
Communication-free
shepherding navigation with
multiple steering agents

Aiyi Li*, Masaki Ogura and Naoki Wakamiya

Graduate School of Information Science and Technology, Osaka University, Suita, Japan

Flocking guidance addresses a challenging problem considering the navigation
and control of a group of passive agents. To solve this problem, shepherding offers
a bio-inspired technique for navigating such a group of agents using external
steering agents with appropriately designed movement law. Although most
shepherding research is mainly based on the availability of centralized
instructions, these assumptions are not realistic enough to solve some
emerging application problems. Therefore, this paper presents a decentralized
shepherding method where each steering agent makes movements based on its
own observation without any inter-agent communication. Our numerical
simulations confirm the effectiveness of the proposed method by showing its
high success rate and low costs in various placement patterns. These advantages
particularly improve with the increase in the number of steering agents. We also
confirm the robustness and resilience properties of the proposed method via
numerical simulations.

KEYWORDS

herding, shepherding, decentralization, multi-agent system (MAS), non-linear dynamics

1 Introduction

Shepherding problem (Long et al., 2020) refers to the problem of designing the movement
law of steering agents (called shepherds) to navigate another set of agents (called sheep) driven by
the repulsive force from steering agents and has been attracting emerging attention by its
applicability in robotics (Chung et al., 2018), group dynamics (Vemula et al., 2018), and
nanochemistry (Mou et al., 2020). Against the development of leader-following control
(Consolini et al., 2008; Qu et al., 2021), several works of shepherding research have been
published toward providing effective solutions to the shepherding problem within various
scientific fields including the systems and control theory (Bacon and Olgac, 2012; Pierson and
Schwager, 2018), robotics (Zhi and Lien, 2021), and the complexity science (El-Fiqi et al., 2020).

One of the major challenges in the shepherding problem is clarifying how to coordinate
multiple steering agents for effective guidance. In this direction, various methodologies and
algorithms have been proposed in the literature. For example, Lien et al. (2005) have illustrated
the effectiveness of the navigation by steering agents taking a prescribed formation. Extending this
work, Pierson and Schwager (2018) have presented a 3-D herding algorithm based on the
dimension reduction of the whole multi-agent system. Similar works can be found in (Song et al.,
2021) and (Chipade and Panagou, 2020), where caging-based algorithms for guiding a flock of
agents are proposed. El-Fiqi et al. (2020) have presented a centralized shepherding algorithm that
assigns a path to each steering agent. Bacon and Olgac (2012) have presented a quasi-
decentralized control law for guiding agents with multiple steering agents based on sliding
mode control.

OPEN ACCESS

EDITED BY

Maria Guinaldo,
National University of Distance Education
(UNED), Spain

REVIEWED BY

Kecai Cao,
Nantong University, China
Ernesto Aranda-Escolastico,
National University of Distance Education
(UNED), Spain

*CORRESPONDENCE

Aiyi Li,
li-aiyi@ist.osaka-u.ac.jp

SPECIALTY SECTION

This article was submitted to Networked
Control, a section of the journal
Frontiers in Control Engineering

RECEIVED 08 July 2022
ACCEPTED 14 February 2023
PUBLISHED 28 March 2023

CITATION

Li A, Ogura M and Wakamiya N (2023),
Communication-free shepherding
navigation with multiple steering agents.
Front. Control. Eng. 4:989232.
doi: 10.3389/fcteg.2023.989232

COPYRIGHT

© 2023 Li, Ogura and Wakamiya. This is
an open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Control Engineering frontiersin.org01

TYPE Original Research
PUBLISHED 28 March 2023
DOI 10.3389/fcteg.2023.989232

https://www.frontiersin.org/articles/10.3389/fcteg.2023.989232/full
https://www.frontiersin.org/articles/10.3389/fcteg.2023.989232/full
https://www.frontiersin.org/articles/10.3389/fcteg.2023.989232/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fcteg.2023.989232&domain=pdf&date_stamp=2023-03-28
mailto:li-aiyi@ist.osaka-u.ac.jp
mailto:li-aiyi@ist.osaka-u.ac.jp
https://doi.org/10.3389/fcteg.2023.989232
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org/journals/control-engineering#editorial-board
https://www.frontiersin.org/journals/control-engineering#editorial-board
https://doi.org/10.3389/fcteg.2023.989232

Most of the existing shepherding algorithms with multiple steering
agents assume the existence of a central coordinator (Lien et al., 2005;
Bacon and Olgac, 2012; Pierson and Schwager, 2018; Chipade and
Panagou, 2020; El-Fiqi et al., 2020; Song et al., 2021). This assumption
requires the coordinator’s ability to observe the whole system and the
steering agents’ ability of communication. However, these requirements
can severely limit the practical feasibility of the algorithms. Although we
can find in the literature a fewdecentralized shepherding algorithmswith
multiple steering agents, these works still implicitly assume the
communication among steering agents. For example, the shepherding
algorithmproposed by (Lee and Kim, 2017) requires that a shepherd can
know the intention of another shepherd, which is hard to realize without
communication between shepherds. Also, in the shepherding algorithm
developed by (Hu et al., 2020), the shepherds initially need to perform
multiple rounds of communications for executing a distributed
clustering algorithm to reach a consensus on which sub-flock is
shepherded by which shepherd.

The objective of this paper is to propose an algorithm for
communication-free shepherding navigation with multiple steering
agents. Our approach is to start from an existing single-shepherd
algorithm called Farthest-Agent Targeting algorithm (Tsunoda et al.,
2018). Leveraging on the simplicity of the algorithm, we then construct an
algorithm for the shepherding by multiple steering agents under the
assumption that each shepherd knows its relative position to the goal, and
the relative position of other agents within the shepherd’s recognition
range. Within the proposed algorithm, although each shepherd attempts
to guide the whole flock by chasing its own target sheep independently
and without inter-shepherd communication, cooperative behavior
emerges as a consequence of the spatial distribution of shepherds
induced by the inter-shepherd repulsion built into the algorithm. A
shepherd’s target sheep is determined as the sheep maximizing the
weighted difference between the sheep’s distance from the goal and
the one from the shepherd. The effectiveness of the proposed
algorithm is illustrated with extensive numerical simulations.

This paper is organized as follows. In Section 2, we state the
problem studied in this paper. In Section 3, we describe our
communication-free shepherding algorithm. We present the
numerical simulations in Section 4, compare the performance
with centralized shepherding algorithms in Section 5, and discuss
the robustness and resilience of the proposed algorithm in Section 6.

