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Friction stir welding (FSW) offers significant advantages over fusion welding,
particularly for high-strength alloys like Inconel 718. However, achieving
optimal surface quality in Inconel 718 FSW remains challenging due to its
sensitivity to temperature fluctuations during welding. This study integrates
finite element simulations, statistical analysis, and advanced control
methodologies to enhance weld surface quality through adequate thermal
management. High-fidelity simulations of the FSW process were conducted
using a validated 3D transient COMSOL Multiphysics model, producing a
comprehensive dataset correlating process parameters (rotational speed, axial
force, and welding speed) with workpiece temperature. This dataset facilitated
statistical analysis and parameter optimization through Analysis of variance
(ANOVA) method, leading to a deeper understanding of process variables. A
nonlinear state-space system model was subsequently developed using
experimental data and the system identification toolbox in Matlab,
incorporating domain-specific insights. This model was rigorously validated
with an independent dataset to ensure predictive accuracy. Utilizing the
validated model, tailored control strategies, including proportional-integral-
derivative (PID) and model predictive control (MPC) in both single and
multivariable configurations, were designed and evaluated. These control
strategies excelled in maintaining welding temperatures within optimal ranges,
demonstrating robustness in response times and disturbance handling. This
precision in thermal management is poised to significantly refine the FSW
process, enhancing both surface integrity and microstructural uniformity. The
strategic implementation of these controls is anticipated to substantially improve
the quality and consistency of welding outcomes.
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1 Introduction

FSW, a solid-state welding technique, involves using a non-consumable tool to join
metal or thermoplastic pieces together. The tool rotates at high speeds, creating frictional
heat that softens the metal without melting it. As the tool moves along the joint, it blends the
softened metal, resulting in a solid-state weld. Compared to traditional welding methods
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like gas tungsten arc welding (GTAW) or gas metal arc welding
(GMAW), FSW offers benefits such as reduced distortion and
improved mechanical properties. It can weld dissimilar materials
and thin sections, making it versatile. The process comprises three
stages: penetration, probing, and withdrawal. Different FSW tools,
like shouldered, pin, or flat tools, are used based on material and
application requirements (Lakshminarayanan et al., 2009; Mahoney
et al., 1998).

FSW stands as a solid-state hot-deformation method employed
to fuse two metal pieces together. This technique involves rotating a
tool and pushing it into the junction between two workpieces,
generating heat and softening the metal (the plunge phase).
Subsequently, as the metal reaches the desired softness, the tool
gradually accelerates along the seam (the traverse ramp phase),
ultimately reaching full speed. Throughout this process, the tool stirs
the softened metal, effectively joining the two pieces. Notably,
significant thermal fluctuations occur during both the plunge and
traverse ramp phases, often persisting even after achieving a
constant traverse speed. Since FSW does not induce melting in
the weld zone, post-weld properties such as strength, ductility, and
fracture toughness tend to be superior compared to conventional
welding methods (Mahoney et al., 1998).

Inconel 718, a nickel-based superalloy, is essential for
applications demanding high strength, ductility, and corrosion
resistance under normal and elevated temperatures. The viability
of components made from such alloys relies on their ability to join
with similar and dissimilar materials. Traditional methods like arc
welding, electron beam welding, and laser welding have been used
for manufacturing, refurbishing, and repairing Inconel 718 and
other nickel superalloys. Recently, there’s been a focus on
developing precise models to predict the microstructure and
mechanical properties of friction stir welded Inconel 718. These
models target areas like the heat-affected zone (HAZ) and thermo-
mechanically affected zone (TMAZ), aiding in optimizing the
welding process and ensuring joint quality. Researchers also
investigate the impact of welding parameters like speed and force
on the weld’s microstructure and mechanical properties.
Furthermore, efforts are made to develop models predicting
residual stress and distortion, critical for structural stability
(Loria, 1992; Debarbadillo and Mannan, 2012; Song et al., 2011).

