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We consider perimeter defense problem in a planar conical environment with two
cooperative heterogeneous defenders, i.e., a turret and amobile vehicle, that seek
to defend a concentric perimeter against mobile intruders. Arbitrary numbers of
intruders are released at the circumference of the environment at arbitrary time
instants and locations. Upon release, they move radially inwards with fixed speed
towards the perimeter. The defenders are heterogeneous in terms of their motion
and capture capabilities. Specifically, the turret has a finite engagement range and
can only turn (clockwise or anti-clockwise) in the environment with fixed angular
rate whereas, the vehicle has a finite capture radius and can move in any direction
with unit speed. We present a competitive analysis approach to this perimeter
defense problem by measuring the performance of multiple cooperative online
algorithms for the defenders against arbitrary inputs, relative to an optimal offline
algorithm that has information about the entire input sequence in advance.
Specifically, we establish necessary conditions on the parameter space to
guarantee finite competitiveness of any online algorithm. We then design and
analyze four cooperative online algorithms and characterize parameter regimes in
which they have finite competitive ratios. In particular, our first two algorithms are
1-competitive in specific parameter regimes, our third algorithm exhibits different
competitive ratios in different regimes of problem parameters, and our fourth
algorithm is 1.5-competitive in specific parameter regimes. Finally, we provide
multiple numerical plots in the parameter space to reveal additional insights into
the relative performance of our algorithms.
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1 Introduction

With ever-expanding capabilities of Unmanned Aerial Vehicles (UAVs) and ground
robots, collectively known as autonomous agents, it is now possible to deploy a team of
autonomous agents for critical tasks such as surveillance (Ma’sum et al., 2013; Tavakoli et al.,
2012), exploration (Howard et al., 2006; Koveos et al., 2007), and patrolling (Kappel et al.,
2020). Although homogeneous agents can be used in such applications, a team of
heterogeneous autonomous agents can outperform homogeneous autonomous agents
because of the different capabilities of the agents and thus, there has been a considerable
interest in employing heterogeneous autonomous agents for such applications (Santos and
Egerstedt, 2018; Ramachandran et al., 2019; Ramachandran et al., 2021). A critical
application for such autonomous agents is defending a region (commonly known as
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perimeter) such as airports, wildlife habitats, or a military facility
from intrusive UAVs or poachers (Casey, 2014; Lykou et al., 2020)
motivating fundamental algorithmic research for perimeter defense
applications using heterogeneous defenders.

In this work, we address a perimeter defense problem in a
conical environment. The environment contains two heterogeneous
defenders, namely a turret and a mobile vehicle, which seek to
defend a perimeter by capturing mobile intruders. The intruders are
released at the boundary of the environment and move radially
inwards with fixed speed toward the perimeter. Defenders have
access to intruder locations only after they are released in the
environment. Further, the defenders have distinct motion and
capture capability and thus, are heterogeneous in nature.
Specifically, the vehicle, having a finite capture radius, moves
with unit speed in the environment whereas the turret has a
finite range and can only turn clockwise or anti-clockwise with a
fixed angular rate. Jointly, the defenders aim to capture as many
intruders as possible before they reach the perimeter. This is an
online problem as the input, which consists of the total number of
intruders, their release locations, as well as their release times, is
gradually revealed over time to the defenders. Thus, we focus on the
design and analysis of online algorithms to route the defenders.
Aside from military applications, this work is also motivated by
monitoring applications wherein a drone and a camera jointly
monitor the crowd entering a stadium.

Introduced in (Isaacs, 1999) as a target guarding problem,
perimeter defense problem is a variant of pursuit evasion
problems in which the aim is to determine optimal policies for
the pursuers (or vehicles) and evaders (or intruders) by
formulating it as a differential game. Versions with multiple
vehicles and intruders have been studied extensively as reach-
avoid games (Chen et al., 2016; Yan et al., 2018; Yan et al., 2019)
and border defense games (Garcia et al., 2019; Garcia et al., 2020)
and generally focus on a classical approach which requires
computing solutions to the Hamilton-Jacobi-Bellman-Isaacs
equation. However, this approach, due to the curse of
dimensionality, is applicable only for low dimensional state
spaces and simple environments (Margellos and Lygeros,
2011). Another work (Lee et al., 2020) addresses a class of
perimeter defense problems, called perimeter defense games,
which require the defenders to be constrained on the
perimeter. We refer the reader to (Shishika and Kumar, 2020)
for a review of perimeter defense games. Other recent works
include (Guerrero-Bonilla et al., 2021) and (Lee and Bakolas,
2021) which consider an approach based on control barrier
function or a convex shaped perimeter, respectively. All of
these works consider mobile agents or vehicles that can move
in any direction in the environment. Recently, (Akilan and Fuchs,
2017) considered a turret as a defender and introduced a
differential game between a turret and a mobile intruder with
an instantaneous cost based on the angular separation between the
two. A similar problem setup with the possibility of retreat was
considered in (Von Moll and Fuchs, 2020; Von Moll and Fuchs,
2021). Further, (Von Moll et al., 2022a) and (Von Moll et al.,
2022b) considered a scenario in which the turret seeks to align its
angle to that of the intruders in order to neutralize an attacker. All
of these works assume that some information about the intruders
is known a priori and do not consider heterogeneous defenders.

Online problems which require that the route of the vehicle be
re-planned as information is revealed gradually over time are known
as dynamic vehicle routing problems (Psaraftis, 1988; Bertsimas and
Van Ryzin, 1991; Bullo et al., 2011). In these problems, the input
(also known as demands) is static and therefore, the problem is to
find the shortest route through the demands in order to minimize
(maximize) the cost (reward). Examples of such metrics would be
the total service time or the number of inputs serviced. In perimeter
defense scenarios, the input (intruders) are not static. Instead, they
are moving towards a specified region, making this problem more
challenging than the former. With the assumption that the arrival
process of the intruders is stochastic (Smith et al., 2009; Bajaj and
Bopardikar, 2019; Macharet et al., 2020), consider the perimeter
defense problem, in a circular or rectangular environment, as a
vehicle routing problem using a single defender or multiple but
homogeneous defenders. Recently (Adler et al., 2022) considered a
problem of perimeter defense wherein either all of the attackers are
known to the defenders at time 0 or the attackers are generated (i)
uniformly randomly or (ii) by an adversary and determine how fast
each defender must be in order to defend the perimeter. Although, in
this work we consider worst-case scenarios, which is equivalent to
the intruders being generated by an adversary, the speed of the
defenders is fixed and we focus on designing cooperative online
algorithms for the defenders. Other related works that do not make
any assumptions on the intruders are (McGee and Hedrick, 2006;
Francos and Bruckstein, 2021). However in these works, the aim is to
design must-win algorithms, i.e., algorithms that detect every
intruder in an environment.

Most prior works on perimeter defense problems have only
considered defenders with identical capabilities. Further, they have
either focused on determining an optimal strategy for scenarios with
either few intruders or intruders generated by a stochastic process.
The optimal strategy approaches do not scale with an arbitrary
number of intruders released online. While stochastic approaches
yield important insights into the average-case performance of defense
strategies, they do not account for the worst-case in which intruders
may coordinate their arrival to overcome the defense.

This work considers a perimeter defense problem with two
heterogeneous defenders and focuses on worst-case instances. In
particular, we establish fundamental guarantees as well as design
online algorithms and provide analytical bounds on their
performance in the worst-case. To evaluate the performance of
online algorithms in the worst-case when faced with arbitrarily
many intruders, we adopt a competitive analysis perspective (Sleator
and Tarjan, 1985) which has also been studied in robotic exploration
(Deng and Mirzaian, 1996), searching (Ozsoyeller et al., 2013), and
design of state-space controllers (Sabag et al., 2022). Under this
paradigm, an online algorithm A’s performance is measured using
the notion of competitive ratio: the ratio of the optimal (possibly
non-causal) algorithm’s performance and algorithm A’s
performance for a worst-case input sequence for algorithm A.
An algorithm is c-competitive if its competitive ratio is no larger
than c, which means its performance is guaranteed to be within a
factor c of the optimal, for all input sequences.

Previously, we introduced the perimeter defense problem for a
single defender in linear environments using competitive analysis
(Bajaj et al., 2021). This was followed by (Bajaj et al., 2022c), which
are the conference version of this current paper and focused on the
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perimeter defense problem for a single vehicle and a single turret in
conical environments, respectively. The main contributions of this
work are as follows:

• Perimeter defense problem with heterogeneous defenders:
We address a perimeter defense problem in a conical
environment with two cooperative heterogeneous defenders,
i.e., a vehicle and a turret, tasked to defend a perimeter. The
vehicle has a finite capture radius and moves with unit speed,
whereas the turret has a finite engagement range and turns in
the environment with a fixed angular rate. We do not impose
any assumption on the arrival process of the intruders. More
precisely, an arbitrary number of intruders can be released in the
environment at arbitrary locations and time instances. Upon
release, the intruders move with fixed speed v towards the
perimeter. Thus, the perimeter defense problem is characterized
by six parameters: (i) angle θ of the conical environment, (ii) the
speed v of the intruders, (iii) the perimeter radius ρ, (iv) the
engagement range of the turret rt, (v) the angular rate of the
turret ω, and (vi) the capture radius of the vehicle rc.

• Necessary condition: We establish a necessary condition on
the existence of any c-competitive algorithm for any finite c.
This condition serves as a fundamental limit to this problem
and identifies regimes for the six problem parameters in which
this problem does not admit an effective online algorithm.

• Algorithm Design and Analysis: We design and analyze four
classes of cooperative algorithms with provably finite
competitive ratios under specific parameter regimes.
Specifically, the first two cooperative algorithms are provably
1-competitive, the third cooperative algorithm exhibits a finite
competitive ratio which depends on the problem parameters
and finally, the fourth algorithm is 1.5-competitive.

Additionally, through multiple parameter regime plots, we shed
light into the relative comparison and the effectiveness of our
algorithms. We also provide a brief discussion on the time
complexity of our algorithms and how this work can be extended
to other models of the vehicle.