2 Problem statement

We consider the situation where there exist N agents to be
navigated, called sheep, and M steering agents, called shepherds.
Throughout this paper, we use the notations [N] = {1, 2, . . . , N}
and [M] = {1, 2, . . . , M}. The sheep and shepherd are assumed to
dynamically move on the two-dimensional space R2 in the discrete-
time. For any i ∈ [N], k ∈ [M], and t = 0, 1, 2, . . . , we let pi(t) (qk(t))
denote the position of the ith sheep (kth shepherd, respectively) at time
t. We suppose that each sheep has a limited range r > 0 of recognizing
other agents. Therefore, the indices of the sheep and the shepherd
agents that can be recognized by the ith sheep at time t are given by

N i t() � j ∈ N[] | 0< ‖pi t() − pj t()‖< r{ }
and

Mi t() � ℓ ∈ M[] | 0< ‖pi t() − qℓ t()‖< r{ }.
In this paper, we adopt one of the standard models (Lee and Kim,

2017; Tsunoda et al., 2018) of the dynamics of the sheep. Within the
model, the movement of the ith sheep is described as

pi t + 1() � pi t() + ui t()
where ui(t) ∈ R2 represents the movement vector of the ith sheep
and is supposed to be of the form

ui t() � c1ui1 t() + c2ui2 t() + c3ui3 t() + c4ui4 t() + c5ui5 t() (1)
as illustrated in Figure 1. In this equation, the vectors ui1(t), ui2(t), and
ui3(t) ∈ R2 are the forces of separation, alignment, and cohesion given by

ui1 t() � −|N i t()|−1 ∑
j∈N i t()

ψ pj t() − pi t()(),
ui2 t() � |N i t()|−1 ∑

j∈N i t()
ϕ uj t − 1()(),

ui3 t() � |N i t()|−1 ∑
j∈N i t()

ϕ pj t() − pi t()()
(2)

where ϕ(x) = x/‖x‖ is a normalization operator and

ψ x() � x/‖x‖3 (3)
is a potential-like function. We remark that these three forces
motivated by the seminal work by Reynolds (1987) are not
implemented in its original manner. For example, although the
original definition of the cohesion force steers an agent to move
toward the average position of local neighbors, the current
implementation takes average after performing normalization by
ϕ. We further remark that, to avoid ill-posedness of the model, we
extend the domain of these mappings to the whole space R2 by
letting ϕ(0) = 0 and ψ(0) = 0. The reason for using the normalization
ψ only for the separation force is to ensure that a sheep agent does
not collide with other sheep. Because ψ(x) diverges as x tends to zero,
the separation force becomes dominant as two agents become close
and, hence, the inter-agent distance tends to zero. On the other
hand, when the inter-agent distance is relatively large, the separation
term becomes negligible and the cohesion term becomes dominant.
This approach has been taken in various swarm models in the
literature (Parrish et al., 2002; Gazi and Passino, 2003).

Also, the vector ui4(t) is the force of repulsion from shepherd
agents given by

ui4 t() � −|Mi t()|−1 ∑
ℓ∈Mi t()

ψ qℓ t() − pi t()(),
in which we use the normalization ψ to avoid a collision with a
shepherd. We remark that, when the set N i(t) is empty, we regard
the vectors in Eq. 2 to be the zero vectors. Likewise, if the setMi(t)
is empty, then we set ui4(t) = 0. This rule applies to other similar
equations appearing later in this paper. Finally, ui5(t) is a random
vector accounting for disturbances; its norm and angle are
independently drawn from a uniform distribution on the
intervals [0, 1] and [0, 2π], respectively.

As for the shepherd agents, we place the following restriction on
the information available for navigation. The recognition range of a
shepherd is assumed to be finite and is set to be r′ > 0; therefore, the
set of indices of the sheep and the shepherd agents that can be
recognized by the kth shepherd at time t are given by

Frontiers in Control Engineering frontiersin.org02

Li et al. 10.3389/fcteg.2023.989232

https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fcteg.2023.989232

N k′ t() � j ∈ N[] | 0< ‖qk t() − pj t()‖< r′{ }
and

Mk′ t() � ℓ ∈ M[] | 0< ‖qk t() − qℓ t()‖< r′{ }.
We further assume that a shepherd can detect only its relative

position to the goal and the relative position of other agents within

the shepherd’s recognition range. Hence, the kth shepherd needs to

determine its own movement at time t based only on the following

types of vectors.

• pj(t) − qk(t) (j ∈ N k′(t));
• qℓ(t) − qk(t) (ℓ ∈ Mk′(t));
• xg − qk(t).

We remark that, the availability of the first two types of information

is widely assumed in the literature, and could be realized with proximity

sensors. Also, the sensing of the third type of information can be

realized by recent sensing methodologies such as single beacon-based

positioning systems (Hou et al., 2016).

Finally, the objective of the navigation by shepherd agents is to

herd all the sheep into a goal region G ⊂ R2. In this paper, we

suppose that the goal region G is the closed disk with center xg ∈ R2

and radius Rg > 0.

Remark 2.1. In this paper, we do not aim to analytically establish
the effectiveness of the shepherding algorithm to be proposed in the

next section. The major reason for this choice is its intrinsic
difficulty arising from the non-linearity of the Boid model. In
fact, several existing works (see, e.g., Lien et al., 2005; Bacon and
Olgac, 2012; Pierson and Schwager, 2018; Chipade and Panagou,
2020; El-Fiqi et al., 2020; Song et al., 2021; Lee and Kim, 2017) on the
shepherding problem do not provide a mathematical proof for the
performance of the proposed control methodologies. This tendency
is a common practice in the field of swarm guidance, as the non-
linearity of the swarmmodel often makes it challenging to perform a
meaningful mathematical analysis.

3 Proposed algorithm

In this section, we describe the algorithm that we propose for the
movement of the shepherd agents. We start by recalling the
Farthest-Agent Targeting (FAT) algorithm (Tsunoda et al., 2018)
designed for the case of a single shepherd (i.e., M = 1). In the
algorithm, the movement of the (first) shepherd is specified as q1 (t +
1) = q1(t) + v1(t), where v1(t) ∈ R2 represents the movement vector
of the shepherd. Let us denote the position of the sheep agent
farthest from the goal by ξ1(t); i.e., define

ξ1 t() � arg max
p∈{pj(t)}j ∈ [N]

‖p − xg‖.

