determined with a

goal of avoiding irreversible water stress damage, without

necessarily fully matching evapotranspiration-based plant

demands. This provides further avenues for improvement of

water use efficiency. Deficit irrigation-based applications of

precision irrigation approaches have been employed in control

of both pre- and post-harvest yield quality (Pérez-Pastor et al.,

2007; Lipan et al., 2019; Venturi et al., 2021). The observed effect

of deficit irrigation approaches on crop maturation (Zegbe-

Domínguez et al., 2003; Cui et al., 2008) is an additional

research target, with the possibility to enhance economic

outcomes for the farmer by matching harvest timing to

periods of greatest market demand. In this review, precision
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irrigation control approaches incorporating regulated water

deficit are emphasized.

Previous contributions in the review of precision

irrigation approaches have addressed model-based and

sensor-based monitoring (Adeyemi et al., 2017; Liang et al.,

2020; Plaščak et al., 2021; Bwambale et al., 2022), specific

control algorithms applied in irrigation scheduling (Romero

et al., 2012; Abioye et al., 2022), and technological advances

supporting future development in precision irrigation control

(Neupane and Guo, 2019; Bodkhe et al., 2020; Han et al.,

2020). This review similarly provide a comprehensive

summary of monitoring, control, and actuation approaches

applied in precision irrigation control. Additionally, the

implementability of deficit irrigation-based strategies for

increased water use efficiency is addressed, allowing the

extension of achievable water savings thus contributing to

sustainable expansion of global food production without

exhausting available freshwater resources.

2 Precision irrigation control
approaches

Control techniques are broadly classified as open or closed

loop, defining the existence of any kind of calculated or otherwise

technically realized feedback (output to the input of the system

considered). Open loop precision irrigation control relies on an

accurate understanding (in the best case: a model) of plant water

requirements, while closed loop methods include sensing

mechanisms to dynamically adjust the control input to the

irrigation system based on measured values.

The performance of precision irrigation control approaches

depends on the definition of plant water requirements. The

characterization of plant water demand and the subsequent

responses to the water application is described in Kögler

(Kögler and Söffker, 2017) along a soil-plant-atmosphere

continuum. This paper similarly groups approaches in

precision irrigation into soil-based, plant-based, and

atmosphere-based approaches. Further distinction is made

between approaches targeted at enhancing precise delivery at

field level, within irrigation management zones and at individual

plant level.

2.1 Soil-based approaches

Growing plants obtain water required for their growth from

the soil. The soil moisture content has therefore been applied as a

measure of the water status of the plant, with a plant-specific

lower limit describing the minimum moisture content required

to maintain the plant above wilting point (Briggs and Shantz,

1911) and a soil-specific maximum water holding capacity, also

referred to as the field capacity (Veihmeyer and Hendrickson,

1931). The main goal of traditional irrigation methods is to

maintain soil moisture content at field capacity during the

growth phases, with scheduling of irrigation events based on

plant growthmodels such as FAOAquacrop (Steduto et al., 2009)

or multivariable models simulating soil moisture, plant growth,

and evapotranspiration such as DSSAT (Hoogenboom et al.,

2019).

Model-based predictive control approaches applied in

precision irrigation allow the integration of soil moisture

models in a predictive control scheme, which allows

forecasting of moisture content and update of control actions

based on measured variables. Spatial and temporal variability is

accounted for using regression models (Hedley C. and Yule I.,

2009), a predictive model with weekly measurement-based

updates performing online optimization (Nahar et al., 2019),

employment of Kalman filters (Roy, 2014), and application of

deep belief networks and macroscopic cellular automata, with

dynamic environmental measurements providing additional data

for prediction (Song et al., 2016).

The learning capabilities of neural networks allows the

adaptation of plant growth models for the design of precision

irrigation controllers. Specific neural-network based approaches

allow online updating of control decisions based on measured

real-time conditions, resulting in more accurate behavior. These

capabilities are utilized by Capraro et al. (Capraro et al., 2008) in

the development of an adaptive closed loop controller that allows

for modification of control actions when environmental

perturbations such as rainfall or extreme temperatures cause a

change in irrigation requirements. Long short term memory

neural networks are employed for prediction of soil moisture

content (Adeyemi et al., 2018) or soil matric potential Jimenez

et al. (2020) with varying performance, both in terms of water

savings and prediction accuracy. These are attributed to soil

characteristics and duration of the prediction window. Difference

in performance of neural network-based predictive models are

also reported by (Gu et al., 2021), with larger estimation errors

observed at lower soil moisture content levels, affecting

performance of the precision irrigation scheduling system.

A major challenge in the use of model-based methods for

precision irrigation is that the control performance is limited by

the accuracy of prediction or estimation achieved by the model.