The paper is organized as follows. In Section 2, we formally define
the competitive ratio and our problem. Section 3 establishes the
necessary conditions, Section 4 presents the algorithms and their
analysis. Section 5 provides several numerical insights. Finally,
Section 7 summarizes the paper and outlines future directions.

2 Problem formulation

Consider a planar conical environment (Figure 1) described by
E(θ) � {(y, α) : 0<y≤ 1,−θ ≤ α≤ θ}, where (y, α) denotes a
location in polar coordinates. The environment has two
endpoints, (1, θ) and (1, − θ). The environment contains a
concentric and coaxial region, R, described by a set of points (z,
α) in polar coordinates, where 0 < z ≤ ρ and α ∈ [−θ, θ].
Mathematically, R(ρ, θ) � {(z, α) : 0< z≤ ρ< 1,−θ ≤ α≤ θ} for
some ρ ∈ (0, 1). Analogous to the environment, R’s endpoints
are (ρ, θ) and (ρ, − θ). Arbitrary numbers of intruders are released
at the circumference of the environment, i.e., y = 1, at arbitrary
time instants. Upon release, each intruder moves radially inward
with a fixed speed v > 01 toward the perimeter
zR(θ) � {(ρ, α) : − θ ≤ α≤ θ}. Mathematically, if the ith intruder

FIGURE 1
Problem Description. The vehicle is depicted by a blue dot and the blue circle around the vehicle depicts the capture circle. The direction of the
vehicle is shown by the blue arrow. The yellow arrow depicts the turret (located at the origin of E(θ)) and the blue dashed curve denotes the engagement
range of the turret. The green curve denotes the perimeter and the red dots denote the intruders. Note that the intruder that the turret is pointing to (black
dashed line) is not captured unless it is within the engagement range of the turret (blue dashed curve).

1 As the speed of the intruders is normalized by the speed of the vehicle, we
use the speed of intruders and speed ratio interchangeably.
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is released at time ti, then its location is represented by a constant
angle θi and its distance zti from the origin satisfying
zti � 1 − v(t − ti),∀t ∈ [ti, ti + (1 − ρ)/v]. Two defenders are
employed to defend the perimeter, zR of the region R(ρ, θ): a
turret located at the origin of E(θ) and a vehicle, both with simple
motion dynamics. The vehicle has a finite capture radius, rc > 0 and
can either move with unit speed or remain stationary. The turret has
a finite engagement range, rt such that ρ ≤ rt ≤ 1, and can either turn
clockwise or anti-clockwise with an angular speed of at most ω or
remain stationary. We consider that the vehicle’s capture radius is
sufficiently small, in particular, rc <min{ρ, ρ tan(θ)}. Otherwise, this
problem becomes trivial (refer to (Bajaj et al., 2022c)).

Intruder i, located at (zti , θi), is said to be captured at time
instant t if either one of the following holds:

• intruder i is inside or on the capture circle of the mobile
vehicle at time t, or

• intruder i is at most rt distance away from the origin and γt = θi
holds, where γt denotes the heading of the turret at time
instant t.

The intruder is said to be lost by the defenders if it reaches the
perimeter without getting captured. The intruder is removed from
E(θ) if it is either captured or lost. We assume that the turret and the
vehicle neutralize an intruder instantaneously, i.e., they do not
require any additional service time. This implies that the
defenders do not need to stop to complete the capture of an
intruder. We further assume that the turret can start and stop
firing instantaneously. This implies that the turret does not
neutralize the vehicle in case the turret’s heading angle is the
same as the vehicle’s angular coordinate at a particular time instant.

A problem instance P is characterized by six parameters: (i) the
speed of the intruders v > 0, (ii) the perimeter radius 0 < ρ < 1, (iii)
the angle 0 < θ ≤ π that defines the size of the environment as well as
the perimeter, (iv) the capture radius of the vehicle 0 < rc < min{ρ,
ρ tan(θ)}, (v) the angular speed of the turret ω > 0, and (vi) the range
of the turret ρ ≤ rt ≤ 1. An input sequence I is a set of 3-tuples
comprising: (i) an arbitrary time instant t ≤ T, where T denotes the
final time instant, (ii) the number of intruders N(t) that are released
at time instant t, and (iii) the release location (radius and angle) of
each of the N(t) intruders. Formally,
I � {t,N(t), {(1, α1), (1, α2), . . . , (1, αN(t))}}Tt�0, for any αl ∈ [−θ,
θ], where 1 ≤ l ≤ N(t).

An online algorithmA assigns velocities with unit (resp. at most
ω) magnitude to the vehicle (resp. turret) at time t as a function of
the input I(t) ⊂ I revealed until time t. An optimal offline algorithm
is an algorithm which has complete information of the entire input
sequence I a priori to assign velocities to the vehicle and the turret at
any time t. The performance of an online algorithm as well as the
optimal offline algorithm for a problem instance P is the total
number of intruders captured by the vehicle and by the turret out of
an input sequence I . Let nA(I ,P) (resp. nO(I ,P)) denote the
performance of an online algorithm A (resp. optimal offline
algorithm O) on an input sequence I . Then, we define the
competitive ratio as the following.
Definition 1 (Competitive Ratio): Given a problem instance P, an input
sequence I , and an online deterministic algorithm A, the competitive
ratio ofA for the input sequence I is defined asCA(I ,P) ≔ nO(I ,P)

nA(I ,P)≥ 1,

and the competitive ratio of A for the problem instance P is
cA(P) � supI CA(I ,P). Finally, the competitive ratio for the
problem instance P is c(P) � infAcA(P). An online algorithm is c-
competitive for the problem instance P if, for all input sequences I ,
nA(I ,P)≤ cnO(I ,P) + �c holds, where c ≥ 1 and �c≥ 0 are fixed
constants.

The constant �c is sometimes used to account for the initial
differences in the state of the online and the optimal offline
algorithm and is generally insignificant for longer initial input
sequences. In this work, we use the strict definition of competitive
ratio, i.e., �c � 0. More formally, we say that an online algorithm is c-
competitive for the problem instance P if, for all input sequences I ,
nA(I ,P)≤ cnO(I ,P) holds. However, we will see later that all of our
results also hold for �c> 0 as well. We refer (Borodin and El-Yaniv,
2005) for further details on the definition of c-competitive algorithms.

Competitive analysis falls under a general framework of
Request-Answer games and thus, can be viewed as a game
between an online player and an adversary (Borodin and El-
Yaniv, 2005). An adversary is defined as a pair (Q,O), where Q
is the input component responsible for generating the input
sequences I and O is an optimal offline algorithm which
maximizes nO(I ,P). Thus, the adversary, with the information
of the online algorithm, constructs a worst-case input sequence so as
to maximize the competitive ratio, i.e., it minimizes the number of
intruders captured by the online algorithm and simultaneously
maximizes the number of intruders captured by an optimal
offline algorithm. On the other hand, the online player operates
an online algorithm on an input sequence created by the adversary.
In this work, we restrict the choice of inputs I to those for which
there exists an optimal offline algorithm O such that nO(I ,P)≥ 1.
Clearly, nO(I ,P)≥ nA(I ,P). However, if for some I ,
nA(I ,P) � 0, then we say that A is not c-competitive for any
finite c. We now formally define the objective of this work.

Problem Statement: Design online deterministic cooperative
algorithms with finite competitive ratios for the defenders and
establish fundamental guarantees on the existence of online
algorithms with finite competitive ratio.

We start by determining a fundamental limit on the existence of
c-competitive algorithms followed by designing online cooperative
algorithms.

3 Fundamental limits

We start by defining a partition of the environment. A partition
of E(θ) is a collection of q ≥ 1 cones W � {W1,W2, . . . ,Wq} with
disjoint interiors and whose union is E(θ). Additionally, each cone is
of unit radius having a finite positive angle and is concentric with the
environment. We refer to a coneWm, 1 ≤ i ≤ q as themth dominance
region. Further, an endpoint of a dominance region is defined
analogously as the endpoints of the environment. Given any set
of initial locations of the defenders with distinct angular coordinates,
the environment E(θ) can be partitioned into two dominance
regions such that each dominance region corresponds to a
particular defender. We denote the portion of the perimeter
contained in dominance region m, 1 ≤ m ≤ 2, as zRm. Without
loss of generality, we assume that zR1 (resp. zR2) corresponds to
the leftmost (resp. rightmost) dominance region.
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Let f1(α) = 2ω(ρ sin(α) − rc) + α − θ and f2(α) = 0.5ω(ρ sin(α) − rc)
+ α − θ. Let �α1 denote the solution to the equation f1(α) = 0 and let �α2
be the solution to the equation f2(α) = 0. Then, following result
establishes a necessary condition on the existence of c-competitive
algorithms.
Theorem 3.1: (Necessary Condition for finite cA(P)). Let

α1* �
θ − 2ω ρ − rc( ), if θ ≥

π

2
+ 2ω ρ − rc( ),

�α1, otherwise,

⎧⎪⎨⎪⎩
and let

α2* �
θ − 0.5ω ρ − rc( ), if θ ≥

π

2
+ ω ρ − rc( ),

�α2, otherwise.

⎧⎪⎨⎪⎩
Then, for any problem instance P such that ρ sin(θ) > rc and
v
ω>

1−ρ
min{θ−α1* ,2(θ−α2*)} holds, there does not exist a c-competitive

algorithm for any finite c.

Proof: Recall from Definition 1 that any online algorithm A is c-
competitive if the condition nO(I ,P)≤ cnA(I ,P) holds for every
input sequence I . Thus, the aim is to construct an input sequence I
such that the condition nO(I ,P)≤ cnA(I ,P) does not hold for any
constant c≥ 1 regardless of which online algorithm is used. The proof is
in three parts. First, we construct an input sequence I . Then, we
determine the best locations for the defenders against such an input
sequence. Finally, we evaluate the performance of any online algorithm
A on the input I as well as the performance of the optimal offline
algorithm O on the same input sequence I , to establish the result.
Without loss of generality, we assume that both A and O have the
vehicle at the origin at time instant 0 and the turret at angle γ0 = 0.