Then, in the FAT algorithm, the movement vector v1(t) is
specified as the weighted sum of the following three vectors:

FIGURE 1
Schematic of the sheepmodel described in Eq. 1. A sheep receives separation, alignment, cohesion from other sheep and repulsion from shepherds
within the sensing range. The sheep is also exposed to noise.

FIGURE 2
Target selection by the proposed algorithm. Goal: X; Sheep: circles; Shepherd: square. For each value of α, we color each sheep i using the [0,1]-
normalized value of the objective function ‖pi − xg‖− α‖pi − qk(t)‖. When α=0, the shepherd targets the sheep farthest from the goal. On the other hand, for
larger α, the shepherd targets a sheep far from the goal and close to the shepherd.

Frontiers in Control Engineering frontiersin.org03

Li et al. 10.3389/fcteg.2023.989232

https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fcteg.2023.989232

ϕ ξ1 t() − q1 t()(), −ψ ξ1 t() − q1 t()(), −ϕ xg − q1 t()(), (4)

which are, respectively, to realize the movement of the shepherd for
chasing the farthest agent, taking an appropriate distance with the
farthest agent, and pushing the farthest agent toward the goal region. As
for the second term, the term allows us to realize an appropriate, non-
vanishing distance for the same reason that the normalization ψ in the
sheep model allows a sheep to avoid a collision. Despite being simple,
the FAT algorithm is known for its effectiveness in performing the
shepherding navigation with a single shepherd (Tsunoda et al., 2018).
However, the algorithm requires knowledge of the positions of all
sheep. Furthermore, when generalized to the situation of multiple
shepherds, the formula would result in all the shepherds targeting
the same sheep, which is presumably inefficient.

Based on these observations, in this paper, we propose an
extended version of the FAT algorithm to let each shepherd
choose, as its target, a sheep both close to itself and far from the
goal. Specifically, we propose that the sheep agent targeted by the kth
shepherd is determined by the formula

ξk t() � arg max
p∈ pj t(){ }j ∈ N ′k(t)

‖p − xg‖ − α‖p − qk t()‖(), (5)

where α ≥ 0 is the parameter determining the behavior of shepherds
within the proposed algorithm. For example, when α = 0, only the first
term ‖p − xg‖ remains in Eq. 5 and, therefore, all shepherds target the
sheep farthest from the goal; i.e., the proposed algorithm reduces to the
FAT algorithm. On the other hand, when α is sufficiently large, each
shepherd chooses the closest sheep as its target, which specifically
prevents the scattering phenomenon caused by the FAT algorithm, as
illustrated in Figure 2. Hence, we can expect that choosing a moderate
value of αwould result in a control strategy that is as effective as the FAT
algorithm and is less suffered from the scattering phenomenon.
We here emphasize that ξk(t) is decidable by the kth shepherd
because the sheep’s relative position to the goal is computable as
pj(t) − xg = (pj(t) − qk(t)) + (xg − qk(t)).

We can now state the proposed movement algorithm of the
shepherds. As in the FAT algorithm, we let

qk t + 1() � qk t() + vk t(),
where vk(t) denotes the movement vector of the kth shepherd. This
vector is to be constructed as the weighted sum of the following four
vectors. First, we define

vk1 t() � ϕ ξk t() − qk t()()
for the kth shepherd to chase the target sheep. Secondly, in order to
take an appropriate distance between the shepherd and sheep agents,
we define

vk2 t() � −|N ′k(t)|−1 ∑
j∈N ′k(t)

ψ pj t() − qk t()() (6)

so that the kth shepherd receives repulsion force from all the
neighboring sheep agents. Thirdly, to achieve guidance toward
the goal region, we define the vector

vk3 t() � −ϕ xg − qk t()()
by adopting Eq. 4. Finally, in order to avoid competition among
shepherd agents for efficient guidance, we introduce the vector

vk4 t() � −‖xg − qk t()‖ |Mk′ t()|−1 ∑
ℓ∈Mk′ t()

ψ qℓ t() − qk t()(), (7)

which represents repulsion between shepherd agents. Because
shepherds need to be relatively closer to each other at the final
stage of the shepherding navigation, we introduce the weight term
‖xg − qk(t)‖. Now, based on the four vectors introduced above, we
define the movement vector of the kth shepherd as

vk t() � d1vk1 t() + d2vk2 t() + d3vk3 t() + d4vk4 t() (8)
for positive constants d1, d2, d3, and d4.

Remark 3.1. Let us discuss the communication costs of the
proposed algorithm and existing distributed shepherding
algorithms with multiple shepherds (Lee and Kim, 2017; Hu
et al., 2020). The proposed algorithm does not require
communication between shepherds in the sense that each
shepherd requires only its relative position with other shepherds,
which can be accomplished with its own sensing devices. On the
other hand, as discussed in Section 1, the existing algorithms require
communication between shepherd agents because each agent needs
to understand the intention of other shepherds. Specifically, the
algorithm by (Lee and Kim, 2017) can require O(nfM

2) times of
communications between shepherd agents at each time step, where
nf denotes the number of sub-flocks of sheep. Also, within the
algorithm presented by (Hu et al., 2020), in order to execute a
clustering algorithm for determining which sub-flock is chased by
which shepherd, O(nfM) times of communications needs to be
periodically performed between shepherds.

4 Numerical simulation

In this section, we present numerical simulations to illustrate the
effectiveness of the proposed algorithm. Throughout the
simulations, all the parameters and variables are assumed to be
dimensionless.

