
Using reinforcement learning to
autonomously identify sources of
error for agents in group missions

Keishu Utimula1*, Ken-taro Hayaschi2, Trevor J. Bihl3,
Kenta Hongo4 and Ryo Maezono2

1School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), Nomi,
Ishikawa, Japan, 2School of Information Science, Japan Advanced Institute of Science and Technology
(JAIST), Nomi, Ishikawa, Japan, 3Air Force Research Laboratory, Wright Patterson Air Force Base, Dayton,
OH, United States, 4Research Center for Advanced Computing Infrastructure, Japan Advanced Institute
of Science and Technology (JAIST), Nomi, Ishikawa, Japan

When deploying agents to execute a mission with collective behavior, it is
common for accidental malfunctions to occur in some agents. It is
challenging to distinguish whether these malfunctions are due to actuator
failures or sensor issues based solely on interactions with the affected agent.
However, we humans know that if we cause a group behavior where other agents
collide with a suspected malfunctioning agent, we can monitor the presence or
absence of a positional change and identify whether it is the actuator (position
changed) or the sensor (position unchanged) that is broken. We have developed
artificial intelligence that can autonomously deploy such “information acquisition
strategies through collective behavior” usingmachine learning. In such problems,
the goal is to plan collective actions that result in differences between the
hypotheses for the state [e.g., actuator or sensor]. Only a few of the possible
collective behavior patterns will lead to distinguishing between hypotheses. The
evaluation function to maximize the difference between hypotheses is therefore
sparse, with mostly flat values across most of the domain. Gradient-based
optimization methods are ineffective for this, and reinforcement learning
becomes a viable alternative. By handling this maximization problem, our
reinforcement learning surprisingly gets the optimal solution, resulting in
collective actions that involve collisions to differentiate the causes.
Subsequent collective behaviors, reflecting this situation awareness, seemed
to involve other agents assisting the malfunctioning agent.

KEYWORDS

reinforcement learning, autonomous agents, failure detection and recovery, AI-based
methods, task planning

1 Problem formulation

The group cooperation of agents is an important topic studied in the context of
autonomous systems (Lee et al., 2018; Hu et al., 2020). Because it is likely that each agent will
have individual biases in its actuator or sensor performance, it is an important autonomous
ability to analyze these inherent biases and revise the control plan appropriately to continue
the group mission. Such biases dynamically change over time during missions, occasionally
leading to failures in some functions of an agent. When such changes occur, it is essential to
promptly revise the transportation plan using methods such as reinforcement learning.
However, this requires constructing a virtual environment that accurately reflects real-

OPEN ACCESS

EDITED BY

Antonio Visioli,
University of Brescia, Italy

REVIEWED BY

Zhongguo Li,
The University of Manchester, United Kingdom
Yunduan Cui,
Chinese Academy of Sciences (CAS), China

*CORRESPONDENCE

Keishu Utimula,
mwkumk1702@icloud.com

RECEIVED 17 March 2024
ACCEPTED 20 September 2024
PUBLISHED 16 October 2024

CITATION

Utimula K, Hayaschi K-t, Bihl TJ, Hongo K and
Maezono R (2024) Using reinforcement
learning to autonomously identify sources of
error for agents in group missions.
Front. Control. Eng. 5:1402621.
doi: 10.3389/fcteg.2024.1402621

COPYRIGHT

© 2024 Utimula, Hayaschi, Bihl, Hongo and
Maezono. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Control Engineering frontiersin.org01

TYPE Original Research
PUBLISHED 16 October 2024
DOI 10.3389/fcteg.2024.1402621

https://www.frontiersin.org/articles/10.3389/fcteg.2024.1402621/full
https://www.frontiersin.org/articles/10.3389/fcteg.2024.1402621/full
https://www.frontiersin.org/articles/10.3389/fcteg.2024.1402621/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fcteg.2024.1402621&domain=pdf&date_stamp=2024-10-16
mailto:mwkumk1702@icloud.com
mailto:mwkumk1702@icloud.com
https://doi.org/10.3389/fcteg.2024.1402621
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org/journals/control-engineering#editorial-board
https://www.frontiersin.org/journals/control-engineering#editorial-board
https://doi.org/10.3389/fcteg.2024.1402621

world conditions. Therefore, to properly update the operational plan
using reinforcement learning, it is necessary to identify the causes of
the biases, including any failures, in each agent as they occur.

Previous research on fault diagnosis methods in swarm robotic
systems includes the work by O’Keeffe et al. (O’Keeffe et al., 2018).
This approach adopts a fault diagnosis mechanism, inspired by
biological immune systems, that learns from past diagnostic results
to efficiently identify malfunctions based on the behavior of robots.
However, the diagnostic tests assumed here only target predictable
faults and may struggle when multiple faults occur simultaneously.
This difficulty in diagnosis is an inevitable challenge in the
advancement of robotic development.

One of the factors complicating this diagnosis is the difficulty in
distinguishing the causes of faults.