Let I � {I 1, I 2} denote a set of two input sequences. Each input
sequence I l ∈ I, where l ∈ {1, 2}, differs in the location of the arrival of
intruders. Both input sequences I 1 and I 2 start at time instant
max{1, θω} and consists of a stream of intruders, i.e., a sequence of a
single intruder arriving at location (1, θ) at every time instant
max{1, θω} + k 1−ρ

v , k ∈ N ∪ {0} until time instant t. The time instant
t ≥ 0 corresponds to the time instant when either the vehicle or the
turret, following any online algorithmA, captures an intruder from the
stream. A burst of c+ 1 intruders are then released at time instant t. The
location where the burst of intruder arrives is different for each input
sequence I l, l ∈ {1, 2}. Given the location of the turret and the vehicle
at time instant t, there can be at most two dominance regions of the
environment and thus, at most two locations where the burst of
intruders can arrive. These locations have the same angular
coordinate as the endpoints of each zRm, ∀m ∈ {1, 2} excluding θ

and including −θ. Without loss of generality, the burst of intruders are
released at location (1, − θ) for I 1. Further, if the heading angle of the
turret is the same as the angular coordinate of the vehicle at time t,
i.e., γt= θ and the vehicle’s angular coordinate is θ at time instant t, then
the burst intruders arrive at (1,− θ) for both I 1 and I 2 (In this case, I 1

is same as I 2).
If neither the vehicle nor the turret captures the stream intruder,

the stream never ends and the result follows as the optimal offline
algorithmO can have its vehicle move, at time instant 0, to location (ρ,
θ) and capture all stream intruders. Thus, in the remainder of the proof,
we only consider online algorithms A for which either the vehicle or
the turret captures at least one stream intruder at time instant t. Since

the stream intruders arrive every 1−ρ
v time units apart and stops when

an intruder from the stream is captured, it follows that no online
algorithm can capture more than one intruder from the stream. Thus,
we assume that the ith stream intruder was captured at time instant t,
for some i ∈ Z+, where Z+ denotes the set of positive integers.

We now determine the best locations, or equivalently the
dominance regions of the environment, for the turret and the
vehicle at time instant t. Note that the heading angle of the
turret must not be equal to the angular coordinate of the vehicle
at time instant t. This is because in such case, the burst arrives at (1, −
θ) and thus, there always exist a location closer to angle −θ such that
the vehicle or the turret can reach angular location −θ in less time.
This implies that at time instant t, the environment consists of two
dominance regions, each of which contains a defender. We denote
the dominance region which contains the vehicle (resp. turret) as
WVeh (resp. WTur) and determine them in the following two cases.
These two cases arise based on whether the vehicle or the turret
captures the ith intruder, each of which is considered below.

Case 1 (Vehicle captures the ith intruder): Let 2α1 and 2β1
be the angles of WVeh and WTur, respectively. The best location
for the vehicle and the turret in this case can be summarized as
follows. The vehicle must be located on the line joining the two
endpoints of the perimeter within itsWVeh (zR2) only if 2α1 < π.
Otherwise, vehicle must be located on the line joining the origin
to the location (1, θ). In both cases, it must be at a distance r from
location (ρ, θ). The angle of the turret must be equal to the angle
bisector of 2β1 (Figure 2A). Finally, the time taken by the vehicle
to reach the other endpoint of zR2 must be equal to the time

FIGURE 2
Depiction of the perimeter depicting the two cases under which
one of the defenders captures the ith intruder. (A) Vehicle captures the
ith intruder (Case 1). (B) Turret captures the ith intruder (Case 2).
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taken by the turret to turn to the same angle corresponding to
that location. This is denoted mathematically as

θ − α1
ω

� 2 ρ sin α1( ) − rc( ) if α1 < π

2

2 ρ − rc( ), otherwise
⎧⎪⎨⎪⎩ (1)

where by definition 2θ = 2α1 + 2β1 and the time taken by the vehicle
to capture intruders at the other endpoint of the perimeter contained
in its dominance region is 2(ρ sin(α1) − rc) (resp. 2(ρ − rc)) when
α1 < π

2 (resp. α1 ≥
π
2). As

θ−α1
ω � 2(ρ − rc) only holds if α1 ≥ π

2, it follows
that α1* � θ − 2ω(ρ − rc) if θ ≥ π

2 + 2ω(ρ − rc) holds. Otherwise, α1* is
determined by solving the equation f1(α) = 0, where f1(α) =
2ω(ρ sin(α) − rc) + α − θ where α1 ∈ [0, π/2). We now show that
the solution to f1(α) = 0 always exist if rc < ρ sin(θ).

Suppose that α1 = ϵ, where ϵ > 0 is a very small number. Then, f(ϵ) =
2ωρ sin(ϵ) + ϵ− θ− 2rcω< 0. Now consider that α1 = θ− ϵ for the same ϵ.
Then, as ρ sin(θ) > rc, it follows that f1(θ − ϵ) = 2ω(ρ sin(θ − ϵ) − rc) − ϵ >

0, for a sufficiently small ϵ. This means that for a sufficiently small ϵ > 0,
f1(·) changes its sign in the interval [ϵ, θ − ϵ]. Thus, from Intermediate
Value Theorem and using the fact that f1(α1) is continuous function of
α1, it follows that there must exist an α1* such that f1(α1*) � 0 if rc <
ρ sin(θ). Further, since f1(α) is a continuous function and its derivative is
strictly increasing for α ∈ [0, π2) and hence, there exists a unique
�α1 ∈ [0, π2) which satisfies f1(α).

Case 2 (Turret captures the ith intruder): Similar to Case 1, let 2α2
and 2β2 be the angles ofWVeh andWTur, respectively (Figure 2B). As the
turret captures the stream intruder, it follows that γt = θ. Further, the
vehicle must be located at the midpoint of the line joining the two
endpoints of the perimeter within its dominance region. Finally, the time
taken by the vehicle to reach any endpoint of the perimetermust be equal
to the time taken by the turret to turn to the same angle corresponding to
that location. Mathematically, this yields

2 θ − α2( )
ω

� ρ sin α2( ) − rc, if α2 <
π

2

ρ − rc( ), otherwise
⎧⎪⎨⎪⎩ (2)

where we used the fact that 2θ = 2α2 + 2β2 and ρ sin(α2) − rc (resp. (ρ −
rc)) denotes the time taken by the vehicle to capture intruders at the other
endpoint of the perimeter contained in its dominance region when
α2 < π

2 (resp. α2 ≥
π
2). As 2

θ−α2
ω � (ρ − rc) only holds if α2 ≥ π

2, it follows
thatα2* � θ − 0.5ω(ρ − rc) if θ ≥ π

2 + 0.5ω(ρ − rc) holds. Otherwise,α2*
is determined by solving the equation f2(α) = 0, where f2(α) =
0.5ω(ρ sin(α) − rc) + α − θ. By following similar steps as in Case 1, it
can be shown that a unique solution to f2(α) = 0 always exists if rc <
ρ sin(θ) and thus, has been omitted for brevity.

As 1−ρ
v <min{2(ρ sin(α1*) − rc), ρ sin(α2*) − rc} or equivalently

v> 1−ρ
min{2(ρ sin(α1*)−rc),ρ sin(α2*)−rc} holds for α1* < π

2, it follows that the
vehicle cannot capture the burst intruders from I 2 or I 1.
Further, as 2(ρ sin(α1*) − rc) � θ−α1*

ω or ρ sin(α2*) − rc � 2(θ−α2*)
ω

holds at time instant t, it follows that the turret can also not
capture the burst intruders from both I 1 and I 2. Therefore, the
turret and the vehicle jointly captures at most one intruder from
input instance I 1 as well as I 2. A similar conclusion holds when
α1* ≥ π

2 or when α2* ≥ π
2.

Thus, we have established that for any online algorithm A, the
vehicle and the turret can jointly capture at most a single intruder
from input instance I l, 1≤ l≤ 2. We now show that the optimal
offline algorithm O captures all of the intruders on the input
sequence I l, 1≤ l≤ 2.

Recall that O has complete information at time 0, of when, where,
and howmany intruders will arrive. Thus, at time 0,Omoves its vehicle
to location (ρ, θ) and the turret to angle −θ. The defenders of O have
sufficient time to reach these locations as the first intruder arrives at time
instantmax {1, θω} and thus, the capture of all i stream intruders as well as
the burst intruders is guaranteed. Thus, nO(I ,P) � i + c + 1 and
nA(I ,P) � 1 which yields that nO(I ,P)

nA(I ,P) � i + c + 1. As i + c + 1 > c
for any constant c, it follows that nO(I )≤ cnA(I ) does not hold for any
c. This concludes the proof.
Remark 3.2: Since we do not impose any restriction on the number of
intruders that can arrive in the environment, an adversary can repeat
the input sequence designed in the proof of Theorem 3.1 any number
of times. Thus, the lower bound derived in Theorem 3.1 holds
asymptotically for when �c> 0 in the definition of c-competitive
algorithms as well.

FIGURE 3
Partition (shown by the orange line) of the environment and the
configuration of the defenders for the two cases of Algorithm SiR. (A)
Configuration of the defenders for Algorithm SiR for Case 1 (α � θ

1+ωzv ).
The blue dot curve depicts the path taken by the vehicle for
angular motion. (B) Configuration of the defenders for Algorithm SiR
for Case 2 (α � arctan(rc/ρ)).
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We now turn our attention to designing online algorithms and
deriving upper bounds on their competitive ratios. In the next
section, we design and analyze four online algorithms, each with
a provably finite competitive ratio in a specified parameter regime.

4 Online algorithms

In this section, we design and analyze online algorithms and
characterize the parameter space in which these algorithms have
finite competitive ratios. The parameter space of all of our
algorithms is characterized by two main quantities:

• The time taken by the intruders to reach the perimeter in the
worst-case and

• the time taken by the defenders to complete their respective
motions.