Incorporation of soil moisture data into irrigation management

decisions offers a significant performance improvement in soil-

based precision irrigation approaches. Sensor readings have been

used to calibrate and refine model output, as described in (Tseng

et al., 2018), where soil moisture measurements are used in

labelling images acquired from an unmanned aerial vehicle for

training a deep learning-based predictive algorithm. Conversely,

application of predictive models can be integrated in sensor-

based control approaches to reduce the quantity of sensor

readings required to make an accurate assessment of soil

water content, as proposed in (De Benedetto et al., 2013b)

and (Andugula et al., 2017).
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Soil-based closed loop control methods integrate soil

moisture measurements in the control loop. On/off switching

algorithms triggered by designated soil moisture sensors with

preset static thresholds have been employed in precision

irrigation control by Xiao et al. (Xiao et al., 2010). Use of

dynamic switching thresholds allows real-time response to

field conditions, with the adaptation of the thresholds

accomplished in Capraro et al. (Capraro et al., 2008) by

neural networks, and numerical simulation employed by Egea

et al. (Egea et al., 2017). An alternative approach involves

placement of sensors at varying depths to track infiltration

rate, allowing anticipatory switching (Benzekri and Refoufi,

2006; Zhao et al., 2007; Liu and Xu, 2018).

Development of a large variety of soil moisture sensors with

greater accuracy and reliability has facilitated the precision

control of irrigation based on real-time conditions. A major

challenge to implementation of sensor-based control approaches

has been the unit cost of sensors, which limits the economic

viability of field scale application of appropriately accurate and

precise sensors. New low-cost soil moisture sensors have been

developed in recent times based on sensing approaches

commonly used in commercially available sensors, including

frequency domain reflectometry (FDR) (Xiao et al., 2010),

time domain reflectometry (TDR) (Wei et al., 2013),

impedance spectroscopy (Umar and Setiadi, 2015), and

capacitance-based methods (Kojima et al., 2016; Gao et al.,

2018). Novel approaches in the measurement of soil moisture

content have also been developed in recent times, such as a time-

domain multiplexing approach described in Saeed et al. (Saeed

et al., 2019) and a high frequency double-resonance tuning

approach developed by Qinglan et al. (Qinglan et al., 2020).

Ding and Chandra introduce a Wi-Fi-based measurement

system that relies on radio-frequency propagation (Ding and

Chandra, 2019). Development of more precise calibration

techniques and incorporation of fault detection mechanisms

generates an opportunity for improvement of measurement

accuracy and flexibility of application in both novel and

existing soil moisture sensors (Oates et al., 2016; Chen L.

et al., 2019; González-Teruel et al., 2019; Nagahage et al.,

2019). Additionally, dynamically variable irrigation thresholds

based on plant growth requirements can be incorporated through

calibration based on plant measurements. This is employed in

Lou et al. (Lou et al., 2016) to generate a set of soil potential

thresholds that allows precision irrigation through different plant

growth stages.

Location and distribution of moisture sensors within the field

has traditionally relied on expert knowledge from manufacturers

or farmers. Approaches for optimizing the spatial distribution of

soil moisture sensors for improved mapping of water content

include use of clay percentile (Zhao W. et al., 2017), analysis of

soil elevation maps combined with measurement of electrical

conductivity (Adamchuk et al., 2010), and application of graph-

theoretical methods (Roy, 2014).

Field level precision irrigation based on soil moisture content

relies on accurately modeling and/or measurement of soil water

dynamics, incorporating the effects of precipitation, irrigation,

leaching, run-off, and drainage to establish the moisture available

within the root zone of the plant. Precision irrigation control

approaches are therefore employed primarily to address accuracy

of moisture content measurement and monitoring, and the

scheduling the timing and quantity of field-level irrigation

events. Remote sensing techniques capable of extracting soil

moisture characteristics with increasing precision and more

frequent intervals is a key factor in the further development

of soil-based precision irrigation at field level. Electromagnetic

surveys have been applied in (Hedley et al., 2013) to assess the

spatio-temporal dynamics of soil moisture and water table depth

for precision irrigation control. Satellite data are also used to

determine the soil water index, which is used as an indicator of

soil moisture content (Termite et al., 2019).

Zone level precision irrigation relies on accurate demarcation

of the field into homogeneous management zones based on

physical and chemical characteristics of the soil (Bazzi et al.,

2018; de Lara et al., 2018; Chen S. et al., 2019). Integration of

plant-related measurements to complement soil sensor

measurements has been explored in (Rojo et al., 2016; Ortuani

et al., 2019; Vera et al., 2019; Serrano et al., 2020) for better zone

delineation as a means to increasing irrigation efficiency. Recent

research investigates the adoption of Bayesian maximum entropy

(Han et al., 2020) and clustering approaches (Haghverdi et al.,

2015; Oldoni and Bassoi, 2016; Ohana-Levi et al., 2019; Javadi

et al., 2022) for achievement of optional zoning. To address

challenges arising from static management zone delineation

based on spatial characterization, dynamic determination of

zone boundaries has been explored with integration of real-

time soil and plant sensor measurements (Scudiero et al.,

2018; Fontanet et al., 2020) or use of deep learning

approaches (Song et al., 2016).