Limited research exists in the literature concerning friction stir
welding and processing of Inconel 718 alloy. Successful outcomes
have been reported only under specific conditions, namely low tool
rotations (100–500 rpm), slow welding speeds (30–150 mm/min),
and high axial loads (≈35 kN) (Lemos et al., 2017; Ahmed et al.,
2013; Rule and Lippold, 2013; Alexopoulos et al., 2014; Song and
Nakata, 2010; Song et al., 2009). These parameters, while yielding
promising results like refined grain structures and increased
microhardness, pose limitations on the industrial application of
FSW for Inconel 718, raising concerns about its economic feasibility
(Song and Nakata, 2010; Song et al., 2009). Despite these challenges,
studies (Song and Nakata, 2010) have shown improved mechanical
properties in welds, including microhardness and tensile strength,
attributed to grain refinement. However, achieving successful FSW
welds under a broader range of process parameters remains a key
technical hurdle. While some research has explored the application
of FSW to other Ni-based alloys like Inconel 625 and 718, the
majority has focused on Inconel 600 due to its lower yield strength

(Ye et al., 2006), making it more weldable. Conversely, research on
high-yield-strength alloys like Inconel 718 in the context of FSW
is limited.

On the other hand, effective control methodologies have been
employed in real-world problems to make significant advancements.
For instance, adaptive model predictive control (MPC) has been
shown to effectively regulate NSCLC cell signaling dynamics in
simulations, optimizing drug combinations to reduce toxicity and
resistance, offering a novel control strategy for cancer treatment
(Smart et al., 2022). Similarly, a process-model-free MPC method
using a DDE-PID controller has been proposed to enhance control
in thermal power plants. This approach addresses challenges such as
process constraints and disturbances without relying on accurate
plant models. Simulations and field tests in coal-fired units
demonstrate superior disturbance rejection and reference
tracking, highlighting its strong potential for practical application
in power plants (Shi et al., 2023).

In another study, a stochastic model predictive control method
combined with time-series forecasting was introduced to manage
microgrid energy under uncertainty. By utilizing data-driven chance
constraints, this approach optimizes energy management with
minimal computational power, reducing costs and enhancing
reliability in a grid-connected microgrid with PV generation and
battery storage (Babić et al., 2023). Furthermore, in industrial
processes, a predictor-based phase-lead active disturbance
rejection control (PLADRC) method has been proposed to
improve disturbance rejection in systems with input delays. The
integration of a phase-lead module and extended state observer
(ESO) reduces phase lag, enhances disturbance estimation, and
improves overall performance. Practical digital implementation
and robust stability analysis further demonstrate its effectiveness,
as shown in illustrative examples (Li et al., 2022).

Moreover, tuning control parameters is crucial for real-world
applications. A recent study addresses performance issues in PID
controllers caused by proportional and derivative kick, proposing
resilient PID tuning to minimize performance loss when switching
between controller structures like PI-D and I-PD. By employing
robust tuning based on more accurate process models (FOPDT and
SOPDT), this approach ensures improved control performance and
robustness, even when changing controller equations (Alfaro and
Vilanova, 2022).

FSW relies on temperature control to ensure optimal weld
properties within a specific thermal process range. Initially, FSW
was conducted on adapted milling machines where temperature
monitoring was sporadic, leading to temperature fluctuations during
welding (Mayfield and Sorensen, 2010). Early attempts at
temperature regulation often involved adjusting spindle speed
(Fehrenbacher et al., 2011). Various techniques have been
employed to measure stir zone temperature. Placing a
thermocouple closer to the tool-plate interface significantly
reduces system response time, enhancing control effectiveness. By
regulating temperature and other welding parameters, weld quality
can be preserved even in the face of external disruptions to the
system (Fehrenbacher et al., 2014a; Fehrenbacher et al., 2014b).