Intuitively, the parameter space is obtained by comparing the
aforementioned quantities2. Since the time taken by the intruders
is inversely proportional to v, the (v, ρ) parameter space of our
algorithms can be increased by designing the algorithms such that
the time taken by the defenders to complete their motions is the least.
We characterize the time taken by the defenders to complete their
respective motions as epochs, which is formally defined as follows.

An epoch k for an algorithm is defined as the time interval which
begins when at least one of the two defenders moves from its initial
position and ends when both defenders return back to their
respective initial positions. We denote the time instant when an
epoch k begins as ks.

We now describe our first algorithm that has the best possible
competitive ratio.

1 Turret is at angle −θ

2 if α = arctan(rc/ρ) then

3 Vehicle is located at (ρ/cos(α) , θ − α)

4 for each epoch k do

5 Turn the turret clockwise to angle θ − 2α

6 Turn the turret anti-clockwise to angle −θ

7 end

8 else

9 Vehicle is located at (zv, θ)

10 for each epoch k do

11 Turn vehicle (resp. turret) anti-clockwise

(resp. clockwise) until it reaches location

(resp. angle) (zv, θ − 2α) (resp. θ − 2α)

12 Turn vehicle (resp. turret) clockwise (resp.

anti-clockwise) until it reaches location

(resp. angle) (zv, θ) (resp. −θ)

13 end

14 end

Algorithm 1: Sweep within Dominance Region Algorithm

4.1 Sweep within dominance region (SiR)

Algorithm SiR is an open-loop and memoryless algorithm in
which we constrain the vehicle to move in an angular motion,
i.e., either clockwise or anti-clockwise. This can be achieved by
moving the vehicle with unit speed in the direction perpendicular to
its position vector (see Figure 3A). By doing so, we aim to
understand the worst-case scenarios for heterogeneous defenders
and gain insights into the effect of the heterogeneity that arises due
to the capture range of the defenders, i.e., the capture circle and the
engagement range of the turret. We say that a defender sweeps in its
dominance region if it turns, from its starting location, either
clockwise or anti-clockwise to a specified location and then turns
back to its initial location. Algorithm SiR is formally defined in
Algorithm 1 and is summarized as follows.

Algorithm SiR first partitions the environment E(θ) into two
dominance regions and assigns a single defender to a dominance
region. Let 2α denote the angle of WVeh. Then, the vehicle takes
exactly 4αzv to sweep within its dominance region, where zv denotes
the radial location of the vehicle and will be determined shortly (see
Case 1 below). Similarly, as the turret can only turn either clockwise
or anti-clockwise with at most angular speed ω, the turret takes
exactly 4(θ−α)

ω to sweep in its respective dominance region WTur.
Observe that the environment must be partitioned such that the time
taken by the defenders to complete their motion in their respective
dominance region is equal. Otherwise, in the worst-case, all of the
intruders will be concentrated in the dominance region of that
defender that takes more time to sweep its dominance region.
Mathematically, this means 4αzv � 4(θ−α)

ω must hold which yields
that α � θ

1+ωzv. Observe that as ω → ∞, α → 0. This means that the
turret sweeps the entire environment, in time 4θ

ω , if ω is sufficiently
high. Recall that the (v, ρ) parameter space is characterized by the
time taken by the defenders to complete their motion and can be
improved by reducing the time taken by the turret, for high values of
ω. In case of very high ω, this can be achieved by having the vehicle
remain static at a specific location while the turret sweeps the
remaining environment as opposed to the entire environment.
This means that although angle α � θ

1+ωzv characterizes the
vehicle’s dominance region, there exists an angle α̂≥ α for some
values of problem parameters for which we can obtain an improved
parameter regime by assigning a dominance region of angle 2α̂ to the
vehicle. Thus, in Algorithm SiR, there are two cases based on the
values of the problem parameters. First, as described above, the
defenders sweep the environment in their respective dominance
regions and second, the vehicle remains static at a specific location
while the turret sweeps its dominance region. In what follows, we
determine the location at which the vehicle must remain static for
the second case, followed by formally describing the two cases.

The vehicle’s location must be such that its capture circle covers
the perimeter contained in its dominance region entirely, ensuring
that any intruder that arrives in that dominance region is guaranteed
to be captured. To achieve this, the boundary of the dominance
region assigned to the vehicle must be tangent to its capture circle
(see Figure 3B) which, through geometry, yields that α̂ � arctan rc

ρ

and the location for the vehicle as ( ρ
cos(α̂), θ − α̂). Therefore, the angle

of the vehicle’s dominance region is defined as 2α � 2max{ θ
1+ωzv, α̂},

where α̂ � arctan rc
ρ , and angle α determines if the vehicle sweeps in

its dominance region or remains stationary. We first describe the
2 The time taken by the defenders must be at most the time taken by the

intruders to reach the perimeter.
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motion of the turret followed by formally describing the motion of
the vehicle in the two cases.

At time instant 0, the turret is at an angle −θ. The turret turns
clockwise, with angular speed ω towards angle θ − 2α. Upon
reaching angle θ − 2α, the turret turns anti-clockwise towards
angle −θ. Note that the turret takes exactly 4(θ−α)

ω time to
complete its motion in a particular epoch. We now describe the
motion of the vehicle which can be summarized in two cases
described as follows:

Case 1 (α � θ
1+ωzv):At time instant 0, the vehicle is located at (zv, θ),

where zv =min{ρ + rc, 1 − rc} and was determined in (7) and was proved
to be optimal in (4). The vehicle then moves anti-clockwise with unit
speed in the direction perpendicular to its position vector until it reaches
the location (zv, θ − 2α). Then, the vehicle moves clockwise, with
direction perpendicular to its position vector, until it reaches location
(zv, θ). Note that the vehicle takes exactly 4αzv time to complete its
motion in a particular epoch. Since α is chosen so that 4αzv � 4(θ−α)

ω , the
vehicle and the turret return to their respective initial locations at the
same time instant, at which the next epoch begins.

Case 2 (α � arctan(rcρ )): At time instant 0, the vehicle is located
at (zv � ρ

cos(α), θ − α) and remains stationary at this location for the
entire duration. In this case, the next epoch begins once the turret
turns back to angle −θ.

The following result characterizes the parameter regime in
which Algorithm SiR is 1-competitive.
Theorem 4.1: Algorithm SiR is 1-competitive for a set of problem
parameters that satisfy

v≤
min

rt − ρ( ) 1 + ωzv( )
4θzv

,
zv + rc − ρ( ) 1 + ωzv( )

4θzv
{ } if

θ

1 + ωzv
> arctan rc/ρ( )

rt − ρ( )ω
4 θ − arctan rc/ρ( )( ), otherwise.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Otherwise, Algorithm SiR is not c-competitive for any constant c.

Proof: Suppose that α � θ
1+ωzv. At the start of any epoch k, i.e., at

time instant ks, we assume that, in the worst-case, intruders i1 and i2
are located at (zv + rc + ϵ1, θ) and (rt + ϵ2, − θ), respectively,
where ϵ1 and ϵ2 are arbitrary small positive numbers (see
Figure 3A). To ensure that the vehicle (resp. turret) does not
lose any intruder, we require that the time taken by the vehicle
(resp. turret) to return to location (resp. angle) (zv, θ) (resp. −θ)
must be less than the time taken by intruder i1 (resp. i2) to reach
the perimeter. Formally, rt+ϵ2−ρ

v ≥ 4(θ−α)
ω and zv+rc+ϵ1−ρ

v ≥ 4αzv must
hold. Given the first condition on v, these two conditions always
hold, so any intruder that arrives in the environment is
guaranteed to be captured.

If v>min{(rt−ρ)(1+ωzv)4θzv
, (zv+rc−ρ)(1+ωzv)4θzv

}, then there exists an input
instance with intruders arriving only at (1, − θ) such that these
intruders are located at (rt + ϵ, − θ) at the time instant the turret
turns from angle −θ. As v>min{(rt−ρ)(1+ωzv)4θzv

, (zv+rc−ρ)(1+ωzv)4θzv
} all of

these intruders will be lost and thus, from Definition 1, Algorithm
SiR will not be c-competitive.

Now consider that α � arctan(rcρ ). As the vehicle remains stationary
in its dominance region and the location of the vehicle is such that no
intruder that is released in that dominance region can reach the
perimeter, we only focus on the turret. Assume that, in the worst-
case, intruder i1 is located at (rt + ϵ, − θ) where ϵ is an arbitrary small
positive numbers. To ensure that the turret does not lose any intruder,

we require that the time taken by the turret to return to angle −θmust be
less than the time taken by intruder i1 to reach the perimeter. Given the
second condition on v, i.e., v≤ (rt−ρ)ω

4(θ−arctan(rc/ρ)) holds, it is ensured that
intruder i1 will be captured. The proof for Algorithm SiR not being c-
competitivewhen v> (rt−ρ)ω

4(θ−arctan(rc/ρ)) is analogous to the previous case and
has been omitted for brevity. This concludes the proof.

Although Algorithm SiR is 1-competitive, note that for rt = ρ, the
algorithm is not effective as Theorem 4.1 yields v ≤ 0. However, by
allowing the vehicle to sweep the entire environment, it is still
possible to capture all intruders for some small v > 0. This is
addressed in a similar algorithm below.

4.2 Sweep in conjunction (SiCon)

At time instant 0, the turret is at angle θ and the vehicle is located
at location (min{rt + rc, 1}, θ). The idea is to move the two defenders
together in angular motion. Thus, the vehicle moves anti-clockwise
with unit speed in the direction perpendicular to its position vector
until it reaches the location (min{rt + rc, 1}, − θ). Similarly, the turret
turns anti-clockwise, in conjunction with the vehicle, to angle −θ.
Upon reaching −θ, the vehicle and the turret move clockwise until
they reach angle θ. The defenders then begin the next epoch. As the
two defenders move in conjunction, 2θ

ω � 2θmin{rt + rc, 1}0ω �
1

min{rt+rc,1} must hold. Thus, this algorithm is effective for
ω≥ 1

min{rt+rc,1} by turning the turret exactly with angular speed
1

min{rt+rc,1}.
The following result establishes that Algorithm SiCon is 1-

competitive for specific parameter regimes.
Theorem 4.2: Algorithm SiCon is 1-competitive for a set of problem
parameters which satisfy ω≥ 1

min{rt+rc,1} and v≤ min{rt+2rc,1}−ρ
4θmin{rt+rc,1} .