With regard to the current status of soil-based precision

irrigation control approaches summarized in Table 1, it can be

stated that the maintenance of soil moisture level between a user-

defined lower boundary related to the wilting point and an upper

boundary defined by the soil water capacity has been employed as

the basis for control decisions. Challenges related to soil water

dynamics arising from inherent hydraulic characteristics or

changes in the spatial envelope defining root-available water

have been addressed. Optimization of location and distribution

of soil moisture sensors to allow accurate mapping of soil

moisture distribution while minimizing the required number

of sensors is a potential area for further work in the

implementation of sensor-supported soil-based precision

irrigation control. Variations in the upper soil moisture

boundary during scheduling of irrigation quantity has not

been considered in literature, signifying a gap in the

application of soil-based precision irrigation methods to

deficit irrigation strategies. Additionally, a significant gap
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exists in soil-based approaches applied at individual plant level.

Advancements in the field of wireless sensor networks, remote

sensing and machine learning approaches are expected to drive

future developments in soil-based precision irrigation control,

allowing for more localized decision support systems and greater

adaptability to individual plant water requirements.

2.2 Atmosphere-based approaches

Atmosphere-based precision irrigation control approaches

involve balancing the water supplied to the plant with the water

released to the atmosphere through evapotranspiration.

Achievement of the high accuracy required in precision

irrigation is either accomplished by refining

evapotranspiration models for use in open loop control or by

incorporation of sensor feedback in closed loop control.

Common models of evapotranspiration incorporated into

precision irrigation include FAO’s Penman-Monteith model

(Allen, 1998; Fourati et al., 2014; Robinson et al., 2017;

Pereira et al., 2020), the Hargreaves-Samani model

(Hargreaves and Samani, 1985; Gordin et al., 2019; Pelosi

et al., 2019; Domínguez-Niño et al., 2020) and the Surface

Energy Balance model (SEBAL) (Bastiaanssen et al., 1998;

Gobbo et al., 2019). Both the Penman-Monteith and

Hargreaves-Samani models generate an estimated reference

evapotranspiration rate, which is multiplied by a crop-specific

coefficient to predict the actual evapotranspiration rate of the

crop. The Hargreaves-Samani model provides a simpler

approach due to its ability to provide an estimate based solely

on temperature values, as compared to the Penman-Monteith

approach, where several environmental, geographic and soil-

related variables are required. Better temporal stability in

evapotranspiration prediction accuracy using the Hargreaves-

Samani approach has also been reported in (Lorite et al., 2015),

making it a more reliable option for control approaches

integrating longer prediction windows. The SEBAL approach

directly computes the actual evapotranspiration rate from

thermal imagery without requiring specific soil- or crop-

related coefficients, making it more readily applicable to new

or inadequately researched crop varieties for which physiological

coefficients are yet to be established.

Machine learning approaches have more recently been

applied in estimation of evapotranspiration, and hence plant

water requirements, based on weather data (Sidhu et al., 2020;

Farooque et al., 2021). Linker et al. use temperature forecasts to

TABLE 1 Summary of soil-based precision irrigation control approaches.

Author Year Sensing/Measurement Application scope Modeling/Control
approach

Soil Plant Atm Field Zone Plant

Adeyemi et al. 2018 x x x MPC with NN-based prediction

Andugula et al. 2017 x x Gaussian process regression

Bazzi et al. 2019 x x Fuzzy C-means algorithm

de Benedetto et al. 2018 x x Kriging with external drift

Benzekri and Refoufi 2006 x x x Anticipatory on/off control

Capraro et al. 2008 x x on/off control with dynamic thresholds

Chen et al. 2020 x Genetic algorithm

Egea et al. 2017 x x on/off control

Gu et al. 2021 x x x NN-based on/off control

Hedley and Yule 2009 x x Daily prediction of soil water status

Jimenez et al. 2020 x x LSTM neural network

Liu and Xu 2018 x x On/off control

Lou et al. 2016 x x x On/off control

Nahar et al. 2019 x x x MPC with closed loop scheduling

Roy 2014 x x MPC with stochastic receding horizon

Song et al. 2016 x x x Deep belief network (DBN)

Termite et al. 2019 x x x x Feedforward NN; ANFIS

Tseng et al. 2018 x x x Deep convolutional neural network

Wei et al. 2013 x x On/off control

Xiao et al. 2010 x x on/off control

Xiao et al. 2010 x x x on/off control

Zhao et al. 2007 x x On/off, Time control and fuzzy hybrid control
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estimate evapotranspiration values, which are applied in

precision scheduling of irrigation to achieve targeted optimal

combinations of yield and irrigation amount selected by the

farmer (Linker et al., 2018). Estimation of evapotranspiration

using remote sensing data is employed in Barker et al. (Barker

et al., 2018) for variable rate irrigation control. In Ma et al., the

Root Zone Water Quality Model is calibrated using lysimeter

measurements for estimation of plant evapotranspiration, which

is then applied in irrigation scheduling (Ma et al., 2017). The

authors suggest further improvement of irrigation scheduling by

inclusion of weather forecasting data. Improvements in water use

efficiency are observed in this case. However, due to the

implementation of an open-loop control, real-time

evapotranspiration values play no role in the decision-making,

making the system susceptible to environmental variations. For

greenhouse-based applications (Incrocci et al., 2014), developed a

data-driven evapotranspiration model for precision irrigation

control, achieving a 45% reduction in seasonal water use.