FSW was initially performed by setting specific parameters for
depth, travel speed, and spindle rotation speed, techniques that have
proven effective over time (Ross, 2012; Chimbli et al., 2007).
However, maintaining constant input parameters during welding
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may result in temperature fluctuations within the weld due to
transients and external disturbances. Given that FSW heavily
relies on temperature control, deviations in weld temperature can
adversely impact the strength and integrity of the weld. Poor
temperature regulation can even render the welded piece
unusable in certain instances (Cederqvist et al., 2011).

An advancement in temperature regulation was achieved
through the implementation of power control systems and
enhanced system identification and tuning for controllers.
Temperature regulation adopted a “cascade” method (Cederqvist
et al., 2012): power was utilized to regulate temperature within a
slower outer loop, while a faster inner loop was employed to regulate
power itself. Ross (Ross et al., 2016) employed spindle power and a
PID controller to maintain weld temperature within a 2°C range.
Both Ross (Ross et al., 2016) and Marshall (Marshall et al., 2016)
recognized FSW as primarily a first order plus dead-time (FOPDT)
system. Marshall utilized a relay feedback test to ascertain FOPDT
system parameters and determined PID gains using tuning rules
(Marshall et al., 2016). This approach shown to be able to uphold
temperature stability within a 2°C range, achieving superior settling
characteristics compared to Ross’s initial efforts and demonstrating
commendable disturbance rejection capabilities (Ross, 2012; Ross
et al., 2016). On the other hand, Model Predictive Control (MPC) is
an effective technique for multivariate control of intricate and
extensive systems (Qin et al., 2015). It relies on a system model
to forecast how alterations in inputs affect output parameters and
utilizes an optimizer to adjust input parameters accordingly for
optimal control of outputs. MPC has a long history of successful
application across various industries (García et al., 1989; Cortinovis
et al., 2015; Ma et al., 2014). Furthermore, Cederqvist and Nielsen
(Nielsen et al., 2013; Cederqvist et al., 2016) created nonlinear
models to address welding issues with non-circular copper
canisters, emphasizing depth and force regulation. Employing
these models, they conducted simulations to explore nonlinear
multiple-input multiple-output (MIMO) MPC control of depth
and temperature. While their research holds substantial
theoretical potential, it has mainly concentrated on process
simulation to assess controllers. Other FSW models have
emerged: a FOPDT model and a more intricate Hybrid Heat
Source model (Summary for Policymakers, 2014; Taysom et al.,
2016). These models demonstrate satisfactory temperature forecasts,
relying on spindle power and traverse speed post the initial transient
phase of a weld. Given the accuracy of these temperature
predictions, an MPC controller utilizing these models is
anticipated to deliver effective performance, provided the gains
and time constants align closely with those of the actual process
(Hedengren and Eaton, 2017).

Furthermore, the study conducted by Taysom et el. (2016), have
investigated the temperature control of FSW in Al 7075-T7 using
model predictive control and compares it with well-tuned PID
controllers. The research compares two MPC controllers, one
based on a first order plus dead-time (FOPDT) model and the
other on a Hybrid Heat Source model, against PID controllers in
various welding conditions. The results show that both MPC and
PID controllers can maintain temperature within 2°C of the setpoint
during steady-state welding, with MPC showing advantages in
handling specific process disturbances. However, during the
initial traverse, the Hybrid Heat Source MPC and PID with

regulatory tuning provided better temperature control within 5°C
of the setpoint, while FOPDT and PID with servo gains struggled.
The study recommends using PID controllers for steady-state
conditions and unmodeled disturbances due to their ease of
implementation and reliability. Conversely, MPC is suggested for
scenarios where process changes or disturbances are anticipated,
with specific recommendations for using the FOPDT model for
traverse speed changes and the Hybrid Heat Source model for
managing thermal transients during initial traverses or complex
welding paths.