Otherwise, it is not c-competitive for any constant c.

Proof: As the proof is analogous to the proof of Theorem 4.1, we
only provide an outline of this proof for brevity. In the worst-case, an
intruder requires exactly min{rt+2rc,1}−ρ

v time to reach the perimeter
whereas, the defenders synchronously require 4θmin{rt + rc, 1} time
to complete their motion in any epoch. Thus, as the time taken by
the defenders must be at most the time taken by the intruders we
obtain the competitive ratio. If the condition on v does not hold,
then by constructing an input analogous to the input in the proof of
Theorem 4.1, it can be shown that Algorithm SiCon is not c-
competitive.
Remark 4.3: (Maneuvering Intruders). As the analysis of the
fundamental limit (Theorem 3.1), Algorithm SiR, and Algorithm
SiCon are independent of the nature of motion of the intruders, the
results of Theorem 3.1, Algorithm SiR, and Algorithm SiCon apply
directly to the case of maneuvering or evading intruders.

Recall that in Algorithm SiR, the idea was to partition the
environment and assign a single defender in each dominance region.
By doing so, we obtain valuable insight into the parameter regime
wherein we are guaranteed to capture all intruders. However, we refrain
from designing such algorithms in this work due to the following two
reasons. First, such an algorithm requires that ratio of intruders captured
by a defender to the total number of intruders that arrived in that
corresponding defender’s dominance region is equal for both defenders.
Otherwise, since the adversary has the information of the entire
algorithm, it will release more intruders in the dominance region of

Frontiers in Control Engineering frontiersin.org08

Bajaj et al. 10.3389/fcteg.2023.1128597

https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fcteg.2023.1128597


the defender that has the lower ratio, which determines the competitive
ratio of such an algorithm. Second, such algorithms are not cooperative
and thus fall out of the scope of this paper. The objective of this work is to
study how heterogeneous defenders can be used to improve the
competitive ratio of a single defender. Thus, in the next algorithm,
although we partition the environment, the defenders are not restricted
to remain within their own dominance region.

1 Turret is at angle 0

2 Vehicle is located at (x1, ϕ1)

3 for each epoch k do

4 Compute Pk
right, Pk

left, Np*

5 if Pk
right| ≥ |Pk

left| then

6 Turn the turret clockwise to angle θ

7 Turn the turret back to angle 0

8 else

9 Turn the turret anti-clockwise to angle −θ

10 Turn the turret back to angle 0

11 end

12 if Np* ≠ Ni then

13 if |Sj+2p* | ≥ |Sj+1i then

14 Move vehicle to (xp* ,ϕp*) and then capture

intruders in Sj+2p*

15 else

16 Keep vehicle at (xi, ϕi) and capture intruders

in Sj+1
i

17 Move vehicle to (xp*,ϕp*)
18 end

19 else

20 Keep vehicle at (xi, ϕi) and capture intruders in

Sj+1i and Sj+2i

21 end

22 end

Algorithm 2: Split and Capture Algorithm

4.3 Split and capture (Split)

The motivation for this algorithm is to utilize the vehicle’s ability to
move in any direction while the turret rotates either clockwise or anti-
clockwise. Since the turret can only turn either clockwise or anti-
clockwise, the idea is to first partition the environment into two-
halves and turn the turret towards the side which has higher number
of intruders. By doing so, we hope to capture at least half of the intruders
by the turret, assuming they are sufficiently slow, that arrive in every
epoch. Further, while the turret moves to capture intruders on one side,
the vehiclemoves to the other side to capture intruders, ensuring that the
defenders jointly capture more than half of the intruders that arrive in
the environment in every epoch. Algorithm Split is formally defined in

FIGURE 4
Description of Algorithm Split. The light grey dashed line denotes
the splitting of the environment. The region between the yellow
dashed curve and the yellow dot curve on the left (resp. right) side of
the grey line denotes Pk

left (resp. P
k
right). The blue dashed straight

lines denote the sectors (N � 3) of the environment and the black
dashed curves denotes the three radial intervals of lengthDv each. The
vehicle is located at (x1 ,ϕ1). (A) Description of sets Pk

left and Pk
right. The

grey dashed line denotes the splitting of the environment into two
halves. The turret’s heading angle is 0 at time instant ks. (B) Splitting the
environment into N � 3 sectors. The blue dashed circles denote the

(Continued )

FIGURE 4 (Continued)
resting points for the vehicle. (C) Final representation of the
environment for Algorithm Split. The black dashed curves denotes
splitting of the environment radially corresponding to the three time
intervals, each of length D. The vehicle is located at (x1 , ϕ1).
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Algorithm 2 and is summarized as follows where we first describe the
motion of the turret in every epoch followed by that of the vehicle.

The heading angle of the turret is always γks � 0 at the start of
every epoch k. To determine whether the turret turns clockwise or
anti-clockwise at time instant ks, we first describe two sets Pleft and
Pright. These sets characterize a region on the left and right side of the
y-axis, respectively, and are determined once at time instant 0.

Pright ρ, v( ) ≔ y, β( ): ρ + βv

ω
<y≤min 1, rt + 2θ − β( )v

ω
{ }, ∀β ∈ 0, θ[ ]{ },

Plef t ρ, v( ) ≔ y, β( ): ρ − βv

ω
<y≤min 1, rt + 2θ + β( )v

ω
{ }, ∀β ∈ 0,−θ( ]{ }.

Let Pk
right and P

k
lef t denote the set of intruders contained in Pright and

Pleft (see Figure 4A), respectively, at the start of an epoch k and let |S|
denote the cardinality of a set S of intruders. Then, at time instant ks, the
turret compares the total number of intruders inPk

lef t to the total number
of intruders in Pk

right and turns in the direction of the set which has
higher number of intruders. More formally, if |Pk

right|< |Pk
lef t| holds at

time instant ks, then the turret turns anti-clockwise towards angle −θ.
Upon turning to angle −θ, the turret turns to angle 0. Otherwise, i.e., if
|Pk

right|≥ |Pk
lef t| holds at time instant ks, then the turret turns clockwise

towards angle θ. Upon turning to angle θ, the turret turns to angle 0. As
the turret’s dominance region is determined at the start of every epoch k,
we denote the turret’s dominance region asWk

Tur, and consequently, the
other dominance region as the vehicle’s dominance region denoted as
Wk

Veh. We now characterize the motion for the vehicle which builds
upon the SNP algorithm designed in (Bajaj et al., 2022).

Algorithm Split further divides the environment E(θ) intoN � � θθs�
sectors, where 2θs = 2arctan(rc/ρ) denotes the angle of each sector (see
Figure 4B). The value 2 arctan(rc/ρ) of the angle of each of the sectors is to
ensure that the portion of the perimeter in a sector can be completely
contained in the capture circle of the vehicle. This can be achieved by
positioning the vehicle at resting points (see Figure 4B), which is a specific
location in every sector and is formally defined as follows.
Definition 2 (Resting points). Let Nl denote the lth sector, for every l ∈
{1, . . ., N} where N1 corresponds to the leftmost sector. Then, a resting
point (xl, ϕl) ∈ E(θ) for sector Nl, is the location for the vehicle such
that when positioned at (xl, ϕl), the portion of the perimeter inside
sector Nl is contained completely within the capture circle of the
vehicle. Mathematically, this is equivalent to

xl,ϕl( ) � ρ

cos θs( ), l − N + 1
2

( )2θs( ).
Now, let D denote the distance between the two resting points

that are furthest apart in the environment (see Figure 4B). Formally,

D �
2

ρ

cos θs( ) sin N − 1( )θs( ), if N − 1( )θs < π

2
,

2
ρ

cos θs( ), otherwise.

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (3)

Observe that whenN = 1,D = 0. This means that the vehicle captures
all intruders that arrive in the environment by positioning itself to
the unique resting point of the single sector.

Next, Algorithm Split radially divides the environment E(θ) into
three intervals of length Dv, corresponding to time intervals of time
length D each (see Figure 4C). Specifically, the jth time interval for
any j > 0 is defined as the time interval [(j − 1)D, jD]. Note that this
time interval is different than the epoch of the algorithm. Let Sjl

denote the set of intruders that are contained in the lth, l ∈ {1, . . .,N},
sector and were released in the jth interval. Then, at the start of each
epoch, the motion of the vehicle is based on the following two steps:
First, select a sector with the maximum number of intruders.
Second, determine if it is beneficial to switch over to that sector.
These two steps are achieved by two simple comparisons; C1 and C2
detailed below.

Suppose that the vehicle is located at the resting point of sector
Ni at the start of the jth epoch and let ~N denote the set of sectors in
the vehicle’s dominance region. Then, to specify the first comparison
C1, we associate each sector Nl ∈ ~N with the quantity

ηli ≜
|Sj+2l | + |Sj+3l |, if l ≠ i,
|Sj+1i | + |Sj+2i | + |Sj+3i |, if l � i.

{

Note that ηli is not defined for every sector in the environment.
Instead, it is only defined for the sectors inWj

Veh, which may contain
Ni. Then, as the outcome of C1, Algorithm Split selects the sector
Np*, where p* � argmaxp∈~Nη

p
i . In case there are multiple sectors

with same number of intruders, then Algorithm Split breaks the tie
as follows. If the tie includes the current sector Ni (which is only
possible if Ni ∈ ~N holds3), then Algorithm Split selects Ni.
Otherwise, Algorithm Split selects the sector contained in ~N with
the maximum number of intruders in the interval j + 2,
i.e., p* � argmaxp∈N̂|Sj+2p |, where N̂ denotes the set of sectors
that have the same number of intruders. If this results in another
tie, then this second tie is resolved by selecting the sector with the
least index. Let the sector chosen as the outcome of C1 be No.