4.1 Configuration

We assume that there exists N sheep to be guided in two-
dimension space. We suppose that, at the initial time, N sheep are
placed uniformly and randomly on the disc centered at the origin
and having an initial radius Rs (0). We design the pattern of the
initial distribution as 1) a small flock: N = 20, Rs (0) = 40, 2) a large
flock: N = 50, Rs (0) = 60, and 3) two separate flocks: N = 20, Rs (0) =
40 for one flock and N = 30, Rs (0) = 50 for another flock. The
parameters of the sheep model are set as

c1 � 200, c2 � 0.02, c3 � 0.2, c4 � 400, c5 � 0.1 (9)
and r = 50. We call this parameter set or scenario as baseline.
The goal G is supposed to have the center xg = [150,150]⊤ and
radius Rg = 80. For the comprehensiveness of our experiment, we
prepare the following three different placement patterns of the
shepherd agents; shepherd agents are initially 1) placed around at
the bottom-left of the sheep agents (bottom-left), 2) placed
around at the top-right of the sheep agents (top-right), and 3)

Frontiers in Control Engineering frontiersin.org04

Li et al. 10.3389/fcteg.2023.989232

https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fcteg.2023.989232

FIGURE 3
Herding a small flock in the baseline sheepmodel. (A) Initial configurations and corresponding trajectories. The number of shepherds is set toM = 3.
First column: Samples of initial configurations. Second to fifth columns: Trajectories of the quickest navigations among those performed for randomly
generated 100 initial configurations. Circle: goal region. Red dots: shepherds. Gray dots: sheep. The numbers at the bottom-right indicate the time at
which the shepherding navigation is completed. It is remarked that the initial configurations in each row are not necessarily the same. Amovie can be
found at https://youtu.be/AIrRmSfvYcs. (B) Performances of the four algorithms. Horizontal axes represent the number of shepherdsM from 1 to 5. First
column: the rate of successful navigation. Second column: success time. Third column: average traversal distance of shepherds. In the second and third
columns, a solid line draws an estimate of the mean value and shaded areas describe the confidence interval for that estimate.

Frontiers in Control Engineering frontiersin.org05

Li et al. 10.3389/fcteg.2023.989232

https://youtu.be/AIrRmSfvYcs
https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fcteg.2023.989232

surrounding the sheep agents (surrounding). For each of the
placement patterns, we randomly generate 100 different initial
configurations of agents. Samples of the initial configurations are

shown in the first column of Figure 3A. Furthermore, in the
numerical simulations, we modify the operator ψ in the original
model as

FIGURE 4
Herding a large sheep flock in the baseline sheepmodel. (A) Initial configurations and corresponding trajectories. The number of shepherds is set toM=5. A
movie canbe found at https://youtu.be/AIrRmSfvYcs. (B)Performancesof the four algorithms.Horizontal axes represent the number of shepherdsM from1 to 10.

Frontiers in Control Engineering frontiersin.org06

Li et al. 10.3389/fcteg.2023.989232

https://youtu.be/AIrRmSfvYcs
https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fcteg.2023.989232

ψ x() �
x/‖x‖3, if ‖x‖≥ r,
x/ ‖x‖r2(), if 0< ‖x‖< r,
0, otherwise

⎧⎪⎨⎪⎩
to uniformly bind the speed of the agents by avoiding numerical
instability of the operator ψ in its original definition Eq. 3. In our
numerical simulations, we use r = 3. This value allows us to avoid

FIGURE 5
Herding two separate flocks in the baseline sheepmodel. (A) Initial configurations and corresponding trajectories. The number of shepherds is set to
M = 5. A movie can be found at https://youtu.be/AIrRmSfvYcs. (B) Performances of the three algorithms. Horizontal axes represent the number of
shepherds M from 1 to 10.

Frontiers in Control Engineering frontiersin.org07

Li et al. 10.3389/fcteg.2023.989232

https://youtu.be/AIrRmSfvYcs
https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fcteg.2023.989232

FIGURE 6
Herding a small flock in the sensitive and insensitive sheep model separately. (A) Performances of the four algorithms in the sensitive sheep model.
Horizontal axes represent the number of shepherdsM from 1 to 5. (B) Performances of the four algorithms in the insensitive sheepmodel. Horizontal axes
represent the number of shepherds M from 1 to 5.

Frontiers in Control Engineering frontiersin.org08

Li et al. 10.3389/fcteg.2023.989232

https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fcteg.2023.989232

FIGURE 7
Herding a large flock in the sensitive and insensitive sheep model separately. (A) Performances of the three algorithms in the sensitive sheep model.
Horizontal axes represent the number of shepherdsM from 1 to 10. (B) Performances of the three algorithms in the insensitive sheep model. Horizontal
axes represent the number of shepherds M from 1 to 10.

Frontiers in Control Engineering frontiersin.org09

Li et al. 10.3389/fcteg.2023.989232

https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fcteg.2023.989232

FIGURE 8
Herding two separate flocks in the sensitive and insensitive sheep model separately. (A) Performances of the four algorithms in the sensitive sheep
model. Horizontal axes represent the number of shepherds M from 1 to 10. (B) Performances of the four algorithms in the insensitive sheep model.
Horizontal axes represent the number of shepherds M from 1 to 10.

Frontiers in Control Engineering frontiersin.org10

Li et al. 10.3389/fcteg.2023.989232

https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fcteg.2023.989232

numerical instability while ensuring that the separation force is still
dominant between agents that are close enough to each other.

4.2 Proposed and baseline algorithms

We describe the algorithms to be compared in our numerical
simulations. For each of the initial configurations, all of the algorithms
are to be terminated when all the sheep agents belong to the goal G, or
after 3,000 steps regardless of the result of navigation. In the former case,
we label the trial for the initial configuration as success.

4.2.1 Proposed algorithm
We use the parameters d1 = 2, d2 = 100, d3 = 1, d4 = 2, and r′ =

300. The parameter α in Equation 5 is set as α = 1.

4.2.2 Farthest-agent targeting
When α = 0, Eq. 5 lets each shepherd target the sheep farthest

from the goal among all the sheep in the shepherd’s recognition
range. For this reason, we call the algorithm with α = 0 the Farthest-
Agent Targeting (FAT) algorithm. We remark that, for the purpose
of a fair comparison, the recognition range r′ of the algorithm is set
to be equal to the one in the proposed algorithm (and, hence, to be
finite), while the original Farthest-Agent Targeting algorithm
(Tsunoda et al., 2018) assumes the infinite recognition range of a
shepherd agent.

4.2.3 Farthest-agent targeting with occlusion
The farthest-agent targeting algorithm with occlusion (FAT-OCC)

(Tsunoda et al., 2018) is also considered. This algorithm is identical to
the FAT algorithm except that N k,occ(t)′ in Eq. 5 and Eq. 6
in which N k,occ′ (t) represents the set of sheep agents recognizable
under occlusion and is constructed as follows. For each t, we first
initialize N k,occ′ (t) � ∅. We then order the set N k′(t) as
(i1, . . . , i|N k′(t)|) in such a way that
‖pi1(t)‖≤ ‖pi2(t)‖≤/≤ ‖pi|N k′(t)|

(t)‖. For each ι � 1, . . . , |N k′(t)|,
we sequentially join the index iι to the set N k,occ′ (t) if and only if
|∠(pι − qk) − ∠(pϕ − qk)| > θ for all ϕ ∈ N k,occ′ (t). We use the parameter
θ = π/36.