Another study (Marliana et al., 2024) focuses on enhancing the
motion control accuracy of FSW robots, specifically those based on
the 3-PUU parallel manipulator mechanism, by developing a fuzzy-
PID controller optimized using genetic algorithms (GA) and particle
swarm optimization (PSO). The fuzzy-PID controller’s
performance, tuned with these optimization methods, was
compared against a conventional PID controller in simulations.
The results revealed that the fuzzy-PID-PSO controller, which
optimized both rules and output, provided the most accurate and
robust control, outperforming other configurations, especially in
minimizing overshoot and integral absolute error (IAE) during
disturbances. The study recommends implementing this
controller design in real-world applications and suggests further
research involving advanced algorithms like artificial neural
networks (ANN) for tuning, as well as integrating FSW robots
with image processing for enhanced visual sensing.

On the other hand, several researchers have utilized numerical
analysis techniques to optimize the FSW parameters to achieve
certain mechanical properties and improve the welding quality.
Elathasaran and Kumar (2013) investigated the impact of three
parameters - rotational speed, traverse speed, and axial force - on
ultimate tensile strength, yield strength, and elongation. Their study
utilized ANOVA analysis to demonstrate the effectiveness of the
model at a 95% confidence level. Meanwhile, Zhang and Liu (2013)
proposed examining the welding of aluminum to high-strength steel
by considering three parameters: rotational speed, tool offset, and
traverse speed. Venkateshkannam et al. (2014) explored the
characterization of FSW welds, determining that defect-free joints
were achievable using a stepped pin profile tool at 1,000 rpm and
40 mm/min. Although a cylindrical threaded pin yielded smooth
welds without defects, the resulting tensile strength and
microhardness were inferior to those achieved with the stepped
pin tool. Hasan et al. (Shojaeefard et al., 2013a) optimized tool
rotational speed, traverse speed, and shoulder diameter for grain
size, ultimate tensile strength, and hardness using Taguchi
L9 orthogonal DoE. Silva et al. (2014) focused on optimizing
Friction Stir Welding AA6063-T6 T-joints using Taguchi
L27 orthogonal Array, with tool rotation speed, welding speed,
and tool geometry as the selected parameters. They reported a
joint efficiency of 56% for the tensile test, highlighting the
significant role of tool rotational speed in joint mechanical
properties. Sadeesh et al. (2014) analyzed the FSW process
concerning microstructure and tensile properties, utilizing five
different tools to assess the influence of welding and traverse
speed on microstructure. They found that the shoulder-to-pin
diameter ratio played a significant role in determining better
mechanical properties and microstructure. Lastly, Shojaeefard
et al. (2013b) employed an Artificial Neural Network model to
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establish the relationship between process parameters and
mechanical properties, predicting the ultimate tensile strength
and hardness of butt joints based on the ANN model.

This study introduces a comprehensive approach that combines
numerical analysis and process control to effectively manage
workpiece temperature, thus enhancing weld quality and
component performance in aerospace and automotive sectors. The
approach involves creating a comprehensive dataset from numerical
FSW trials to determine optimal process parameters for achieving
desired surface quality, particularly focusing on reducing defects such

as surface roughness and voids. Dynamic process control systems
allow for adaptive adjustments based on feedback from embedded
temperature sensors, ensuring precise regulation of workpiece
temperature and reducing metallurgical defects. The investigation
primarily focuses on three input parameters—rotational speed,
transverse speed, and axial force—which influence workpiece
temperature, as determined through numerical analysis. Regression
models are utilized to establish equations that correlate workpiece
temperature with input parameters, offering insights into the thermal
effects on material characteristics during FSW.

FIGURE 1
Flow chart for the developed model system.
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This research distinguishes itself from existing work in the
literature by being the first to implement an effective thermal
management system for the FSW of nickel-based alloys using
appropriate process control on the three main variables that
affect the welding process (rotational speed, welding speed, and
axial force). While there have been attempts on other materials like
aluminum and magnesium alloys, high-strength alloys present
additional challenges due to their nonlinearity and strain
hardening effects at elevated temperatures. Therefore, this work
is highly relevant for implementation in most high-strength alloys
and other highly nonlinear systems.