We now describe comparison C2 jointly with the motion of the
vehicle in the following two points:

• If the sector chosen as the outcome ofC1 isNo, o ≠ i, and the total
number of intruders in the set Sj+2o is no less than the total number
of intruders in Sj+1i , then Algorithm Split moves the vehicle to (xo,
ϕo) arriving in at mostD time units. Then the vehicle waits at that
location to capture all intruders in Sj+2o . Otherwise, i.e., the total
number of intruders in Sj+2o is less than Sj+1i , then the vehicle stays
at (xi, ϕi) until it captures all of the intruders in Sj+1i and then
moves to (xo, ϕo) arriving in at most D time units.

• If the sector chosen isNi, then the vehicle stays at its current location
(xi, ϕi) for 2D time units capturing intruders in Sj+1i and Sj+2i .

Note that the vehicle takes at most 2D time units in every case
above. The vehicle then re-evaluates after 2D time. At time instant 0,
the turret’s heading angle is 0 and the vehicle is located at (x1, ϕ1).
The first epoch begins when the first intruder arrives in the
environment.

We now describe two key requirements for the algorithm. The first
requirement is to ensure that the defenders start their individualmotion
in an epoch at the same time instant. Recall that the turret requires
exactly 2θ

ω time to turn from its initial heading angle to either θ or −θ, at
time instant ks, and turn back to its initial heading angle. On the other
hand, the vehicle requires 2D time units to capture intruders in at least

3 This case arises when the Algorithm Split moves the turret in the same
direction for at least two consecutive epochs.
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one interval. Thus, to ensure that the defenders begin theirmotion at the
same time instant, 2θω � 2D must hold, i.e., the speed of the turret must
be at least θ

D. The second requirement is to ensure that the algorithm has
a finite competitive ratio. This is achieved by ensuring that any intruder
that was not accounted for comparison by the defenders (for instance
intruders that are not in Pk

lef t or P
k
right) in an epoch k, are accounted in

epoch k + 1. Our next result formally characterizes this requirement for
the turret.
Lemma 4.4. Any intruder with radial coordinate greater than
min{1, rt + (2θ−β)v

ω }, ∀β ∈ [0, θ] (resp. min{1, rt +
(2θ+β)v

ω }, ∀β ∈ (0,−θ]) at time instant ks will be contained in the
set Pk+1

right (resp. P
k+1
lef t ) at time instant (k + 1)s if v≤

ω(rt−ρ)
2θ holds.

Proof:Without loss of generality, suppose that |Pk
lef t|≤ |Pk

right| holds
at time instant ks. Then, the total time taken by the turret to move
towards θ and turn back to angle 0 is 2θ

ω . In order for any intruder i to
not be captured in epoch k, in the worst-case, the intruder imust be
located at (min{1, rt} + ϵ, θ), where ϵ is a very small positive number,
by the time the turret reaches angle θ. Note that 1 + ϵ here means
that the intruder is released after ϵ time at location (1, θ) after the
turret’s heading angle is θ. Thus, in order to ensure that i can be
captured in epoch k + 1, the condition 2θ

ω ≤ rt−ρ
v must hold, where we

used the fact that rt ≤ 1 and ϵ is a very small positive number. From
the definition of Pk

right, if the intruder i can be captured in epoch k +
1, then it follows that the intruder i was contained in the set Pk+1

right at
the start of epoch (k + 1). This concludes the proof.

The proof of Lemma 4.4 is established in the worst-case scenario
which is that an intruder, with angular coordinate θ (resp. −θ), is
located just above the range of the turret at the time instant when the
turret’s heading angle is θ (resp. −θ) in an epoch k. This is because in
an epoch k, the angle θ is the only heading angle that is visited by the
turret once as the turret turns to all angles β ∀β ∈ [0, θ)
(resp. [0,−θ)) twice; once when the turret turns to angle θ or −θ
and second, when turret turns back to angle 0. This results in the
following corollary, the proof of which is analogous to the proof of
Lemma 4.4.
Corollary 4.5: Suppose that the turret moves to capture intruders in
Pk
lef t (resp. P

k
right) in epoch k. Then, the intruders contained in Pk

right

(resp. Pk
lef t) with radial coordinate strictly greater than rt + vθ

ω at time
instant ks will be considered for comparison at the start of epoch (k +
1) if v≤ ω(rt−ρ)

2θ .
Recall that the adversary selects the release times and the

locations of the intruders in our setup. Thus, with the
information of the online algorithm, the adversary can release
intruders such that all the intruders have their radial coordinates
at most rt + θv

ω and at angular location θ of −θ at the start of every
epoch k, which is considered to be the worst-case scenario. This
ensures that if the turret selects to turn towards −θ (resp. θ) at time
ks, then the turret cannot capture any intruder that was contained in
Pk
right (resp. P

k
lef t) in epoch k + 1. As the idea is to have the vehicle

capture these intruders, we require that the intruders must be
sufficiently slow. This is explained in greater detail as follows.

For the vehicle, the requirement is that the intruders take at least
3D time units to reach the perimeter. This is to ensure that the
vehicle can account for intruders that are very close to the perimeter
at the start of an epoch. From Corollary 4.5, as the intruders with
radial location greater than rt + θv

ω are counted for comparison in
next epoch by the turret, we require that these intruders must also be

counted by the vehicle in the next epoch. This yields that
3D≤ min{1,rt+θv

ω }−ρ
v which implies that either v≤ 1−ρ

3D or v≤ rt−ρ
2D must

hold, where we used the fact that 2θ
ω � 2D. Finally, as Lemma

4.4 requires that v≤ rt−ρ
2D must hold, the second requirement for

Algorithm Split is that v≤min{1−ρ3D,
rt−ρ
2D }. We now establish the

competitive ratio of Algorithm Split.
Theorem 4.6: Let θs = arctan(rc/ρ) and N � � θθs�. Then, for any
problem instance P with the turret’s angular velocity ω≥ θ

D, where D
is defined in equation 3, Algorithm Split is 3N−1

3�0.5N�+2-competitive
if v≤min{1−ρ3D,

rt−ρ
2D }.

Proof: First observe that although the turret can capture intruders
from one-half of the environment, the vehicle only captures at most
two intervals out of all intervals that are inWk

Veh (the total number of
intervals in Wk

Veh will be determined shortly). Thus, in the worst-
case, the intruders are released in the environment such that there
are as many intruders possible in the vehicle’s dominance region.
SinceWk

Veh is selected based onWk
Tur, there cannot be more number

of intruders in the vehicle’s dominance region as than those in the
turret’s dominance region. This implies that there are equal number
of intruders in each dominance region in every epoch in the worst-
case. We now characterize the total number of intervals in the
vehicle’s dominance region.

If N is even then, the vehicle’s dominance region contains N
2

sectors and 3N
2 intervals due to the three intervals of length Dv

each. Otherwise, the total number of intervals in the vehicle’s
dominance region is 3�N2 �. The explanation is as follows. Observe
that, for odd N, the sector in the middle is contained in the
turret’s as well as the vehicle’s dominance region. As the portion
of the middle sector which is contained in the vehicle’s
dominance region may contain intruders and from the fact
that the number of intervals must be an integer, we obtain
that there are 3�N2 � intervals in the vehicle’s dominance region.
Since the total number of intervals in the environment is 3N, this
implies that the turret’s dominance region has 3N − 3�N2 � � 3�N2 �
intervals and not 3�N2 � intervals as we already accounted for the
portion of the middle sector contained in the turret’s dominance
region in the vehicle’s dominance region by using the ceil
function. Intuitively, this means that there is no benefit for the
adversary to release intruders in the portion of the middle sector
contained in the turret’s dominance region as the turret captures
all intruders in its dominance region in an epoch. Thus, the
adversary can have all intruders in a single interval within the
turret’s dominance region and the number of intruders that the
turret capture remain the same, which is not the case in the
vehicle’s dominance region. We now account for the number of
intruders jointly captured by the defenders in any epoch k.

Since at the start of every epoch k, the turret selects a dominance
region based on the number of intruders on either side of the turret,
it follows that the turret captures at least half of the total number of
intruders that arrive in epoch k. This means that the turret captures
intruders in all 3�N2 � intervals. The number of intruders captured by
the vehicle in an epoch k is determined as follows. Recall that in
Algorithm Split, the vehicle’s motion is independent of the turret’s
motion. The only information exchange that is required is the
dominance region selected by the turret at the start of each
epoch, which governs the number of sectors that the vehicle
must account intruders in. Hence, this part of the analysis of
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accounting the number of intruders captured by the vehicle is
identical to the proof of Lemma IV.5 in (Bajaj et al., 2022), so
we only give an outline of the proof. From the fact that the vehicle’s
dominance region can have at most 3�N2 � intervals and by following
similar steps as in proof of Lemma IV.5 from (Bajaj et al., 2022), it
follows that for every two consecutively captured intervals, the
vehicle loses at most 3�0.5 N� − 3 intervals. Further, from
Lemma 4.4 and by following similar steps as in the proof of
Lemma IV.6 from (Bajaj et al., 2022), it follows that every lost
interval is accounted for by the captured intervals of the turret and
the vehicle. Thus, we obtain that the turret and the vehicle jointly
capture at least 2 + 3�0.5 N� intervals of intruders and lose at most
3�0.5N� − 3 intruders in every epoch of Algorithm Split. Therefore,
by assuming that there exists an optimal offline algorithm that can
capture all 2 + 3�0.5 N� + 3�0.5N� − 3 = 3N − 1 intruder intervals in
every epoch establishes that Algorithm Split is 3N−1

3�0.5N�+2-competitive.
This concludes the proof.