An alternative atmospheric-based approach relies on

prediction of precipitation rather than evapotranspiration

(Roy, 2014; Tsakmakis et al., 2016). Roy introduces a

stochastic weather forecasting module for predicting

precipitation (Roy, 2014) using publicly available weather

forecasts. Tsakmakis et al. use a weather prognostics model

based on the air pollution model (Hurley, 2005), which

predicts precipitation by solving given scalar equations.

Irrigation scheduling is adjusted based on predicted timing

and quantities of precipitation.

Hybrid approaches combining ET estimation with soil

moisture sensing (Lozoya et al., 2016; Nocco et al., 2019;

Bhatti et al., 2020) or plant-based methods (Tsakmakis et al.,

2016; Gobbo et al., 2019) have also been used to achieve greater

accuracy in precision irrigation control. These allow

compensation of weather-related disturbances to the

evapotranspiration model by integrating the dynamic behavior

of soil moisture or of the plant. However their reliability depends

on the accuracy of crop coefficients used in determination of

actual evapotranspiration.

A major challenge in atmospheric-based precision irrigation

approaches arises from the difficulty in differentiating between

evaporation (from the soil surface) and transpiration (from the

plants), requiring dynamic adjustment of irrigation control

algorithms as plant cover increases during the growth season.

A recent approach described by Chen et al. (Chen et al., 2020)

involves the partitioning of evapotranspiration values into its two

components through machine learning techniques. This could

provide a key to achieving greater accuracy in precision irrigation

control, allowing the focusing of water delivery to meet actual

plant demand rather than maintaining constant soil moisture

levels, including in areas where no plant growth is present. A

summary of existing atmosphere-based control approaches is

provided in Table 2.

TABLE 2 Summary of atmosphere-based precision irrigation control approaches.

Author Year Sensing/
Measurement

Application scope Modeling/Control
approach

Soil Plant Atm Field Zone Plant

Barker et al. 2018 x x x VRI with remote sensing-based water balance model

Bhatti et al. 2019 x satellite and airborne imagery-based VRI

Dominguez-Nino et al. 2020 x x x model-predictive control (IRRIX software)

Farooque et al. 2021 x deep learning model-based ET prediction

Fourati et al. 2014 x x x x FAO56 ET model-based on/off control

Gobbo et al. 2019 x x x VRI with dynamic zone delineation

Gordin et al. 2019 x x x x Hargreaves-Samani ET model-based on-off control

Incrocci et al. 2014 x x x x Soil moisture-based vs. ET-based automated drip irrigation

Linker et al. 2018 x x MPC with real-time multi-objective optimization

Lorite et al. 2015 x x weather forecast-based on/off irrigation control

Lozoya et al. 2016 x x x x model-predictive control with soil moisture measurement

Ma et al. 2017 x x x weather forecast-derived ET-based deficit irrigation

Pelosi et al. 2019 x x x calibrated Hargreaves-Samani for ET modeling

Robinson 2017 x x x plant-specific Penman-Monteith model-based control

Roy 2014 x x x x stochastic receding horizon approach

Sidhu et al. 2020 x x Regression-based on/off scheduling

Tsakmakis et al. 2016 x x x x interoperable model coupling for irrigation scheduling (IMCIS)
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2.3 Plant-based approaches

To alleviate the gaps inherent in soil-based and atmospheric-

based precision control approaches, plant-based precision

irrigation control has been widely seen as the best approach

in accurately determining and meeting plant water requirements

(Jones, 2004). The timing and quantity of irrigation is based on

the plant physiological response to lack of water, which results in

changes in leaf surface temperature, water potential, or turgor

(Ayars and Phene, 2007).

Canopy temperature-based crop water stress indices (CWSI),

both based on theoretical (Idso et al., 1981) and experimental

models (Jackson et al., 1981) have been employed in irrigation

scheduling since the early 1980s. Due to their reliance on canopy

temperature measurements taken at a specific time of day

(typically midday), they are constrained in their adaptability

to dynamically varying stress conditions. Applications of

CWSI in precision irrigation control are described in

O’Shaughnessy et al. (O’Shaughnessy et al., 2012b), where a

cumulative time threshold is incorporated in the

determination of irrigation timing, and in Osroosh et al.

(Osroosh et al., 2015), where a dynamic threshold is

implemented to account for changes in water stress thresholds

at different growing stages. A recent approach described by

Andrade et al. (Andrade et al., 2018) is the implementation of

machine learning algorithms for forecasting of crop water stress

indices based on historic data.

Advancements in canopy temperature measurements have

contributed greatly to the development of plant-based precision

irrigation approaches. High resolution satellite thermal images

have been used for mapping of plant water stress levels for site-

specific irrigation scheduling, with the capability to replace

locally obtained leaf water potential (LWP) measurements

(Meron et al., 2010). At a local level, thermal imagery

obtained from unmanned aerial vehicles (UAVs) (Gonzalez-

Dugo et al., 2013; Martínez et al., 2016; Matese et al., 2018) or

all-terrain vehicles moving within the irrigated field (Gutiérrez

et al., 2018) has been used in mapping of plant water

requirements for generation of irrigation management zones.

At plant level, surface temperature sensors mounted on

individual leaves have been applied to allow continuous

monitoring of stress status (Rojo et al., 2016; Kizer et al., 2018).