4.2.4 Online-target switching
The Online-Target Switching (OTS) algorithm proposed by

Strömbom et al. (2014) is applied by judging the flock
separation. We implement this algorithm by replacing ξk(t) in
Eq. 5 with ξotsk (t) defined by

ξotsk t() � �pk t() + dots ϕ �pk t() − xg(), if
����p#k t() − �pk t()����≤Rots,

p#k t() + dots ϕ p#k t() − �pk t()(), otherwise

⎧⎪⎨⎪⎩
(10)

where

�pk(t) � |N k′(t)|−1∑j∈N k′(t)pj(t) (11)

is the mass center of the sheep flock that the shepherd k can observe,

p#k t() � arg max
p∈{pj(t)}j ∈ N k′(t)

‖�pk t() − p‖ (12)

represents the position of the sheep farthest from the mass center,
and Rots � rots

������
N k′(t)

√
determines the size of the radius based on the

number of the sheep agents, which is the same setup as the original
algorithm. We choose rots = 10 and dots = 25 so that there is an
appropriate distance of Rots and dots between the shepherd and the
flock. In this way, the shepherd can maintain the flock shape when
changing the target position ξotsk (t) in Eq. 10.

4.3 Performance comparison

We perform simulations to illustrate the effectiveness of the
proposed algorithm. Within the simulations, we perform
shepherding of a flock following one of the three initial distributions
of sheep and three placements of shepherds using one of the four
algorithms. We illustrate the performance of the algorithms using the
trajectories of agents. Toward this end, for each pair of the four
algorithms and three placement patterns, we pick the quickest trial
among 100 initial configurations. The trajectories and their
corresponding completion time are shown in Figures 3A, 4A, and
5A. We can observe that the trajectories of the shepherds in the
proposed algorithm are smoother than those of the three baseline
algorithms, confirming the effectiveness of the decentralized
mechanism of the proposed algorithm. For herding the two separate
flocks, we found through numerical simulations that the switching
algorithm is not capable of performing the shepherding task, so we only
compare the three remaining algorithms in Figure 5A. We also observe
the FAT algorithm can perform poorly due to the cases of initial
configurations. After examining the simulation data, we identify the
following problems with the FAT algorithm. One problem is that
herding a large flock can consume excessive time due to long traversal
distances. Another problem is that a flock tends to be scatteredwhen the
shepherd agent chases the sheep agent on the opposite side of the flock.

For further evaluation and comparison of the proposed and the
baseline algorithms, we introduce the following three performance
measures. First, the success rate of an algorithm for a placement
pattern is defined as the rate of successful trials among randomly
generated 100 initial configurations. Second, we define the completion
time as the execution time of the algorithm in its successful trials.
Finally, the average path length is defined as the average of the mean
traveling distanceM−1∑M

k�1∑t‖vk(t)‖ of shepherds in successful trials.
Figures 3B, 4B, and 5B show how these three performance

measures depend on the number of shepherds for each of the
algorithms. We observe that the proposed algorithm achieves
almost 100% success rate regardless of the number of shepherds
and placement patterns, which confirms the effectiveness and
resilience of the proposed algorithm. We can also observe that
the proposed algorithm outperforms the baseline algorithms in
completion time and average path length. Furthermore, the
average completion time and average path length steadily
decrease with respect to the number of shepherds. These trends
suggest that the proposed algorithm allows stable and synergistic
coordination of shepherds for the navigation of sheep agents.

For a more thorough comparison, let us consider two other scenarios
in which the parameters of the sheep are different from the ones used in
previous simulations. In the first scenario, we consider the parameters

Frontiers in Control Engineering frontiersin.org11

Li et al. 10.3389/fcteg.2023.989232

https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fcteg.2023.989232

c1 � 250, c2 � 0.025, c3 � 0.2, c4 � 500, c5 � 0.1.

These values are all no less than the corresponding ones of the
baseline scenario in Eq. 9. For this reason, we expect that the sheep
flock with these parameters are more sensitive to the movement of
the shepherds. Let us call this scenario sensitive. On the other hand,
we prepare the other additional scenario to perform comparisons for
the sheep flock that is harder to navigate. For this reason, in the
second scenario, we use the parameters

c1 � 150, c2 � 0.015, c3 � 0.2, c4 � 300, c5 � 0.1.

Because these values are all no greater than the corresponding
ones of baseline, we call this scenario insensitive. Now, under these
two additional scenarios, we perform the same set of simulations
that we did for the baseline scenario Eq. 9. The results of the
simulations in the scenarios sensitive and insensitive are
illustrated in Figures 6A, 7A, and 8A and Figures 6B, 7B, and
8B, respectively. We can confirm that the proposed algorithm always
shows higher success rates as well as lower completion time and
shorter path lengths. In Figures 7A, 7B, we also observe a slight
decrease in the success rate of the proposed algorithm. After
investigating the failure cases, we find the following reasons. One
reason is the interference behaviors amongmultiple shepherd agents
when shepherd agents may coincidentally choose the same target
and drive the target further away from the goal without returning.
Another reason is due to the behaviors of the sheep agents; when the
parameters of the sheep model are changed to be more sensitive, it
can be difficult for the shepherd agents to include all the sheep
agents inside the goal region simultaneously.

5 Centralized shepherding algorithms

In this section, we compare the proposed algorithm with
centralized multi-agent shepherding algorithms in terms of
cooperation and shepherding performance. Our aim is to help
make the decision to select the appropriate algorithm according
to the balance of performance compared to communication
requirements. We first describe the centralized algorithms that
we use for comparison. We then present the comparison of the
proposed algorithm with the centralized algorithms.

5.1 Point-offset circling control

Pierson and Schwager (2018) proposes a shepherding
algorithm in which shepherds form an arc formation to steer
the flock. Within the algorithm, at each time a central controller
computes the center of the mass �p(t) and the position p#(t) of the
sheep farthest from the center similar to Eq. 11. Then, the
controller regards the flock as a circle with center �p(t) and
radius Rs(t) � ‖p#(t) − �p(t)‖. The controller then generates a
circle having the same center but with a larger radius, and directs
each shepherd to move toward a point on the larger circle. Each
shepherd is placed evenly on the larger circle.