Suppose that a command base, which controls a group of agents
via each command gj (Figure 1A), has detected an anomaly in the
position of an agent (e.g., no change in the position was observed).
There are two possible causes for the observed anomaly: (1) actuator
failures (agent is unable to move) or (2) sensor failures (agent can
move, but the move is not captured by the sensor) (Figure 1B).
Depending on the hypothesis [the failure may have occurred in the
actuators (ha) or sensors (hs)], the plan is subsequently calibrated
and updated accordingly. However, it is generally difficult to identify
which problem caused the anomaly solely through communication
between the base and the agent. An intuitive method to identify the
correct hypothesis is to execute a collision to the failure agent by
other agents to check whether any displacement is observed by the
sensor. Such a collision should demonstrate agent displacement;
sensor failure would not detect that displacement. Thus, the correct
hypothesis can be identified by “planning a group motion.” The
question then arises as to whether such planning can be set up
autonomously as a “strategy to acquire environmental information”
(Friston, 2010).

Such autonomous planning appears to be feasible given the
following value function. Suppose that the command g �
(g1, g2,/) is issued from the control base, directing the agent’s
action to specify which of the hypotheses (ha, hs) is supported
(Figure 1A). This command updates the agent state to R → ~R(g).
The updated state ~R should be denoted as ~R

(hl)(g) because it
depends on the hypothesis about the state before the update

(l � a, s). As the expected results differ for different hypotheses,
the following expression can be used to evaluate the distinction:
D � ‖~R(hs) − ~R

(ha)‖. To ensure appropriate planning g that involves
collisions between agents, a non-zero difference D is obtained, and
the likelihood of each hypothesis can be determined. We must,
therefore, formulate a plan that maximizes D � D(g) to ensure a
significant difference. Accordingly, an autonomous action plan can
be formulated to maximize D(g) as a value function.

However, this maximization task is difficult to complete via
conventional gradient-based optimization. Owing to the wide range
of possibilities for g , interactions such as collisions are rare events,
and for most of the planning phase g , D(g) � 0, it is impossible to
distinguish between hypotheses. Namely, sub-spaces with finite D
are sparse in the overall state space (sparse rewards). In such cases,
gradient-based optimization is insufficient for the task of
formulating appropriate action plans because the zero-gradient
encompasses the vast majority of the space. For such sparse
reward optimization, reinforcement learning, which has been
thoroughly investigated in the applications of autonomous
systems (Huang et al., 2005; Xia and El Kamel, 2016; Zhu et al.,
2018; Hu et al., 2020), can be used as an effective alternative.

Reinforcement learning (Nachum et al., 2018; Sutton and Barto,
2018; Barto, 2002) is becoming an establishedfield in the wider context
of robotics and system controls (Peng et al., 2018; Finn and Levine
(2017). Methodological improvements have been studied intensively,
especially by verifications on gaming platforms (Mnih et al., 2015;
Silver et al., 2017; Vinyals et al., 2019). Thus, the topic addressed in this
study is becoming a subfield known as multi-agent reinforcement
learning (MARL) (Busoniu et al., 2006; Gupta et al., 2017; Straub et al.,
2020; Bihl et al., 2022; Gronauer and Diepold, 2021). Specific examples
of multi-agent missions include unmanned aerial vehicles (UAV)
(Bihl et al., 2022; Straub et al., 2020) and sensor resource management
(SRM)Malhotra et al., 2017, 1997; Hero andCochran, 2011; Bihl et al.,
2022). The objective of this study can also be regarded as the
problem of handling non-stationary environments in multi-agent
reinforcement learning (Nguyen et al., 2020; Foerster et al., 2017).
As a consequence of failure, agents are vulnerable to the gradual loss of
homogeneity. Prior studies have addressed the problem of
heterogeneity in multi-agent reinforcement learning (Busoniu et al.,
2006; Calvo and Dusparic, 2018; Bihl et al., 2022; Straub et al., 2020;

FIGURE 1
Agents perform group actions according to commands communicated from the “control base” (the figure depicts an example with three agents
indexed by j). Thewavy arrow denotes a command signal from the base, whereas the dotted arrows represent the return signals from each sensor on each
agent [panel (A)]. When an anomaly is detected in a return signal, two hypotheses—ha or hs—can be considered [panel (B)].

Frontiers in Control Engineering frontiersin.org02

Utimula et al. 10.3389/fcteg.2024.1402621

https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fcteg.2024.1402621

Gronauer and Diepold, 2021). The problem of sparse rewards has also
been recognized and discussed as one of the current challenges in
reinforcement learning (Wang and Taylor, 2017; Bihl et al., 2022).
Recent advancements in reinforcement learning have introduced
various innovative methods for handling single-agent or multi-
agent scenarios. These approaches have focused on improving
sample efficiency, computational costs, and learning stability across
different frameworks. One such method is TD7, which utilizes state-
action learned embeddings (SALE) for jointly learning embeddings of
both states and actions Fujimoto et al., 2024). CrossQ is another
approach that improves sample efficiency while significantly reducing
computational costs by utilizing batch normalization (Bhatt et al.,
2019). Continuous dynamic policy programming (CDPP) extends
relative entropy regularized reinforcement learning from value
function-based frameworks to actor-critic structures in continuous
action spaces, achieving improved sample efficiency and learning
stability (Shang et al., 2023). Furthermore, dropout Q-functions
(DroQ) employs a small ensemble of dropout Q-functions to
enhance computational efficiency while maintaining sample
efficiency comparable to randomized ensembled double Q-learning
(REDQ) (Hiraoka et al., 2021). In the realm of multi-agent
reinforcement learning, multi-agent continuous dynamic policy
gradient (MACDPP) has achieved high learning capability and
sample efficiency by introducing relative entropy regularization to
the centralized training with decentralized execution (CTDE)
framework Miao et al., 2024).