Determination of plant water status bymeasurement of water

potential in a pressure chamber was first described by Dixon and

Joly in 1895 (Dixon and Joly, 1895). Various approaches have

been developed for determination of water potential, with

measurements taken either from the leaves or from the stem

(SWP). Water potential measurement is done either directly on

the plant (Mirás-Avalos et al., 2016; Blanco-Cipollone et al.,

2017) or estimated from multispectral imagery (Baluja et al.,

2012; Zhao T. et al., 2017; Beeri et al., 2018; Helman et al., 2018;

Tung et al., 2018). Precision irrigation control approaches based

on use of plant water potential-based thresholds for triggering of

irrigation events are described by (Acevedo-Opazo et al., 2010;

Bellvert et al., 2015; Mirás-Avalos et al., 2016) and (Ruiz-

Sánchez et al., 2018). The application of machine learning

approaches enables integration of historical water potential

measurements to predict spatial variations in water

requirements, as described in (Pôças et al., 2020). An

alternative method involves the use of water potential

thresholds as the standard for calibration of other

measurement approaches, such as trunk diameter shrinkage

and growth rate (Livellara et al., 2011). Near infra-red

spectroscopy measurements have also been applied in

precision irrigation control, as described by (Diago et al., 2018).

Water is required for the maintenance of turgor pressure

in plants. Plant water status can therefore be monitored or

measured through measurement of turgor. Developments

related to leaf turgor measurements and potential

application in precision irrigation are described in

(Martínez-Gimeno et al., 2016; Rodriguez-Dominguez et al.,

2019). A novel approach employing ultrasonic sensing

techniques for determination of leaf water content as

related to turgor pressure is described in (Álvarez-Arenas

et al., 2016), allowing for non-contact application of

turgor-based precision irrigation control.

Other emerging methods of assessing plant water status that

could provide useful feedback for precision irrigation control

include measurement of leaf thickness (Seelig et al., 2011), trunk

diameter (Conejero et al., 2011; Meng et al., 2017), leaf reflectance

(Katsoulas et al., 2016) and various applications of image analysis

(Hendrawan and Murase, 2009; Chen et al., 2018; Mateo-Aroca

et al., 2019; Xu et al., 2020). The demarcation of irrigation

management zones based on plant-based sensors is also a

potential area of exploration (Bazzi et al., 2018), allowing the

realization of zone-based irrigation control that better matches

the plant water requirements.

In general, while plant-based approaches (summarized in

Table 3) provide the closest match to plant water requirements,

there still exist open questions regarding the determination of

appropriate irrigation quantity, the distinguishing of

physiological responses to water stress from other stresses,

and the dynamic adaptation of irrigation control to account

for physiological coping mechanisms employed by plants in

response to water stress.

The interaction between the soil, plant and atmosphere

provides a broad spectrum of combinations for precision

irrigation control approaches. Selection of a suitable approach

depends on the specific soil, plant and environmental

characteristics under consideration, as well as the desired scale

of application. While significant progress has been made in

development of field-level and zone-based precision irrigation

applications using all three approaches, there remains a

significant gap in plant-level precision irrigation control,

which has the potential to further improve the efficiency of

irrigation water supply to meet actual plant demand.
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3 Advances in precision irrigation

The development of precision irrigation control has benefited

from technological advances in various fields. In this section, the

technological advances contributing to precision irrigation

control are discussed under three main categories: sensor

development and data acquisition, data processing and control

approaches, and actuating devices. Specific elements of Industry

4.0 are directly addressed in each section.

3.1 Advances in sensing

3.1.1 Remote sensing
Greater availability of satellite data has provided a significant

boost to integration of remote sensor data in precision irrigation

applications. The soil moisture and ocean salinity (SMOS)

satellite (Kerr et al., 2010) launched by the European Space

Agency and the soil moisture active and passive (SMAP)

(Entekhabi et al., 2010) satellite by NASA have in particular

been instrumental in furthering research on remote

measurement and monitoring of soil water content. Drought

assessment using soil water deficit indices derived from SMOS

Martínez-Fernández et al. (2016) and SMAP (Zhu et al., 2019)

enables the tracking of changes in soil moisture content over

time, enabling precision irrigation management. In (Brocca et al.,

2018), satellite data are used to quantify amount of irrigation

water supplied at various sites, demonstrating the potential of

applying remote sensing data to monitoring and control tasks

associated with precision irrigation. The challenge of

downscaling regional scale satellite data for local application,

such as in precision irrigation, is presented in (Peng et al., 2017),

with a discussion of satellite-based, geoinformation-based, and

model-base approaches. A key limitation of microwave satellites

is that soil moisture information describes the surface condition

rather than root zone characteristics. The Global Land

Evaporation Amsterdam Model (GLEAM) (Martens et al.,

2017) provides a set of algorithms allowing estimation of

root-zone soil moisture and evaporation from satellite data,

allowing for incorporation into precision irrigation strategies.

Termite et al. (Termite et al., 2019) describe the harnessing of

machine learning capabilities in analysis of satellite imagery to

predict soil moisture dynamics for application in irrigation

decision support systems.