2 Methodology

In order to conduct a proper process control in FSW technology,
the methodology followed (See Figure 1) starts with conducting
finite element simulations using COMSOL Multiphysics v5.3 to
understand the interaction between process parameters and
workpiece temperature (see Figure 2). These simulations are
validated against experimental data, facilitating the generation of
a comprehensive dataset detailing relationship and
interdependencies among main process parameters (rotational
speed, welding speed, shoulder diameter, pin diameter and axial
force) and outcomes like temperature and grain size. Statistical
analysis by using ANOVA method is conducted to identify the
most significant parameters, which are then subjected to non-linear
regression analysis to understand their influence on workpiece
temperature. Insights from this analysis guided the development
of a non-linear state-space system model, which is validated with an
independent dataset. Upon successful validation, advanced control

strategies, namely, PID and MPC, are designed and fine-tuned to
manage the welding process effectively. Implementing these control
strategies ensures effective thermal management, maintaining
optimal temperatures and mitigating thermal fluctuations. This
approach ought to lead to enhanced surface quality and
improved microstructural uniformity in the welds.

The main governing equations used to construct the finite
element model are summarized in the Electronic Supplementary
Material (ESI). The model integrates heat fluxes arising from friction
between the rotating tool and contact surfaces (See Figure 2A),
contingent upon the normal force and rotational speed. Should the
temperature surpass the melting point, heat fluxes from friction are
disregarded. Heat transfer within the plate is enabled through
surface-to-ambient radiation and convection, under the
assumption of maintaining an ambient temperature on the
supply side. Ensuring precise definition of workpiece properties is
imperative for accurate simulation in FSW. Temperature
fluctuations during welding induce alterations in workpiece
properties, which are managed by specifying temperature-
dependent properties derived from literature (Weld Integrity and
Performance, 1997; Raj and Biswas, 2023). Furthermore, intricate
strains and strain rates occurring during welding are replicated
through the utilization of the Johnson-Cook model, effectively
capturing work hardening and thermal softening phenomena.

Figure 2A depicts the model domain and system geometry,
showcasing a setup comprising two plates of Inconel 718. Each plate
measures 250 by 75 by 3 mm and is flanked by two infinite domains
in the x-direction. The tool, made of tungsten carbide with 10%
cobalt, is sturdy, featuring a flat circular bottom with a 25-mm
diameter for the shoulder and a cylindrical pin with a diameter of
5 mm and a depth of 2.7 mm. By incorporating temperature-

FIGURE 2
(A) FSW model domain, (B) System mesh.
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dependent material properties for both the tool and workpiece
plates, the simulation enables concurrent calculation of thermal
and mechanical effects. Utilizing the Arbitrary Lagrangian-Eulerian
(ALE) technique alongside adaptive meshing ensures the
maintenance of mesh quality during welding, thus preventing
excessive distortion, albeit at the expense of computational time.
Mesh convergence studies are essential in numerical simulations to
ensure result accuracy and reliability without incurring high
computational costs. The aim is to find the smallest mesh size
that produces consistent results. This involves adjusting the mesh
size and comparing outcomes until they show minimal change with
further refinement. In this study, a mesh with 108,000 elements (see
Figure 2B) and an average element quality of 0.81 was used. The
simulation was executed on a system equipped with a 16 GB Intel(R)
Core(TM) i7-8565U CPU @ 1.80 GHz 1.99 GHz, with a total
completion time of approximately 6.2 h, the transient nature of
the process necessitated longer durations to capture the full dynamic
behavior of the FSW process.

The thermomechanical and thermophysical properties of the
workpiece were obtained from literature sources (Weld Integrity and
Performance, 1997; Raj and Biswas, 2023). Temperature-sensitive
attributes such as sensible heat, density, and thermal conductivity
were incorporated, alongside parameters like expansion coefficient,
Young’s modulus, and Poisson’s ratio. To simulate the material’s
plastic behavior during FSW, the Johnson-Cook plasticity model
was utilized, accounting for variables such as strain hardening, strain
rate, and thermal softening.