The discussion thus far can be generalized as follows: Consider a
scenario involving N agents where some anomalies occur, and
multiple hypotheses are conceivable. For instance, similar to the
earlier example, there could be cases where only a sensor or only an
actuator fails in a single agent. Alternatively, there could be scenarios
involving multiple agents where anomalies occur in several sensors
and actuators, among other various cases. Furthermore, let R denote
the state of these N agents, which could be a vector obtained by
concatenating the coordinates of N robots. Under hypothesis l, the

state R is updated by a command g to a new state ~R
(hl). The

difference between the states under hypotheses l and l′ can be
expressed as D<l,l′> � ‖~R(hl) − ~R

(hl′)‖, similar to earlier. If a virtual
environment that faithfully reproduces these agents’ behavior is
prepared, and g that maximizes D<l,l′> can be found through
reinforcement learning, executing g in real systems and observing
the outcomes would allow for discrimination between hypotheses.
To search for a g that simultaneously discriminates all hypotheses,
reinforcement learning should be conducted to maximize the sum of
D<l,l′> across all combinations of hypotheses.

As a prototype of such a problem, we considered a system
composed of three agents moving on an (x, y)-plane, administrated
by a command base to perform a cooperative task (Figure 2). In
performing the task, each agent is asked to convey an item to a goal
post individually. The second agent (#2) is assumed to be unable to
move along the y-direction due to an actuator failure. By quickly
verifying tiny displacements in each agent, the command base can
detect the problem occurring in #2. However, it cannot attribute the
cause to either the actuators or the sensors. Consequently, the
control base sets hypotheses ha and hs and begins planning the
best cooperative motions g* to classify the correct hypothesis via
reinforcement learning.

Remarkably, the optimal action plan generated by reinforcement
learning showed a human-like solution to pinpoint the problem by
colliding other agents with the failed agent. By inducing a collision,
the base could identify that #2 is experiencing problems with its
actuators rather than sensors. The base then starts planning group
motions to complete the conveying task, considering the limited
functionality of #2. We observe that the cooperative tasks are
facilitated by a learning process wherein other agents appear to
compensate for the deficiency of #2 by pushing it toward the goal. In
the present study, we employed a simple prototype system to
demonstrate that reinforcement learning is extremely effective in
setting up a verification plan that pinpoints multiple hypotheses for
general cases of system failure.

FIGURE 2
View of actual machines labeled as Agents #1–#3. Agent #2 is unable to move in the y-direction due to actuator failure. Agents #1 and #3 are on
their way to rescue Agent#2 (see the main text about how the AI determines the action plan for the recovery of Agent #2).

Frontiers in Control Engineering frontiersin.org03

Utimula et al. 10.3389/fcteg.2024.1402621

https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fcteg.2024.1402621

2 Methodology

Let the state space for the agents be R. For instance, given three
agents (j � 1, 2, 3) situated on a xy-plane at positions (xj, yj), their
states can be specified as R � (x1, y1, x2, y2, x3, y3); that is, points in
six-dimensional space. The state is driven by a command g according to
the operation plan generated in the command base. When g is assigned
to a given R, the state is updated depending on which hypothesis hl is
taken, each of which restricts R by individual constraint:

g: R → ~R
hl()

g ,R().
The difference

D g ,R() � ∑
<l,l′>

~R
hl()

g ,R() − ~R
hl′() g ,R()

������
������

can then be the measure to evaluate performance and thereby
distinguish between the hypotheses. Therefore, the best operation
plan for the distinction should be determined as

g* � argmax
g

D g ,R().

The naive idea of performing optimization using gradient-
based methods is insufficient, owing to the sparseness described
in the introduction. For g , D(g ,R) � 0, the gradient is zero for
most of R because it is incapable of selecting the next update.
Accordingly, we employed reinforcement learning as an alternative
optimization approach.

Suppose we can evaluate the reward ρ(R, g) for the action g to be
taken for a given state R. In reinforcement learning, decisions aim to
maximize the action value Q(R, g), rather than maximizing the
immediate reward ρ(R, g). Although the reward ρ(R, g) indicates
the benefit obtained at that moment, the action value Q(R, g)
represents the benefit accumulated over the future. The governing
equation that links the given ρ(R, g) with Q(R, g) is known as the
Bellman equation, being expressed in self-consistent manner. Users
specify the reward function ρ(R, g) and the detailed specifications of
the Bellman equation to self-consistently determine the action value
Q(R, g) using a library. In this study, we employed the OpenAI Gym
(Brockman et al., 2016) as such a library. Though the details of the
reinforcement learning implementation are found in the general
literature, we provide further details using our notation adopted in
this paper in Section 1 of the SupplementaryMaterial. In this research,
the operational plans are finally determined by the converged action
value, �Q(R, g), obtained by the self-consistent iterations as

�g0 � argmaxg �Q R0, g()
�g0: R0 → R1

�g1 � argmaxg �Q R1, g()
�g1: R1 → R2

/ .