3.1.2 Wireless sensor networks
Advancements in wireless sensor network technology have

led to improved collection and analysis of sensor data for high

resolution mapping of soil moisture (Zhao et al., 2007; Xiao

et al., 2010; Hedley et al., 2013). Real-time communication

between sensors, actuators, and human users is easily

achievable over locally available telecommunications

TABLE 3 Summary of plant-based precision irrigation control approaches.

Author Year Sensing/
Measurement

Application scope Modeling/Control
approach

Soil Plant Atm Field Zone Plant

Acevedo-Opazo et al. 2010 x x x SWP-based regulated deficit irrigation

Andrade et al. 2018 x x x x ANN-based model predictive control

Bellvert et al. 2015 x x regulated deficit irrigation with dynamic management zones

Blanco-Cipollone et al. 2017 x x x deficit irrigation with on/off control and static thresholds

Gonzalez-Dugo et al. 2013 x x x x canopy-air temperature differential-based CWSI thresholding

Gutierrez et al. 2018 x x x reduced error pruning tree-based VRI

Kizer et al. 2018 x x x CWSI- and stem water potential-based VRI

Livellara et al. 2011 x x x variable rate drip irrigation

Martinez et al. 2016 x x x x IR image-based deficit irrigation

Matese et al. 2018 x x x stem water potential-based on/off control

Meron et al. 2010 x x x inverse distance-weighted interpolation of CWSI data

Miras-Avalos et al. 2016 x x x x SWP-based regulated deficit irrigation

O’Shaughnessy et al. 2012 x x x x CWSI- and time threshold-based on/off control

Osroosh et al. 2015 x x x x x x adaptive on/off control with dynamic threshold

Pocas et al. 2020 x x Bayesian and Tree-based regression algorithms

Rojo et al. 2016 x x x unsupervised fuzzy classification-based VRI

Ruiz-Sanchez et al. 2018 x x x x Takagi-Sugeno-Kang fuzzy inference system

Tung et al. 2018 x x x Modified partial least squares regression-based LWP modeling
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infrastructure and interfaces can be implemented on mobile

hand-held devices (Işık et al., 2017). An expansion of sensor

networking has seen the rise of Internet-of-Things-based

sensing applied for monitoring of plant water requirements,

whether via soil-based, atmosphere-based, or plant-based

measurements (Vasisht et al., 2017; Goap et al., 2018; Munir

et al., 2018). Integration of wireless sensor networks has also

found application in dynamic delineation of irrigation

management zones for zone-based precision irrigation

control in Sapna et al. (Sapna et al., 2020).

3.2 Advances in data processing and
control

3.2.1 Big data
The vast quantities of data generated from networked sensors

generate a need for expanded processing and storage capabilities.

In this respect, cloud computing approaches provide a viable

solution, finding application in monitoring of real-time irrigation

status (López-Riquelme et al., 2017; Vaishali et al., 2017) and

modeling of plant water requirements for soil-based (Raikar

et al., 2018; Mezouari et al., 2020), plant-based (Roopaei et al.,

2017), and atmosphere-based (Bendre et al., 2015) precision

irrigation control approaches. Data analysis techniques applied

on Big Data applications are also proving beneficial in

management of precision irrigation control systems (Zhang

et al., 2017).

3.2.2 Machine learning and artificial intelligence
Machine learning involves generation of self-modifying

or adapting algorithms whose performance accuracy

increases with experience (Marsland, 2014). Machine

learning techniques have been crucial in development of

dynamic control approaches through integration of

learning capabilities. Applications in the area of precision

irrigation are primarily in predictive modeling of soil

moisture dynamics (Hinnell et al., 2010; Adeyemi et al.,

2018) and optimized irrigation scheduling (Jimenez et al.,

2018; Murthy et al., 2019). Recent research involves

application of Machine learning algorithms to identify new

parameters that can be employed in characterization of plant

water content, primarily through image analysis (Hendrawan

and Murase, 2009).

3.2.3 Multi-agent systems
Multi-agent systems expand the capabilities of artificial

intelligence by introducing multiple autonomous intelligent

agents capable of interacting with each other. Multi-agent

systems have been employed in simulation of plant growth

response to multiple irrigation strategies, allowing the

selection of optimal precision irrigation approaches for

specific conditions (Isern et al., 2012; Belaqziz et al., 2013;

Zaryouli et al., 2020). With the incorporation of real-time

sensed variables describing plant response to water

application, multi-agent systems have additionally been

proposed for dynamic tuning of irrigation scheduling

algorithms (Villarrubia et al., 2017; Wanyama and Far, 2017;

González-Briones et al., 2019), allowing for constant adaptation

of water supply to plant needs. Further research in incorporation

of artificial intelligence in plant-based precision irrigation control

could be useful in enabling further individualization of plant

water requirement estimation, resulting in precision irrigation

control applications that more closely meet individual plant

needs.

An emerging field in precision irrigation control is the

modeling of irrigation-related parameters using hybrid

automata. Here, plant, soil, and atmosphere-related

parameters are modeled using finite state-machines, with

individual states described using simple linear models,

enabling the modeling and control of complex dynamic

systems, as described in Lozoya et al. (Lozoya et al., 2019) and

Jihin et al. (Jihin et al., 2019). Future work in this area would

involve integration of the generated plant models in precision

irrigation control algorithms, with the aim of predicting plant

water requirements and adaptively adjusting irrigation

scheduling based on plant response.