Specifically, within the algorithm, the controller computes the
following quantities at each time t:

Rcircle t() � αcircleRs t(),
Δcircle
k � Δ 2k −M − 1()

2M − 2() ,

θ �p(t) � ∠ �p t() − xg()
where Rcircle(t) represents the radius of the larger circle whose radius
is controlled by parameter αcircle ≥ 1, Δcircle

k represents the degree of
kth shepherd for determining its placement on the circle, and θ �p(t)
represents the angle of the center of the sheep flock in the
counterclockwise direction with respect to the positive direction
of x-axis. Each shepherd needs to know its index k within the total
number M of shepherds. The controller then directs each shepherd
to move toward its target position defined by

ξcirclek t() � �p t() + Rcircle t() cosΔcircle
k + θ �p(t)

sinΔcircle
k + θ �p(t)[].

Within our simulation, we use αcircle = 1.5 and Δ = 2π/3.

5.2 Potential-based caging

The shepherding algorithm proposed by Song et al. (2021)
employs a caging formalism in robotic manipulation and guides
a group of sheep agents to the goal region safely and with provable
guarantees. The cage is constructed by a regular M-sided polygon
and has the shepherds as its vertices. The distance between the
center of the flock and the vertex is set as Rcage determined by

Rcage t() − Rs t() − dCSM � Rcage t()sin π/M(),
Δcage
k � 2k

M
π,

where dCSM is the minimum required distance between the sheep
and the point. Then, the target position for kth shepherd is set as

ξcagek t() � �p t() + Rcage t() cosΔcage
k

sinΔcage
k

[] + αcageϕ(xg − �p(t)).

We remark that we are introducing the term parameter
αcageϕ(xg − �p(t)) so that the algorithm can achieve guidance of
the flock into the goal region. In the caging process, each shepherd
moves to a vertex close to itself as its target position while making
sure that no vertex is shared with multiple shepherds. We use dCSM =
0.05Rs(0) and αcage = 8.

5.3 Performance comparison

We perform simulations to herd the sheep flock based on the
sheep model presented in Equation 1. For both centralized
shepherding algorithms, the dynamics of the shepherd
presented in Equation 8 is set as d2 = 0, d3 = 0, and d4 = 0.
From our preliminary simulations, we found that the algorithms
presented above do not perform well in some situations. Therefore,
in our simulations, to make the cooperation of multiple shepherds
stable, we modify the radius Rs(t) � min{‖�p(t) − p#(t)‖, β‖�p(0) −
p#(0)‖} to prevent failure when the flock is dispersed during
shepherding and we choose β = 1.25. Further, we define that
the algorithm for point-offset circling control takes the same

Frontiers in Control Engineering frontiersin.org12

Li et al. 10.3389/fcteg.2023.989232

https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fcteg.2023.989232

strategy to allocate the shepherds to their target positions. The
maximum time step is set to 5000 to ensure the completion of the
shepherding.

The trajectories for herding the small and large flocks are shown
in Figures 9A, 10A and the performances in Figures 9B, 10B,
respectively. Simulation results show that for these two

FIGURE 9
Herding a small flock in the baseline sheep model compared with centralized shepherding algorithms. (A) Initial configurations and corresponding
trajectories. Thenumber of shepherds is set toM=8. Amovie can be found at https://youtu.be/AIrRmSfvYcs. (B)Performancesof the three algorithms.Horizontal
axes represent the number of shepherds M from 4 to 10. The coordinates of the y-axis are increased in completion time and average path length.

Frontiers in Control Engineering frontiersin.org13

Li et al. 10.3389/fcteg.2023.989232

https://youtu.be/AIrRmSfvYcs
https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fcteg.2023.989232

algorithms, the average completion time increases and the success
rate decreases as M increases. On the other hand, when herding a
flock with large N and Rs (0), the success rate is not necessarily high.
We analyze that the poor performance is due to the large interaction
distance from the shepherd to the sheep flock. For the case of two

separate flocks, we choose not to show the simulation results because
we found through numerical simulations that these two centralized
algorithms are not capable of performing the shepherding task. From
the simulation results based on the two other sets of the sheepmodel, in
Figures 11A, 12A and Figure 11B, 12B, we observe that the performance

FIGURE 10
Herding a large flock in the baseline sheep model compared with centralized shepherding algorithms. (A) Initial configurations and corresponding
trajectories. The number of shepherds is set toM = 8. The circling algorithm of shepherding ends until the maximum time step. A movie can be found at
https://youtu.be/AIrRmSfvYcs. (B) Performances of the three algorithms. Horizontal axes represent the number of shepherds M from 4 to 10. The
coordinates of the y-axis are increased in completion time and average path length.

Frontiers in Control Engineering frontiersin.org14

Li et al. 10.3389/fcteg.2023.989232

https://youtu.be/AIrRmSfvYcs
https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fcteg.2023.989232

FIGURE 11
Herding a small flock in the sensitive and insensitive sheep model separately compared with centralized shepherding algorithms. (A) Performances
of the three algorithms in the sensitive sheepmodel. Horizontal axes represent the number of shepherdsM from 4 to 10. The coordinates of the y-axis are
increased in completion time and average path length. (B) Performances of the three algorithms in the insensitive sheepmodel. Horizontal axes represent
the number of shepherds M from 4 to 10. The coordinates of the y-axis are increased in completion time and average path length.

Frontiers in Control Engineering frontiersin.org15

Li et al. 10.3389/fcteg.2023.989232

https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fcteg.2023.989232

FIGURE 12
Herding a large flock in the sensitive and insensitive sheep model separately compared with centralized shepherding algorithms. (A) Performances
of the three algorithms in the sensitive sheepmodel. Horizontal axes represent the number of shepherdsM from 4 to 10. The coordinates of the y-axis are
increased in completion time and average path length. (B) Performances of the three algorithms in the insensitive sheepmodel. Horizontal axes represent
the number of shepherds M from 4 to 10. The coordinates of the y-axis are increased in completion time and average path length.

Frontiers in Control Engineering frontiersin.org16

Li et al. 10.3389/fcteg.2023.989232

https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fcteg.2023.989232

FIGURE 13
Performances of the proposed algorithm for shepherding three models of sheep flock in different sensing ranges for shepherds. Horizontal axes
represent the sensing range of shepherds r′. The sensing range of the sheep is set as the default value r =50.

FIGURE 14
Performances of the proposed algorithm for shepherding three models of sheep flock in different sensing range for shepherds. Horizontal axes
represent the sensing range of shepherds r′. The sensing range of the sheep is enlarged as r =100.