(1)

3 Experiments

The workflow required to achieve the mission for the agents, as
described in §1, proceeds as follows:

[0a] To determine if there are errors found in any of the agents,
the base issues commands to move all agents by tiny

displacements (and consequently, Agent #2 is found to
have an error).

[0b] Corresponding to each possible hypothesis (ha and hs), the
virtual spaces R(hl){ }

l�a,s are prepared by applying each
constraint.

[1] Reinforcement learning (Qα) is performed at the command
base using the virtual space, generating “the operation plan
α” to distinguish the hypotheses.

[2] The plan α is performed by the agents. The command base
compares the observed trajectory with that obtained in the
virtual spaces in Step [1]. In the process, the hypothesis that
yields the closest trajectory to that observed is identified as
accurate (ha).

[3] By taking the virtual space R(ha) as the identified hypothesis,
another learning Qβ is performed to get the optimal plan β

for the original mission (conveying items to goal posts).
[4] Agents are operated according to the plan β.

In this context, the term “virtual space” refers to an environment
where physical computations are performed to simulate the
movements of agents. In this study, it was implemented using
Python. All learning processes and operations are simulated on a
Linux server. The learning phase is the most time-intensive,
requiring approximately 3 h to complete using a single processor
without any parallelization. For the learning phase, we implemented
the PPO2 (proximal policy optimization, version 2) algorithm
Schulman et al., 2015) from the OpenAI Gym Brockman et al.,
2016) library. Reinforcement learning (Qα) was benchmarked on
the multilayer perceptron (MLP) and long short-time memory
(LSTM) network structures, with performance compared between
them. In the reinforcement learning described in [1], the state used
comprised the positions of all agents, and the actions were defined as
the direction of movement (x, y) for each agent. Conversely, in the
reinforcement learning approach used in [3], the state included not
only the positions of all agents but also the number of items each
agent carried, the positions of all goal posts, and the number of items
at each goal post. The actions remained the same, involving the
direction of movement (x, y) for each agent. We did not conduct
specific tuning for the hyperparameters as a default setting, as shown
in Table 1. However, it has been pointed out that hyperparameter

TABLE 1 PPO2 hyperparameters used in training.

Parameter Value

gamma 0.99

n_steps 128

ent_coef 0.01

learning_rate 0.00025

vf_coef 0.5

max_grad_norm 0.5

lam 0.95

nminibatches 4

noptepochs 4

cliprange 0.2

Frontiers in Control Engineering frontiersin.org04

Utimula et al. 10.3389/fcteg.2024.1402621

https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fcteg.2024.1402621

optimization (HPO) can significantly improve the performance
of reinforcement learning (Henderson et al., 2018; Straub et al.,
2020; Bihl et al., 2020; Snoek et al., 2012; Domhan et al., 2015;
Bihl et al., 2022; Young et al., 2020). The comparison indicates
that MLP performs better, with possible reasons given in the
third paragraph of §4. The results described herein were obtained
by the MLP network structure. Notably, LSTM also generated
almost identical agent behaviors to those exhibited by the
MLP (possible reasons are given in the Section 3 of the
Supplementary Material.

The learning process Qα in Step [1] is performed using two
virtual spaces V(hs,a), corresponding to the two hypotheses:

R hl() ∈ V hl().

Each R(hl) can take such possibilities under each constraint of its
hypothesis (e.g., y3 cannot be updated due to the actuator error). For
an operation g , the state on each virtual space is updated as

g:
R hs() → ~R

hs()
g ,R hs()()

R ha() → ~R
ha()

g ,R ha()() .

Taking the value function,

ρ α() g ,R h1(),R h2()() � ~R
h1()

g ,R h1()() − ~R
h2()

g ,R h1()()
�����

�����, (2)

the two-fold Q-table is updated self-consistently as

Q g ,R h1(),R h2()() � ρ α() g ,R h1(),R h2()()
+ ∑

g′,R′ h1() ,R′ h2()
F Q g′,R′ h1(),R′ h2()(){ },(

π g′,R′ h1(),R′ h2()(){ }).

Denoting the converged table as �Qα(g ,R(h1),R(h2)), the sequence
of operations is obtained as given in Equation 1; in other words,

�g α()
0 , �g α()

1 ,/�g α()
M{ }. (3)

The operation sequence generates the two-fold sequence of (virtual)
state evolutions as

R
hs,a()

1 → R
hs,a()

2 →/→ R
hs,a()

M{ }, (4)

as shown in Figure 3A.
In Step [2], the agents operate according to the plan expressed by

Equation 3 to update (real) states as

R1 → R2 →/→ RM{ }, (5)
to be observed by the command base. The base compares Equations
4, 5 to identify whether hs or ha is the cause of failure (ha in
this case).