3.3 Advances in actuation

Delivery of irrigation water involves control of suitable

individual or combinations of pumps, valves, gates, and drip

lines through connected actuators in the form of motors,

mechanisms, and/or linkages. To ensure that the required

amount of irrigation water is delivered in a timely manner to

the required location, improvements at the delivery end play a

significant role. A common unifying factor is uniform supply of

irrigation water, with precision control approaches mainly

concerned with on/off switching of actuators to accomplish

scheduling and determine irrigation quantity.

3.3.1 Variable rate irrigation
The achievement of precision irrigation requires variable

delivery of water to different locations, based on localized

requirements. The development of variable rate irrigation is

described in Mulla and Khosla (Mulla and Khosla, 2015) as

one of the major contributors to the widespread adoption of

precision agriculture. In variable rate irrigation, the amount of

water delivered by individual nozzles or groups of nozzles is

independently adjustable, allowing for delineation of a field into

different irrigation management zones. This is a widely used

approach in cases where variations in scheduling or frequency of

irrigation for different zones within the field may not be desired.

Implementation of variable rate irrigation has been achieved by a

number of researchers through modification of commercially
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available sprinkler irrigation systems to supply preset quantities

of water under the control of a programmable system (McCann

et al., 1997; Camp et al., 1998; Chávez et al., 2009) or

development of new systems with variable rate irrigation

capabilities (Han et al., 2009). With hardware capable of

supplying different amounts of water, precision irrigation

control is transformed into a zoning/mapping operation, with

regions requiring similar quantities of irrigation water (based on

soil properties or plant requirements) clustered together.

Delineation of irrigation management zones has been

accomplished through measurement of soil properties at

different locations within the area under irrigation to generate

databases that are used to determine location-specific irrigation

settings (Hedley C. B. and Yule I. J., 2009; Chávez et al., 2009;

Moral et al., 2010; Nahry et al., 2011; Liakos et al., 2015; Boluwade

et al., 2016). Aggregation of on-site sensor measurements with

satellite data to develop decision support and zone management

systems for use in precision irrigation control is described by

multiple researchers as well (Zhang et al., 2009; Jiang et al., 2011;

De Benedetto et al., 2013a; Barker et al., 2018).

Variable rate irrigation approaches relying on

characterization of soil properties for zoning result in

generation of prescription maps for precision irrigation

applications. Such approaches, however, fail to respond to the

dynamics of plant water requirements. Recent approaches

incorporate plant-based measurements to dynamically update

zoning maps generated from soil properties. O’Shaughnessy et al.

use real-time plant water stress readings taken during irrigation

events to dynamically update the zoning maps used for precision

irrigation control (O’Shaughnessy et al., 2012a). In

Goumopoulos et al., a wireless sensor network integrating

measurements from soil, plant, and atmosphere is applied in

generation of irrigation management zones and used for control

of a wireless actuator network for precision irrigation within a

greenhouse (Goumopoulos et al., 2014).

3.3.2 Agricultural robots
Introduction of robotic agents in automation of irrigation

water delivery is an emerging area of research interest. With

appropriate path planning and field preparation, greater

flexibility in geographical location of irrigation heads is

achievable, and the role of such robots is easily expandable to

include multiple functions, such as sensing of soil and plant

characteristics, collection of samples, and delivery of agricultural

chemicals. Jafari et al. introduce an autonomously guided vehicle

for relocation of sprinkler heads within an irrigated field (Jafari

et al., 2013). The replacement of manual labour with robotic

actuation improves on accuracy and speed of irrigation, as well as

minimizes wastage of water. Gealy et al. develop a hand-held

robotic device used for fine-tuning emitter settings in a modified

drip irrigation system (Gealy et al., 2016). Water delivery can be

set to match individual plant requirements by adjustment of flow

settings at each emitter. Thayer et al. introduce a routing

algorithm to allow a similar robotic device for precision

adjustment of emitter settings to operate autonomously within

a vineyard (Thayer et al., 2018). Developments in collaborative

robotics provide further opportunities for integration of robotic

actuation in precision irrigation. Dusadeerungsikul et al.

(Dusadeerungsikul et al., 2019) discuss the development of a

collaborative control protocol which integrates robotic agents

into a smart greenhouse to create a cyber-physical system that

includes human and robotic agents. The described system

primarily serves a monitoring and detection role with

response provided by human operators. The system however

is an indicator of the potential application of collaborative robots

in a precision irrigation scenario, whether in sensing or actuation.

Current research involving collaborating robotic fleets,

otherwise described as swarm robotics, is an emerging area of

interest that could further influence future developments in

precision irrigation control. The scalability, flexibility, and

robustness in solution of complex tasks could be employed in

tailoring precision control decisions to allow more individually

adapted irrigation on larger scale (Albani et al., 2017). This is

facilitated by having specialized functions distributed among a

larger number of robots, which can then be deployed as and when

needed with coordinated communication (Emmi et al., 2014). Of

particular interest are swarms composed of aerial and ground

robots, which could integrate airborne sensing capabilities with

ground-based application tasks, allowing real-time, closed-loop

precision irrigation control (Grassi et al., 2017; Vu et al., 2017;

Potena et al., 2019).