Recall that the motion of the vehicle in Algorithm Split builds
upon Algorithm SNP designed in (Bajaj et al., 2022), which was
shown to be 3N−1

2 -competitive. A major drawback of Algorithm SNP
was that its competitive ratio increases linearly with the number of
sectorsN. The following remark highlights that Algorithm Split does
not suffer from this drawback and is effective under the same
parameter regime as Algorithm SNP.

1 Turret’s heading angle is θ/3.

2 Vehicle is located at (zv, −θ/3).

3 for each epoch k ≥ 1 do

4 Compute Vk
left|, |Tk

right|, and |Ik|.

5 if |Ik| ≥ |Vk
left| and |Ik| ≥ |Tk

right| holds then

6 if |Vk
left | ≥ |Tk

right| then

7 Assign Vk
left to the vehicle and Ik to the

turret.

8 else

9 Assign Tk
right to the turret and Ik to the

vehicle.

10 end

11 else

12 if |Vk
left| < |Ik| (resp. |Tk

right| < |Ik|) then

13 Assign Ik to the vehicle (resp. turret).

14 else

15 Assign Vk
left (resp. Tk

right) to the vehicle

(resp. turret).

16 end

17 end

18 Turn the defenders in an angular motion to the

respective endpoint of the assigned set.

19 Turn the defenders back to the initial position.

20 end

Algorithm 3: Partition and Capture Algorithm
Remark 4.7 (Heterogeneity improves competitive ratio of Algorithm
Split). The competitive ratio of Algorithm Split is at most 2, achieved
when N→∞. Further, for rt = 1, the parameter regime that required
by Algorithm Split (v≤ 1−ρ

3D)) is the same as that of Algorithm SNP
in (Bajaj et al., 2022).

Further note that if N is odd and N ≠ 1, then the competitive
ratio of Algorithm Split is higher than that for N + 1. This is because

when N is odd, the adversary can exploit the fact that there are
higher number of intervals that the vehicle can lose as compared to
that in the turret’s dominance region. Finally, for N = 2, Algorithm
Split is 1-competitive. The explanation is as follows. For N = 2, the
two sectors of the environment overlap the two dominance region.
Thus, in this case, the turret captures all intruders in one dominance
region while the vehicle remains stationary at the resting point of the
second dominance region, ensuring that all intruders that are
released in the environment are captured.

Given that the turret can only move clockwise or anti-clockwise
and from the requirement that the defenders must start their motions
at the same time instant, the parameter regime of Algorithm Split is
primarily defined by the time taken by the turret to sweep its
dominance region. This means that by reducing the time taken by
the turret to complete its motion, it is possible to achieve an algorithm
with higher parameter regime. This is exploited in our next algorithm
which is provably 1.5-competitive.

4.4 Partition and capture (part)

Algorithm Part, formally defined in Algorithm 3, partitions the
environment into three equal dominance region, each of angle 2θ

3 .
We denote these dominance regions as W1, W2, and W3, where W1

denotes the leftmost dominance region. The idea is to move the
vehicle and the turret similar to the motion of the turret in
Algorithm Split and capture all intruders from two out of the
three total dominance region in each epoch. The dominance
region are determined as follows.

At the start of every epoch k, the turret’s heading angle, measured
from the y-axis, is set to θ

3. Similar toAlgorithmSplit, we describe two sets
for the turret that characterize specific regions in the two dominance
regions that surround the turret, i.e., W2 and W3. Intuitively, these sets
corresponds to the locations in the environment that the turret can
capture intruders at during its sweep motion.

Tright ρ, v( ) ≔ y, β( ): ρ +
β − θ

3
( )v

ω
≤y≤min 1, rt +

5θ
3
− β( )v
ω

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
∀β ∈

θ

3
, θ[ ]

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
,

Tlef t ρ, v( ) ≔ y, β( ): ρ −
β − θ

3
( )v

ω
≤y≤min 1, rt + θ + β( )v

ω
{ }∀β ∈ −θ

3
,
θ

3
[ )

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
.

Similarly, at the start of every epoch k, the vehicle is assumed to be
located at (zv,−θ

3), where the angle is measured from the y-axis and
zv is as defined for Algorithm SiR. Next, we define two sets that
characterize a specific region in W1 and W2, respectively.

Vright ρ, v( ) ≔ { y, β( ): ρ + θ

3
+ β( )zvv≤y≤min

{1, zv + rc + θ − β( )zvv} ∀β ∈ −θ
3
,
θ

3
[ ]},

Vlef t ρ, v( ) ≔ { y, β( ): ρ − β + θ

3
( )zvv≤y≤min

1, zv + rc + 5θ
3
+ β( )vzv{ } ∀β ∈ −θ,−θ

3
[ )}.

Let Tk
right, T

k
lef t, V

k
right, and Vk

lef t denote the set of intruders contained
in Tright, Tleft, Vright, and Vleft, respectively, at the start of an epoch k.
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Finally, denote Ik as the set of intruders contained in Vk
right ∩ Tk

lef t

(see Figure 5).
We now describe the motion of the defenders. The objective is to

move the defenders such that intruders from any two sets out of
Vk

lef t, Tk
right, and Ik are captured. This requires assigning the

defenders to the sets containing maximum number of intruders,
which can be summarized into two cases.

Case 1: The set Ik contains maximum number of intruders, i.e.,
|Ik|≥Vk

lef t and |Ik|≥Tk
right hold at the start of epoch k. This means

that one of the defenders must be assigned to the set Ik. By
determining which set has more intruders out of Vk

lef t and Tk
right,

Algorithm Part performs an assignment of the sets to the defenders.
Mathematically, if |Ik|≥ |Vk

lef t| and |Ik|≥ |Tk
right|, then

• If |Vk
lef t|≥ |Tk

right|, then the vehicle is assigned the set Vk
lef t and

the turret is assigned the set Ik.
• Otherwise, the vehicle is assigned the set Ik and the turret is
assigned the set Tk

right.

Case 2: |Vk
lef t|< |Ik| or |Tk

right|< |Ik| holds at the start of epoch k.
This implies that at least one set out of Vk

lef t and Tk
right has the

maximum number of intruders out of the three Vk
lef t, I

k, and Tk
right

sets. Then, the sets are assigned as follows:

• If |Vk
lef t|< |Ik|, then the vehicle is assigned the set Ik. Otherwise,

the vehicle is assigned the set Vk
lef t.

• Similarly, if |Tk
right|< |Ik|, then the turret is assigned the set Ik.

Otherwise, the turret is assigned the set Tk
right. Note that if the

vehicle is already assigned set Ik then that means that
|Ik|≥ |Vk

lef t| holds. Given the condition in Case 2, this
implies that |Tk

right|< |Ik| holds and the turret is assigned
Tk
right. Thus, in Case 2, both defenders are never assigned

the set Ik.

Once the sets are assigned, the vehicle turns as follows. If the
set assigned to the vehicle is Ik, then the vehicle moves clockwise
with unit speed in the direction perpendicular to its position

vector until it reaches location (zv, θ3). Upon reaching the
location, the vehicle moves anti-clockwise with unit speed in
the direction perpendicular to its position vector until it returns
to location (zv,−θ

3). Otherwise (if the vehicle is assigned the set
Vk

lef t), the vehicle moves anti-clockwise with unit speed in the
direction perpendicular to its position vector until it reaches
location (zv, − θ). Upon reaching that location, the vehicle
moves clockwise with unit speed in the direction
perpendicular to its position vector until it returns to
location (zv,−θ

3).
Before we describe the motion of the turret, we determine its

angular speed to ensure that the defenders start an epoch at the same
time instant. As we require that the defenders take the same amount
of time to return to their starting locations in an epoch, we require
that 4θ

3ω � 4θ
3 zv0ω � 1

zv
, which means that the angular speed of the

turret must be at least 1
zv
.

We now describe the turret’s motion in an epoch. Similar to the
motion of the vehicle, if the set assigned to the turret is Ik, then the
turret turns to angle −θ

3 and then turns back to the initial heading
angle θ

3 with angular speed 1
zv
. Otherwise, the turret turns to angle θ

and then back to angle θ
3 with angular speed 1

zv
.

Analogous to Lemma 4.4, we have the following lemma which
ensures that any intruder that was not considered for comparison at
the start of epoch k is considered for comparison at the start of
epoch (k + 1).
Lemma 4: Any intruder which lies beyond the sets Vk

lef t, V
k
right, T

k
right,

and Tk
lef t at the start of epoch k will be contained in the sets

Vk+1
lef t , V

k+1
right, T

k+1
right, and Tk+1

lef t , respectively, at the start of epoch (k +
1) if

v≤min
3 min 1, zv + rc{ } − ρ( )

4θzv
,
3 rt − ρ( )
4θzv

{ }

Proof: The proof is analogous to the proof of Lemma 4.4 and has
been omitted for brevity.
Corollary 4.9: Any intruder that lies beyond the set Ik at time instant
ks will be contained in the set Ik+1 at the start of epoch (k + 1) if the
conditions of Lemma 4.8 hold.

Proof: The proof directly follows from the fact that Lemma
4.8 holds for both the defenders and Ik represents the
intersection of Vk

right and Tk
lef t.

Theorem 4.10: Algorithm Part is 1.5-competitive for any problem
instance P with ω≥ 1

zv
that satisfies

v≤min
3 min 1, zv + rc{ } − ρ( )

4θzv
,
3 rt − ρ( )
4θzv

{ }

Proof: Observe that from Lemma 4.8 and Corollary 4.9, every
intruder is accounted for and no intruder that is not considered
for comparison in a particular epoch is lost under the condition
on v. Now, from the definition of Algorithm Part, the defenders
are assigned two sets out of the total three in every epoch.
Further, the assignment is carried out in a way that the sets
with maximum number of intruders are assigned to the
defenders in every epoch. Assuming that there exists an
optimal offline algorithm that captures all intruders from all

FIGURE 5
Description of Algorithm Part. The black dashed line denotes the
partitioning of the environment, each of angle 2θ

3 . The region between
the orange (resp. yellow) dashed curve and the orange (resp. yellow)
dot curve on the left (resp. right) side of the vehicle (resp. turret)
denotes the Vleft (resp. Tright).