In Step [3], Qβ-learning is performed for reward ρ(β). The
reward function ρ(β) calculates the sum of the individual agents’
rewards, where each agent gets a reward of a/(r + 1) + b · δ(r)
depending on its distance r from the goal post. Thus, a higher
reward is realized when the agent gets closer to the goalpost. By
setting a � 0.01 and b � 100.0, a much higher reward value (a + b)
is obtained when the agent reaches the goal post (r � 0). Although
learning efficiency varies depending on the values of a and b, a
relatively high efficiency was achieved by setting b≫ a. The
operation sequence is then obtained as

�g
β()

M+1, �g
β()

M+2,/�g
β()

L{ },
by which the states of the agents are updated as

FIGURE 3
Agent trajectories are driven by each operation plan consequently generated via reinforcement learning (with the MLP neural network structure),Qα

first [panel (A)] and Qβ [panel (B)]. The trajectories in (A) are the virtual states, R(hs,a) (two-fold), branching for Agent #2 with respect to the hypothesis.
Those given in (B) are the real trajectories, as obtained via Equation 6. The labels (1)–(3) indicate the agents, which move along the directions denoted by
red arrows. Dotted circles indicate collisions between agents.

Frontiers in Control Engineering frontiersin.org05

Utimula et al. 10.3389/fcteg.2024.1402621

https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fcteg.2024.1402621

RM+1 → RM+2 →/→ RL{ }, (6)
as shown in Figure 3B.

4 Discussion

Figure 3A depicts two-fold trajectories, Equation 4,
corresponding to the hypotheses ha and hs. Although R(ha) �
R(hs) for Agent #1, the branching R(ha) ≠ R(hs) occurs for Agent
#2 during operations. The branching process earns a score via the
value function ρ(α) in Equation 2, which indicates that the learning
Qα was conducted properly. Thus, the ability to capture the
difference between ha and hs has been realized. The red dotted
circle shown in (a) represents a collision between Agents #2 and #3,
inducing the difference between R(ha) and R(hs) (the trajectories only
reflect the central positions of agents, while each agent has a finite
radius similar to its size; therefore, the trajectories themselves do not
intersect even when a collision occurs). In addition, the collision
strategy is never generated in a rule-based manner, as the agents
autonomously deduce their strategy via reinforcement learning.

Three square symbols (closed) situated at the edges of a triangle
in Figure 3 represent the goalposts for the conveying mission.
Figure 3B shows the real trajectories for the mission, where the
initial locations of the agents are the final locations in the panel (a).
From their initial locations, Agents #1 and #3 immediately arrived at
their goals to complete each mission and subsequently headed to
Agent #2 for assistance. Meanwhile, Agent #2 attempted to reach its
goal using its limited mobility; that is, only along the x-axis. At the
closest position, all three agents coalesced, and Agents #1 and
#3 began pushing Agent #2 toward the goal. Though this
behavior is simply the consequence of earning more from the

value function ρ(β), it appears as if Agent #1 wants to assist the
malfunctioning agent cooperatively (a video of the behavior shown
in Figure 3B is available at the link Hayaschi, 2024). By identifying
the constraint ha for the agents in the learning phase Qα, the
subsequent learning phase Qβ is confirmed to generate the
optimal operation plans to ensure that the team maximizes their
benefit through cooperative behavior as if an autonomous decision
has been made by the team.

During training, if the target reward is not reached in the given
number of training sessions, the training process is reset to avoid
being trapped by the local solution. In Figure 4, the training curves of
rejected trials are shown in blue, whereas the acceptable result is
shown in red. Evidently, more learning processes were rejected inQβ

(right panel) than in Qα (left panel). This indicates that it is a more
challenging task to perform transport planning with three
malfunctioning agents than to plan the action to pinpoint a
hypothesis between any two. However, under more complex
failure conditions, more learning is expected to be rejected for
Qα as well, as the number of possible hypotheses increases.

The performance of LSTM and MLP was compared in terms of
the success rate for obtaining working trajectories to distinguish
between the hypotheses. Notably, even when applying the well-
converged Q-table, there is a certain rate required for the non-
working trajectories to eliminate the difference between the
hypotheses. This is a result of the stochastic nature of the policy in
generating the trajectories. In the present work, we took
50 independent Q-tables, each of which was generated from
scratch, and obtained 50 corresponding trajectories. The rate
required to obtain the trajectories required to distinguish among
the hypotheses amounts to 94% for a learning management system
(LMS) and 78% for LSTM. In the present comparison, we used the
same iteration steps as for Q-table convergence. Because LSTM has a

FIGURE 4
Learning curve evaluated for MLP network construction in terms of the reward function. Results for Qα (left panel) and Qβ (right panel) are shown.
Blue and red curves correspond to trajectories that did not reach the target reward at the end of training and those that successfully reached the target
reward, respectively.

Frontiers in Control Engineering frontiersin.org06

Utimula et al. 10.3389/fcteg.2024.1402621

https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fcteg.2024.1402621

more complex internal structure, its learning quality was expected to
be relatively lower than that of an LMS for the common condition, and
its performance rate was likewise expected to be lower. In other words,
a higher iteration cost is required for LSTM to achieve performance
comparable to an LMS. As such, the results shown in the main text are
those obtained by the LMS, whereas those obtained by LSTM are
presented in the Supplementary Material for reference.