4 Challenges and opportunities

Irrigation control has primarily been targeted at

minimization of water consumption at the expense of yield, or

maximization of yield at the expense of water consumption.

Research on the effect of targeted water stress during specific

growth periods however indicates that it is possible to achieve

equivalent or even greater yield while reducing water

consumption through strategic alternation of moderate

drought stress and recovery periods (Blum et al., 1990; Cui

et al., 2009; Niu et al., 2018). With the ongoing depletion of

global freshwater supplies, minimization of water consumption

will remain an overarching target of precision irrigation, with

advancements in technology increasingly targeting more efficient

use of every applied drop of water. An emerging Frontier that

presents interesting research questions is the individualized

direct control of plant growth and development by targeted

application of environmental stresses, such as is accomplished

through deficit irrigation. This has been suggested in various

research works (Hunt and Nicholls, 1986; Kang andWang, 2017;

Sánchez-Blanco et al., 2019). Kögler and Söffker compare such

targeted growth control based on precise irrigation sequencing to

sports training (Kögler and Söffker, 2020). Development of more
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efficient precision irrigation technology and more accurate

models representing the complex relationship between plant

growth and irrigation water supply is necessary to achieve

this. More direct targeting of irrigation application to the

specific plants that require it, with quantity and timing

selected to just avoid the region of drought stress within

which physiological damage or yield reduction occurs, could

result in significant water savings and more reliable projection of

irrigation water use throughout the growing season.

Integration of networking and remote access into precision

irrigation solutions has led to a new set of challenges related to

data security. Wireless sensor networks, Internet-of-Things

enabled devices, and cloud-based systems can be particularly

vulnerable to cyber security threats such as distributed denial of

service (DDoS) attacks, integration into malicious botnets

(Antonakakis et al., 2017) and exploitation by ransomware

creators. This creates an additional layer of considerations to

be included in design of precision irrigation control systems.

Legal challenges stemming from ambiguity in regulatory

frameworks governing implementation of new technology

could be a setback in some precision irrigation applications,

such as those involving robotic actors and artificial intelligence.

Progress has been made in enacting legislation to govern

operation of unmanned aerial vehicles within the European

Union (European Commission, Directorate-General for

Mobility and Transport, 2019a; European Commission,

Directorate-General for Mobility and Transport, 2019b). Social

and ethical issues stemming from implementation of artificial

intelligence and autonomous robotic agents are also a cause of

concern, with questions arising regarding data privacy,

accountability in decisions involving human interaction and

accessibility of criteria applied in decision-making (Müller,

2020).

Despite existing challenges, a wealth of opportunities

abounds in precision irrigation research and implementation.

Recent advances in high resolution remote sensing technology

could also play an important role in precision irrigation. In

particular, the use of satellite data to infer soil moisture is

particularly practicable in introduction of precision irrigation

principles in decision support systems for large scale irrigation

platforms. Termite et al. apply machine learning techniques to

infer soil moisture status from satellite imagery, providing crucial

information for irrigation management at a municipality level

(Termite et al., 2019).

Further opportunities exist in application of cloud-based data

storage and processing, allowing for reduction in setup and

FIGURE 1
Agriculture 4.0- The future of precision irrigation control, with cloud-based data storage and processing, real-time communication between
plant-based sensors, intelligent agents (including robots), supported by weather data and market analytics.
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operational costs through remote sharing of data and processing

power. Enhanced accumulation of soil, plant, and environmental

data facilitated by networked devices expands available agricultural

data from which new models and control approaches can be

generated and tested. On the actuation front, assistive technologies

such as subsurface water retention technology (SWRT) (Roy et al.,

2019), which uses an impermeable membrane to extend the

duration of water availability to plants, could be integrated into

precision irrigation scheduling approaches.

What then, does the future hold for precision irrigation

control? The incorporation of elements of Industry 4.0 in

agricultural applications (also referred to as Agriculture 4.0)

provides a guiding framework (see Figure 1). Plant-level

sensors would give individual plants or plant monitoring units

the ability to communicate their needs in real time. This

information would be collected and processed in real time in

an interconnected network of devices and agents. Artificial

intelligence would then interpret the collected data and

combine it with accurate, dynamic growth models

encompassing specific scenarios with regard to exactly how

much water should be consumed during the entire growth

season, what yield is to be produced from each sector, by

which date the crops should be arriving at specific

developmental stages (including targeted harvest dates), and

employing additional soil-specific and weather-specific

information to tailor the prescription to each field, growing

season, and set of user preferences. A robust, adaptable

controller would then generate a database containing the

specific irrigation needs of each individual, and delivery of

water would be implemented by opening of irrigation valves

at the individual plant level, activated either remotely from a

cloud-connected platform, or on site by swarms of mobile robots,

each responsible for specific zones within the field. After all, the

best-placed entity to answer the question “howmuch water is too

much water” is the individual plant, communicating its needs in

real time and determining when it wishes to be watered, how

much water it requires, and how much thirst it can take before

compromising the final expected yield.
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