Frontiers in Control Engineering frontiersin.org17

Li et al. 10.3389/fcteg.2023.989232

https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fcteg.2023.989232

FIGURE 15
Performances of the proposed algorithm for shepherding three models of sheep flock by introducing death rate for shepherds. Horizontal axes
represent the death rate Pd for shepherds. The recovery rate Pr is set as 0.1.

FIGURE 16
Performances of the proposed algorithm for shepherding three models of sheep flock in considering sensing error for shepherds. Horizontal axes
represent the value d5 of the sensing error for shepherds.

Frontiers in Control Engineering frontiersin.org18

Li et al. 10.3389/fcteg.2023.989232

https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fcteg.2023.989232

of these two algorithms is greatly influenced by the parameter setting of
the sheep model. After examining the simulation data, we find that the
centralized multi-agent shepherding algorithms are neither robust nor
resilient enough to adapt to changes in the flock shape caused by the
movement of sheep agents.

6 Robustness and resilience

In order to further demonstrate the effectiveness of the
proposed algorithm, in this subsection, we numerically
evaluate the robustness and resilience properties. Throughout
this subsection, we use 2) the large flock to be the same set of
initial configurations as the ones we used in the last subsection.
The sheep were modeled as baseline, sensitive, or insensitive
flocks. The number of the shepherds is fixed asM = 5. Because our
main objective in this subsection is to investigate the robustness
and resilience properties of the proposed algorithm, we do not
perform simulations of existing methods.

We first examine the robustness of the proposed algorithm with
respect to the change in the sensing range of the shepherd and the
sheep. As for the sensing range of the shepherd, we change r′ from its
default value 300 and vary within the set {50, 100, 150, . . . , 400}. Also,
we prepare two scenarios on the sensing range r of the sheep; r = 50 and
r = 100. We present how the success rates, completion times, and
average path lengths depend on r′ in Figure 13 (r = 50) and Figure 14
(r = 100). According to the results, different sizes of the sensing ranges r
of sheep cause changes in the flock behaviors to influence the
shepherding performance. For these two values of r, the success rate
of shepherding drops when the sensing range r′ of the shepherd is short.
This observation suggests that, for the proposed algorithm to be
effective, we should avoid employing a shepherd having a too short
sensing range.

We then examine the resilience of the shepherding algorithm
against the errors and failures in the shepherd agents. For this
purpose, we consider the following situation. Suppose that a
shepherd is prone to failures, and a failure occurs at each time step
with probability Pf. We suppose that a shepherd in the failure state does
not move. We also assume that, when a shepherd is in the failure state,
the shepherd can recover from the failure and return to the normal state
with probability Pr. In our numerical simulation, we set the recovery
probability as Pr = 0.1 and vary the failure probability within the set {0,
0.1, 0.2, 0.3, 0.4}.We show the results of the simulation in Figure 15.We
observe that the proposed algorithm still maintains a high success rate.
Specifically, although the completion time rises with the increase of Pr,
the traversal distance remains almost unchanged. Overall, this
simulation indicates that the proposed algorithm is fault-tolerant
due to its decentralized mechanism.

We finally investigate the resilience of the proposed algorithm against
sensing errors of the shepherds. In this simulation, we assume that the
sensing of the shepherd to the positions of other agents and the goal is
subject to an additive noise of the form d5σ(t), where d5 is a positive weight
and the random vector σ(t) is generated in the same way as the random
vector ui5(t) appearing in Eq. 1. In Figure 16, we show how the
performance of the proposed algorithm depends on the weight d5. We
confirm that the proposed algorithm tolerates relatively large sensing error
with d5 = 10 in any of the initial configurations. This observation shows
that the proposed algorithm is resilient to sensing errors.

7 Conclusion

In this paper, we have studied the shepherding problemwithmultiple
steering agents unable to communicate with each other. We have first
presented a model of sheep agents in the presence of multiple steering
agents. We have then proposed a distributed and communication-free
algorithm with multiple steering agents to aggregate the sheep agents by
location-based self planning. Finally, we have confirmed the effectiveness
and resilience of the proposed algorithm via extensive numerical
simulations in various situations. Interesting directions for future
works include investigating if the proposed communication-free
coordination mechanism can be extended to other types of
navigation tasks. Another important research direction is to analyze
the performance of the proposed shepherding algorithmmathematically.
One of the particular interests is in establishing fundamental properties
such as stability and convergence.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Author contributions

All authors listed have made a substantial, direct, and intellectual
contribution to the work and approved it for publication.

Funding

This work was supported by JSPS KAKENHI Grant Numbers
JP21H01352, JP21H01353, and JP22H00514 and Osaka University
Institute for Datability Science “Transdisciplinary Research Project”.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and
do not necessarily represent those of their affiliated organizations, or
those of the publisher, the editors and the reviewers. Any product that
may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary Material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fcteg.2023.989232/
full#supplementary-material

Frontiers in Control Engineering frontiersin.org19

Li et al. 10.3389/fcteg.2023.989232

https://www.frontiersin.org/articles/10.3389/fcteg.2023.989232/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fcteg.2023.989232/full#supplementary-material
https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fcteg.2023.989232

References

Bacon, M., and Olgac, N. (2012). Swarm herding using a region holding sliding mode
controller. J. Vib. Control 18, 1056–1066. doi:10.1177/1077546311411346

Chipade, V. S., and Panagou, D. (2020). “Multi-swarm herding: Protecting against
adversarial swarms,” in 59th IEEE Conference on Decision and Control (Jeju, South
Korea: IEEE), 5374–5379. doi:10.1109/CDC42340.2020.9303837

Chung, S.-J., Paranjape, A. A., Dames, P., Shen, S., and Kumar, V. (2018). A
survey on aerial swarm robotics. IEEE Trans. Robotics 34, 837–855. doi:10.1109/
tro.2018.2857475

Consolini, L., Morbidi, F., Prattichizzo, D., and Tosques, M. (2008). Leader–follower
formation control of nonholonomic mobile robots with input constraints. Automatica
44, 1343–1349. doi:10.1016/j.automatica.2007.09.019

El-Fiqi, H., Campbell, B., Elsayed, S., Perry, A., Singh, H. K., Hunjet, R., et al. (2020).
The limits of reactive shepherding approaches for swarm guidance. IEEE Access 8,
214658–214671. doi:10.1109/access.2020.3037325

Gazi, V., and Passino, K. M. (2003). Stability analysis of swarms. IEEE Trans.
Automatic Control 48, 692–697. doi:10.1109/tac.2003.809765