For a simulation in a virtual environment space, we must evaluate
the distances between agents at every step. As this is a pairwise
evaluation, its computational cost scales as ~ N2 for N agents. This
cost scaling can be mitigated by using the domain decomposition
method wherein each agent is evaluated according to its voxel, and the
distance between agents is represented by that between corresponding
voxels registered in advance. The corresponding cost scales linearly
withN at amuch faster rate than the naive ~ N2 evaluationmethod as
the number of agents N increases.

5 Conclusion

Agents performing group missions can suffer from errors during
missions. Multiple hypotheses may be devised to explain the causes of
such errors. Cooperative behaviors, such as collisions between agents,
can be deployed to identify said causes. We considered the
autonomous planning of group behaviors via machine-learning
techniques. Different hypotheses explaining the causes of the errors
lead to different expected states as updated from the same initial state
by the same operation. The larger the difference becomes, the better the
corresponding operation plan can distinguish between the different
hypotheses. In other words, the magnitude of the difference can be the
value function to optimize the desired operation plan. Gradient-based
optimization does not work well because a tiny fraction among the vast
possible operations (e.g., collisions) can capture the difference, leading
to a sparse distribution of the finite value for the function. We
discovered that reinforcement learning is the obvious choice for
such problems. Notably, the optimal plan obtained via
reinforcement learning was the operation that causes agents to
collide with each other. To identify the causes of error using this
plan, we developed a revised mission plan that incorporates the failure
of another learning where the malfunctioning agent receives assistance
fromother agents. By identifying the cause of failure, the reinforcement
learning process plans a revisedmission plan that considers said failure
to ensure an appropriate cooperation procedure. In this study, we
conducted tests under the significant constraint that one of the three
agents was malfunctioning. As described in §1, the framework can
generally be formulated for N agents. Future research will need to
explore more detailed studies, including changes in the number of
agents and variations in malfunctions. The findings presented in this
paper provide initial insights into the capabilities of the proposed
methods. Additional comparisons and results based on multiple trials,
as well as comparisons with a greater number of baselines, are
necessary to substantiate the conclusions of this study further.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Author contributions

KU: conceptualization, methodology, validation, and
writing–review and editing. K-tH: data curation, visualization,
and writing–review and editing. TB: validation and
writing–review and editing. KH: writing–review and editing.
RM: funding acquisition, supervision, and writing–original draft.

Funding

The author(s) declare that financial support was received
for the research, authorship, and/or publication of this
article. This work was supported by MEXT-KAKENHI
(19H04692 and 16KK0097) and the Air Force Office of
Scientific Research (AFOSR-AOARD/FA2386-17-1-4049;
FA2386-19-1-4015).

Acknowledgments

The computations in this work were performed using the
facilities at the Research Center for Advanced Computing
Infrastructure at JAIST. RM is grateful for financial support
from MEXT-KAKENHI (19H04692 and 16KK0097) and from
the Air Force Office of Scientific Research (AFOSR-AOARD/
FA2386-17-1-4049; FA2386-19-1-4015). The authors would like
to thank Kosuke Nakano for his feedback as it significantly helped
improve the overall paper. This work was cleared for public release
under case AFRL-2023-3698. This work is the work of the authors
and does not reflect any opinion or position of the U.S.
government, the U.S. Air Force, or the Air Force Research
Laboratory.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of
the authors and do not necessarily represent those of
their affiliated organizations, or those of the publisher,
the editors, and the reviewers. Any product that may
be evaluated in this article, or claim that may be made
by its manufacturer, is not guaranteed or endorsed by
the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fcteg.2024.1402621/
full#supplementary-material

Frontiers in Control Engineering frontiersin.org07

Utimula et al. 10.3389/fcteg.2024.1402621

https://www.frontiersin.org/articles/10.3389/fcteg.2024.1402621/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fcteg.2024.1402621/full#supplementary-material
https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fcteg.2024.1402621

References

Barto, A. G. (2002). “Innovation and intellectual property rights,” in The handbook of
brain theory and neural networks. Editor M. A. Arbib Second Edition (Cambridge, MA:
The MIT Press), 963–972.

Bhatt, A., Palenicek, D., Belousov, B., Argus, M., Amiranashvili, A., Brox, T., et al.
(2019). Crossq: batch normalization in deep reinforcement learning for greater sample
efficiency and simplicity. arXiv preprint arXiv:1902.05605

Bihl, T., Jones, A., Farr, P., Straub, K., Bontempo, B., and Jones, F. (2022). “Assessing
multi-agent reinforcement learning algorithms for autonomous sensor resource
management,” in Proceedings of the 55th Hawaii international Conference on system
Sciences (Hawaii international conference on system Sciences) (Honolulu, USA: HICSS).
doi:10.24251/hicss.2022.695

Bihl, T. J., Schoenbeck, J., Steeneck, D., and Jordan, J. (2020). “Easy and efficient
hyperparameter optimization to address some artificial intelligence “ilities”,” in 53rd
Hawaii international conference on system Sciences, HICSS 2020, maui, Hawaii, USA,
january 7-10, 2020 ScholarSpace, 1–10.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., et al.
(2016). Openai gym

Busoniu, L., Babuska, R., and De Schutter, B. (2006). “Multi-agent reinforcement
learning: a survey,” in 2006 9th international conference on control, automation, robotics
and vision, 1–6. doi:10.1109/ICARCV.2006.345353

Calvo, J., and Dusparic, I. (2018). Heterogeneous multi-agent deep
reinforcement learning for traffic lights control. Proc. 26th Ir. Conf. Artif. Intell.
Cogn. Sci., 1–12.