Frontiers in Control Engineering frontiersin.org13

Bajaj et al. 10.3389/fcteg.2023.1128597

https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fcteg.2023.1128597


three sets then, from Definition 1, competitive ratio of
Algorithm Part is at most 3

2.

5 Numerical observations

We now provide numerical visualization of the bounds derived
in this work and emphasize on the (v, ρ) and (ω, ρ) parameter
regime. These plots allow the defenders to choose an appropriate
online algorithm out of the four proposed, based on the values of the
problem parameters.

5.1 (ω, ρ) Parameter regime

Figure 6 shows the (ω, ρ) parameter regime plot for fixed
values of rt, rc, θ, and v and provides insights into the
requirement of the angular speed ω for different values of the
ρ. Note that the markers represent a lower bound on the angular
speed of the turret.

In Figure 6A, the condition in Theorem 3.1 for the existence of c-
competitive algorithms is represented by the green circles. For all
values of 0.1 ≤ ρ ≤ 0.9, as the green circles are at ω = 0.1, it implies
that there exists a c-competitive algorithm for all values of ω ≥ 0.1
and the values of v, rc, rt, and θ selected for this figure. We now
provide insights into the requirement on ω for our algorithms.
Algorithm SiR, represented by the yellow triangle, requires higher
angular speed for the turret as the radius of the perimeter increases.
However, Algorithm Split and Algorithm Part, represented by the
red star and blue square respectively, require lower angular speed for
the turret when the radius of the perimeter is sufficiently large.
Although counter intuitive, this can be explained as follows. Recall
that Algorithm Part and Algorithm Split require the two defenders
to be synchronous and the vehicle moves with a fixed unit speed. As
the perimeter size increases, the time taken by the vehicle to
complete its motion increases, which in turn requires lower
values of ω to ensure synchronicity. Observe that for ρ ≥ 0.8,
there are no markers for Algorithm Split. This is because for ρ ≥
0.8 and the values of θ, rt, rc, and v considered for this figure, the
condition defined for Algorithm Split in Theorem 4.6 is not satisfied
for any 0 < ω ≤ 7, implying that Algorithm Split is not c-competitive.
Analogous conclusions can be drawn for Algorithms SiCon
(resp. Part), represented by orange diamond (resp. blue square),
for values of ρ ≥ 0.6 (resp. ρ ≥ 0.9). Finally, note that Algorithm
SiCon requires ω ≥ 1 for all values of ρ ≤ 0.6. This is because in this
algorithm, the turret is required to move with unit angular speed to
maintain synchronicity with the vehicle.

Analogous observations can be drawn in Figure 6B. For instance,
when ρ = 0.9 andω≥ 1.5, there always exists a c-competitive algorithm
with a finite constant c. Equivalently, there does not exist a c-
competitive algorithm for ω < 1.5, ρ = 0.9 and for the values of rt,
rc, θ, and v selected. Similarly, as ρ increases, Algorithm SiR requires a
faster turret whereas Algorithm Part and Algorithm Split can work
with a slower turret to ensure synchronicity. Note that Algorithm Part
and Split do not have markers beyond ρ = 0.6 and ρ = 0.5, respectively,
which is lower than the values of ρ in Figure 6A. This implies that,
although the values of rc are slightly higher than those in Figure 6A, it
is more difficult to capture intruders given the higher value of v.

Finally, there are no markers for Algorithm SiCon as it is not c-
competitive for the values of parameters selected for this figure.

5.2 (v, ρ) Parameter regime

Figure 7 shows the (v, ρ) parameter regime for fixed values of θ, rc,
and rt. Since, Algorithms Split, Part, SiCon require fixed but different
values of ω, we set ω � max{ 1

min{1,rt+rc},
1
zv
, θD}. Note that the value of ω

for this figure depends on the value of ρ as zv is a function of ρ.
Figure 7A shows the (v, ρ) parameter regime plot with θ, rt, and

rc set to π
3, 0.8, and 0.05, respectively. For any value of parameters ρ

and v, for instance 0.7 and 1, respectively, that lie beyond the green
curve, there does not exists a c-competitive algorithm. For any value
of parameters ρ and v that lie below the yellow curve, Algorithm SiR
is 1-competitive. Similarly, for any value of parameters ρ and v that
lie below the blue curve, Algorithm Part is 1.5-competitive.
Analogous observations can be made for Algorithm Sicon and

FIGURE 6
(ω, ρ) plot for different values of θ, rc, rt , and v. Markers represent a
lower bound on the turret’s angular speed. (A) (ω, ρ) plot for
θ � π

4, rt � 1, rc � 0.05, and v � 0.1. (B) (ω, ρ) plot for θ � π
4, rt � 1, rc � 0.1,

and v � 0.3.
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Algorithm Split. Note that for parameter regime that lies below the
yellow curve, Algorithm Part is not effective as there exists
Algorithm SiR with a better competitive ratio. For instance, for
ρ = 0.2 and v = 0.2, it is better to use Algorithm SiR as it has a lower
competitive ratio. Observe that for very high values of ρ, Algorithm
SiCon is the most effective as it has the highest parameter regime
curve. Finally, the light red curve of Algorithm Split is divided into
regions where each region corresponds to a specific competitiveness.
An important characteristic for Algorithm Split is that it can be used
to determine the tradeoff between the competitiveness and the
desired parameter regime for a specific problem instance.

Figure 7B shows the (v, ρ) parameter regime plot with θ, rt, and rc
set to π

2, 0.6, and 0.1, respectively. Note that the green curve, which
represents the curve for Theorem 3.1, is shifted slightly upwards as
compared to in Figure 7A. This follows from the two cases considered
in the proof which is based on the capture capability of the defenders
(vehicle is now more capable and Theorem 3.1 is independent of rt).

As the angle of the environment increases and the engagement range
of the turret decreases, it is harder to capture intruders. This is
visualized in Figure 7B as the curves for all the algorithms have
shifted downward compared to those in Figure 7A. Finally, for values
of ρ> 0.3, AlgorithmPart is more effective thanAlgorithm Split only if
the competitive ratio of Algorithm Split is less than 1.5 for the chosen
values of parameters. Similar to the curve of Algorithm Split, note that
the curve for Algorithm SiR is also divided into regions. This is
because of the different values of ω for different perimeter sizes.

6 Discussion

In this section, we provide a brief discussion on the time
complexity of our algorithms and how this work extends to
different models of the vehicle. We start with the time
complexity of our algorithms.

6.1 Time complexity

We now establish the time complexity of each our algorithms
and show that they can be implemented in real time if the
information about the total number of intruders in every epoch
is provided to the defenders.

Algorithm SiR and SiCon: Since Algorithm SiR and SiCon are
open loop algorithms, the time complexity is O (1).

Algorithm Split: There are three quantities that must be computed
at the start of every epoch of Algorithm Split, i.e., |Pk

right|, |Pk
lef t|, and

Np*. SinceNp* is determined using amax() function overN sectors, its
time complexity isO(N). Similarly, determining the sets Pk

right and P
k
lef t

also have a time complexity ofO(n), where n is the number of intruders
in an epoch. This yields that the time complexity of Algorithm Split is
O(max{n, N}). Recall that N is finite as rc > 0. Thus, in the case when
n→∞, if the information about the number of intruders in Pk

right and
Pk
lef t is provided to the defenders (through some external sensors), then

this algorithm can be implemented in real time.
Algorithm Part: Similar to Algorithm Split, Algorithm Part

computes |Tk
right|, |Vk

lef t|, and |Ik| at the start of every epoch which
yields that the time complexity of Algorithm Part is O(n). This
requires that the information about the total number of intruders in
each of these sets must be provided to the defenders, for n →∞, to
implement this algorithm in real time.

6.2 Different motion models for the vehicle

We now discuss how this work extends to different motion
model of the vehicle.

Observe that the analysis in this work is based upon two
quantities; first, the time taken by the intruders to reach the
perimeter and second, the time taken by the defenders to complete
themotion. This work can be extended to othermodels for the vehicle,
for instance double integrator, by suitablymodifying the time taken by
the vehicle to complete its motion. By doing so, it may be that the
parameter regimes may be lower than in Figure 7 but the bounds on
the competitive ratios will remain the same. The reason that the
parameter regimes will be lower is as follows. Note that the parameter

FIGURE 7
(v, ρ) plot for different values of θ, rc and rt . (A) (v, ρ) plot for
θ � π

3, rt � 0.8, and rc � 0.05. (B) (v, ρ) plot for θ � π
2, rt � 0.6,

and rc � 0.1.
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regimes are characterized by the conditions determined for each of the
algorithms. Essentially, these conditions are determined by requiring
the intruders to be sufficiently slow such that they take more time to
reach the perimeter than the time taken by the vehicle to complete its
motion. For a different model of the vehicle, such as the Dubins
model, the path and the time taken by the vehicle to complete its
motion can be determined by suitably incorporating the turn radius.
Precise dependence of the competitiveness of such realistic models
will be a topic of a future investigation.

7 Conclusions and future extensions

This work analyzed a perimeter defense problem in which two
cooperative heterogeneous defenders, a mobile vehicle with finite
capture range and a turret with finite engagement range, are tasked
to defend a perimeter against mobile intruders that arrive in the
environment. Our approach was based on a competitive analysis
that first yielded a fundamental limit on the problem parameters for
finite competitiveness of any online algorithm. We then designed
and analyzed four algorithms and established sufficient conditions
that guaranteed a finite competitive ratio for each algorithm under
specific parameter regimes.

Apart from closing the gap between the curve that represents
Theorem 3.1 and the curve that represents Algorithm Split, key
future directions include multiple heterogeneous defender scenarios
with energy constraints. Analyzing the problemwith a weaker model
of the adversary, realistic motion motions, maneuvering intruders,
or with asymmetric information are also potential extensions.
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