Hou, Y., Xiao, S., Bi, M., Xue, Y., Pan, W., and Hu, W. (2016). Single LED beacon-
based 3-D indoor positioning using off-the-shelf devices. IEEE Photonics J. 8, 1–11.
doi:10.1109/jphot.2016.2636021

Hu, J., Turgut, A. E., Krajník, T., Lennox, B., and Arvin, F. (2020). Occlusion-based
coordination protocol design for autonomous robotic shepherding tasks. IEEE Trans.
Cognitive Dev. Syst. 14, 126–135. doi:10.1109/tcds.2020.3018549

Lee, W., and Kim, D. (2017). Autonomous shepherding behaviors of multiple target
steering robots. Sensors 17, 2729. doi:10.3390/s17122729

Lien, J. M., Rodriguez, S., Malric, J. P., and Amato, N. (2005). “Shepherding behaviors
with multiple shepherds,” in Proceedings of the 2005 IEEE International Conference on
Robotics and Automation (Barcelona, Spain: IEEE), 3402–3407. doi:10.1109/ROBOT.
2005.1570636

Long, N. K., Sammut, K., Sgarioto, D., Garratt, M., and Abbass, H. A. (2020). A
comprehensive review of shepherding as a bio-inspired swarm-robotics guidance
approach. IEEE Trans. Emerg. Top. Comput. Intell. 4, 523–537. doi:10.1109/tetci.
2020.2992778

Mou, F., Li, X., Xie, Q., Zhang, J., Xiong, K., Xu, L., et al. (2020). Active micromotor
systems built from passive particles with biomimetic predator–prey interactions. ACS
Nano 14, 406–414. doi:10.1021/acsnano.9b05996

Parrish, J., Viscido, S., and Grunbaum, D. (2002). Self-organized fish schools:
An examination of emergent properties. Biol. Bull. 202, 296–305. doi:10.2307/
1543482

Pierson, A., and Schwager, M. (2018). Controlling noncooperative herds with robotic
herders. IEEE Trans. Robotics 34, 517–525. doi:10.1109/tro.2017.2776308

Qu, S., Abouheaf, M., Gueaieb, W., and Spinello, D. (2021). “An adaptive fuzzy
reinforcement learning cooperative approach for the autonomous control of flock
systems,” in 2021 IEEE International Conference on Robotics and Automation (Xi’an,
China: IEEE), 8927–8933. doi:10.1109/ICRA48506.2021.9561204

Reynolds, C. W. (1987). “Flocks, herds and schools: A distributed behavioral model,”
in Proceedings of the 14th Annual Conference on Computer Graphics and Interactive
Techniques, 25–34. doi:10.1145/37402.37406

Song, H., Varava, A., Kravchenko, O., Kragic, D., Wang, M. Y., Pokorny, F. T., et al.
(2021). Herding by caging: A formation-based motion planning framework for guiding
mobile agents. Aut. Robots 45, 613–631. doi:10.1007/s10514-021-09975-8

Strömbom, D., Mann, R. P., Wilson, A. M., Hailes, S., Morton, A. J., Sumpter, D.
J., et al. (2014). Solving the shepherding problem: Heuristics for herding
autonomous, interacting agents. J. R. Soc. Interface 11, 20140719. doi:10.1098/
rsif.2014.0719

Tsunoda, Y., Sueoka, Y., Sato, Y., and Osuka, K. (2018). Analysis of local-camera-
based shepherding navigation. Adv. Robot. 32, 1217–1228. doi:10.1080/01691864.2018.
1539410

Vemula, A., Muelling, K., and Oh, J. (2018). “Social attention: Modeling
attention in human crowds,” in 2018 IEEE International Conference on
Robotics and Automation (Brisbane, QLD, Australia: IEEE), 4601–4607. doi:10.
1109/ICRA.2018.8460504

Zhi, J., and Lien, J. M. (2021). Learning to herd agents amongst obstacles: Training
robust shepherding behaviors using deep reinforcement learning. IEEE Robotics
Automation Lett. 6, 4163–4168. doi:10.1109/lra.2021.3068955

Frontiers in Control Engineering frontiersin.org20

Li et al. 10.3389/fcteg.2023.989232

https://doi.org/10.1177/1077546311411346
https://doi.org/10.1109/CDC42340.2020.9303837
https://doi.org/10.1109/tro.2018.2857475
https://doi.org/10.1109/tro.2018.2857475
https://doi.org/10.1016/j.automatica.2007.09.019
https://doi.org/10.1109/access.2020.3037325
https://doi.org/10.1109/tac.2003.809765
https://doi.org/10.1109/jphot.2016.2636021
https://doi.org/10.1109/tcds.2020.3018549
https://doi.org/10.3390/s17122729
https://doi.org/10.1109/ROBOT.2005.1570636
https://doi.org/10.1109/ROBOT.2005.1570636
https://doi.org/10.1109/tetci.2020.2992778
https://doi.org/10.1109/tetci.2020.2992778
https://doi.org/10.1021/acsnano.9b05996
https://doi.org/10.2307/1543482
https://doi.org/10.2307/1543482
https://doi.org/10.1109/tro.2017.2776308
https://doi.org/10.1109/ICRA48506.2021.9561204
https://doi.org/10.1145/37402.37406
https://doi.org/10.1007/s10514-021-09975-8
https://doi.org/10.1098/rsif.2014.0719
https://doi.org/10.1098/rsif.2014.0719
https://doi.org/10.1080/01691864.2018.1539410
https://doi.org/10.1080/01691864.2018.1539410
https://doi.org/10.1109/ICRA.2018.8460504
https://doi.org/10.1109/ICRA.2018.8460504
https://doi.org/10.1109/lra.2021.3068955
https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fcteg.2023.989232

	Communication-free shepherding navigation with multiple steering agents
	1 Introduction
	2 Problem statement
	3 Proposed algorithm
	4 Numerical simulation
	4.1 Configuration
	4.2 Proposed and baseline algorithms
	4.2.1 Proposed algorithm
	4.2.2 Farthest-agent targeting
	4.2.3 Farthest-agent targeting with occlusion
	4.2.4 Online-target switching

	4.3 Performance comparison

	5 Centralized shepherding algorithms
	5.1 Point-offset circling control
	5.2 Potential-based caging
	5.3 Performance comparison

	6 Robustness and resilience
	7 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary Material
	References