Domhan, T., Springenberg, J. T., and Hutter, F. (2015). “Speeding up automatic
hyperparameter optimization of deep neural networks by extrapolation of learning
curves,” in Proceedings of the 24th international conference on artificial intelligence,
3460–3468.

Finn, C., and Levine, S. (2017). “Deep visual foresight for planning robot motion,” in
2017 IEEE international conference on robotics and automation (ICRA), 2786–2793.
doi:10.1109/ICRA.2017.7989324

Foerster, J., Nardelli, N., Farquhar, G., Afouras, T., Torr, P. H. S., Kohli, P., et al.
(2017). “Stabilising experience replay for deep multi-agent reinforcement learning,” in
Proceedings of the 34th international conference on machine learning. (PMLR), vol. 70 of
Proceedings of machine learning research. Editors D. Precup and Y. W. Teh,
1146–1155.

Friston, K. (2010). The free-energy principle: a unified brain theory? Nat. Rev.
Neurosci. 11, 127–138. doi:10.1038/nrn2787

Fujimoto, S., Chang, W.-D., Smith, E., Gu, S. S., Precup, D., and Meger, D. (2024). For
sale: state-action representation learning for deep reinforcement learning. Adv. Neural
Inf. Process. Syst. 36.

Gronauer, S., and Diepold, K. (2021). Multi-agent deep reinforcement learning: a
survey. Artif. Intell. Rev. 55, 895–943. doi:10.1007/s10462-021-09996-w

Gupta, J. K., Egorov, M., and Kochenderfer, M. (2017). “Cooperative multi-agent
control using deep reinforcement learning,” in Autonomous agents and multiagent
systems. Editors G. Sukthankar and J. A. Rodriguez-Aguilar (Cham: Springer
International Publishing), 66–83.

Hayaschi, K. (2024). Video for fig. 3. Available at: https://www.dropbox.com/s/
feejhj389h7p215/robot2_labeled.mp4?dl=0.

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., and Meger, D. (2018).
“Deep reinforcement learning that matters,” in Aaai.

Hero, A. O., and Cochran, D. (2011). Sensor management: past, present, and future.
IEEE Sensors J. 11, 3064–3075. doi:10.1109/JSEN.2011.2167964

Hiraoka, T., Imagawa, T., Hashimoto, T., Onishi, T., and Tsuruoka, Y. (2021).
Dropout q-functions for doubly efficient reinforcement learning. arXiv Prepr. arXiv:
2110.02034.

Hu, J., Niu, H., Carrasco, J., Lennox, B., and Arvin, F. (2020). Voronoi-based multi-
robot autonomous exploration in unknown environments via deep reinforcement
learning. IEEE Trans. Veh. Technol. 69, 14413–14423. doi:10.1109/TVT.2020.3034800

Huang, B.-Q., Cao, G.-Y., and Guo, M. (2005). Reinforcement learning neural
network to the problem of autonomous mobile robot obstacle avoidance. 2005 Int.
Conf. Mach. Learn. Cybern. 1, 85–89. doi:10.1109/ICMLC.2005.1526924

Lee, H., Kim, H., and Kim, H. J. (2018). Planning and control for collision-free
cooperative aerial transportation. IEEE Trans. Automation Sci. Eng. 15, 189–201. doi:10.
1109/TASE.2016.2605707

Malhotra, R., Blasch, E., and Johnson, J. (1997). Learning sensor-detection policies.
Proc. IEEE 1997 Natl. Aerosp. Electron. Conf. NAECON 1997 2, 769–776. doi:10.1109/
NAECON.1997.622727

Malhotra, R. P., Pribilski, M. J., Toole, P. A., and Agate, C. (2017). “Decentralized asset
management for collaborative sensing,” inMicro- and nanotechnology sensors, systems.
Editors I. X. Applications, T. George, A. K. Dutta, and M. S. Islam (SPIE: International
Society for Optics and Photonics), 10194, 403–414.

Miao, C., Cui, Y., Li, H., andWu, X. (2024). Effective multi-agent deep reinforcement
learning control with relative entropy regularization. IEEE Trans. Automation Sci. Eng.,
1–15doi. doi:10.1109/TASE.2024.3398712

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., et al.
(2015). Human-level control through deep reinforcement learning. Nature 518,
529–533. doi:10.1038/nature14236

Nachum, O., Gu, S., Lee, H., and Levine, S. (2018). “Data-efficient hierarchical
reinforcement learning,” in Proceedings of the 32nd international conference on neural
information processing systems, 3307–3317.

Nguyen, T. T., Nguyen, N. D., and Nahavandi, S. (2020). Deep reinforcement learning
for multiagent systems: a review of challenges, solutions, and applications. IEEE Trans.
Cybern. 50, 3826–3839. doi:10.1109/TCYB.2020.2977374

O’Keeffe, J., Tarapore, D., Millard, A. G., and Timmis, J. (2018). Adaptive online fault
diagnosis in autonomous robot swarms. Front. Robotics AI 5, 131. doi:10.3389/frobt.
2018.00131

Peng, X. B., Andrychowicz, M., Zaremba, W., and Abbeel, P. (2018). “Sim-to-real
transfer of robotic control with dynamics randomization,” in 2018 IEEE international
conference on robotics and automation (ICRA), 3803–3810. doi:10.1109/ICRA.2018.
8460528

Schulman, J., Levine, S., Mortiz, P., Jordan, M., and Abbeel, P. (2015). Trust region
policy optimization. Proc. 32nd Int. Conf. Mach. Learn. 37, 1889–1897.

Shang, Z., Li, R., Zheng, C., Li, H., and Cui, Y. (2023). Relative entropy regularized
sample-efficient reinforcement learning with continuous actions. IEEE Trans. Neural
Netw. Learn. Syst., 1–11doi. doi:10.1109/TNNLS.2023.3329513

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., et al.
(2017). Mastering the game of go without human knowledge. Nature 550, 354–359.
doi:10.1038/nature24270

Snoek, J., Larochelle, H., and Adams, R. P. (2012). Practical bayesian optimization of
machine learning algorithms. Proc. 25th Int. Conf. Neural Inf. Process. Syst. - 2,
2951–2959.

Straub, K. M., Bontempo, B., Jones, F., Jones, A. M., Farr, P., and Bihl, T. (2020).
Sensor resource management using multi-agent reinforcement learning with
hyperparameter optimization. Tech. Rep. White paper.

Sutton, R. S., and Barto, A. G. (2018). Reinforcement learning: an introduction. second
edn. The MIT Press.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik, A., Chung, J.,
et al. (2019). Grandmaster level in starcraft ii using multi-agent reinforcement learning.
Nature 575, 350–354. doi:10.1038/s41586-019-1724-z

Wang, Z., and Taylor, M. E. (2017). “Improving reinforcement learning with
confidence-based demonstrations,” in Proceedings of the twenty-sixth international
joint conference on artificial intelligence (Darmstadt, Germany: IJCAI-17), 3027–3033.
doi:10.24963/ijcai.2017/422

Xia, C., and El Kamel, A. (2016). Neural inverse reinforcement learning in
autonomous navigation. Robotics Aut. Syst. 84, 1–14. doi:10.1016/j.robot.2016.06.003

Young, M. T., Hinkle, J. D., Kannan, R., and Ramanathan, A. (2020). Distributed
bayesian optimization of deep reinforcement learning algorithms. J. Parallel Distributed
Comput. 139, 43–52. doi:10.1016/j.jpdc.2019.07.008

Zhu, D., Li, T., Ho, D., Wang, C., and Meng, M. Q.-H. (2018). “Deep reinforcement
learning supervised autonomous exploration in office environments,” in 2018 IEEE
international conference on robotics and automation (ICRA), 7548–7555. doi:10.1109/
ICRA.2018.8463213

Frontiers in Control Engineering frontiersin.org08

Utimula et al. 10.3389/fcteg.2024.1402621

https://doi.org/10.24251/hicss.2022.695
https://doi.org/10.1109/ICARCV.2006.345353
https://doi.org/10.1109/ICRA.2017.7989324
https://doi.org/10.1038/nrn2787
https://doi.org/10.1007/s10462-021-09996-w
https://www.dropbox.com/s/feejhj389h7p215/robot2_labeled.mp4?dl=0
https://www.dropbox.com/s/feejhj389h7p215/robot2_labeled.mp4?dl=0
https://doi.org/10.1109/JSEN.2011.2167964
https://doi.org/10.1109/TVT.2020.3034800
https://doi.org/10.1109/ICMLC.2005.1526924
https://doi.org/10.1109/TASE.2016.2605707
https://doi.org/10.1109/TASE.2016.2605707
https://doi.org/10.1109/NAECON.1997.622727
https://doi.org/10.1109/NAECON.1997.622727
https://doi.org/10.1109/TASE.2024.3398712
https://doi.org/10.1038/nature14236
https://doi.org/10.1109/TCYB.2020.2977374
https://doi.org/10.3389/frobt.2018.00131
https://doi.org/10.3389/frobt.2018.00131
https://doi.org/10.1109/ICRA.2018.8460528
https://doi.org/10.1109/ICRA.2018.8460528
https://doi.org/10.1109/TNNLS.2023.3329513
https://doi.org/10.1038/nature24270
https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/10.24963/ijcai.2017/422
https://doi.org/10.1016/j.robot.2016.06.003
https://doi.org/10.1016/j.jpdc.2019.07.008
https://doi.org/10.1109/ICRA.2018.8463213
https://doi.org/10.1109/ICRA.2018.8463213
https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fcteg.2024.1402621

	Using reinforcement learning to autonomously identify sources of error for agents in group missions
	1 Problem formulation
	2 Methodology
	3 Experiments
	4 Discussion
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