The finite element model underwent verification against
previously documented experimental results conducted on
Inconel 718 plates (See Supplementary Figure S1). These
experiments recorded a plate temperature of 577°C at a distance
of 5 mm from the welding nugget zone. Conversely, the temperature
projected by the developed COMSOL Multiphysics model in this
study was 600°C, indicating a 4% disparity. indicating close
alignment between the FE model and published experimental
outcomes for friction stir welding.

Datasets were generated using the developed finite element
model to investigate the effects of various process parameters
(see Supplementary Table S1). These parameters included axial
force ranging from 5 to 50 kN, rotational speed from 100 to
600 RPM, welding speed from 50 to 150 mm/min, shoulder
diameter from 15 to 25 mm, and pin diameter from 4 to 8 mm
on the workpiece thermal profile.

On the other hand, one-way ANOVAwas employed to identify
the most significant parameters affecting the FSW process. This
statistical technique allowed for the comparison of multiple
process parameters, including axial force, rotational speed,
welding speed, shoulder diameter, and pin diameter, to
determine their impact on the workpiece’s thermal profile. By
analyzing the variance among different parameter levels, the one-
way ANOVA helped pinpoint which factors had the most
substantial effect on the process. Following this, non-linear
regression analysis was utilized to establish a relationship
between these significant parameters and the workpiece
temperature. This approach enabled the development of a
predictive model that accurately connects the identified
influential parameters with the resulting thermal profile,
providing deeper insights into optimizing the FSW process.

Furthermore, the methodology followed in this study to perform
the adequate process control involves importing and preprocessing
input-output data from experiments or simulations to enhance
relevance and accuracy. A suitable model structure is then
selected based on the system’s characteristics, with options
including transfer functions, state-space models, and ARX
(AutoRegressive with eXogenous inputs) models available in
MATLAB’s toolbox. Specific data subsets are defined for model
estimation, and advanced algorithms are applied to optimize the
model parameters for the best fit. The model’s accuracy is rigorously
evaluated against a separate validation dataset to ensure it replicates
the system’s behavior effectively. Adjustments and refinements are
made as necessary to enhance performance.

In industrial control systems, Proportional Integral Derivative
(PID) control and Model Predictive Control (MPC) are widely
employed due to their ability to be finely tuned to meet specific
performance criteria. These control strategies have been extensively
utilized within the context of the FSW process as explained above.
PID controllers, known for their simplicity and effectiveness in a
wide range of operating conditions, adjust the process based on the
error between a setpoint and the process variable. On the other
hand, MPC provides a more sophisticated approach by predicting
future system behavior and optimizing control moves accordingly.
This predictive capability makes MPC particularly valuable for
managing the intricate dynamics of FSW, allowing for precise
adjustments in response to the thermal and mechanical variables
affecting the welding quality.

Two operational modes are considered for each control strategy
to adapt to different process requirements. The first mode simplifies
the control structure by using only the Rotational Speed (RtS) as the
control variable, treating Axial Force (AF) and Welding Speed (WS)
as disturbances. This mode focuses on controlling the rotational
speed to stabilize the welding process temperature while monitoring
the effects of AF and WS. The second mode expands the control
framework to include RtS, AF, and WS as control variables, aiming
for more robust control. This comprehensive approach ensures that
all influencing factors are actively regulated, enhancing the process’s
adaptability and performance under varying operational conditions.
Both control techniques were implemented to enhance the process
stability and optimize the welding parameters, ensuring the
robustness and accuracy of the FSW process.

3 Results and discussion

3.1 Numerical analysis, system identification,
statistical analysis and process optimization

The FSW process parameters used in this study are a rotational
speed of 600 RPM, a welding speed of 90 mm/min, an axial force of
40 kN, a shoulder diameter of 25 mm, and a pin diameter of 5 mm,
without any cooling effect or preheating. Figure 3A illustrates the 3D
temperature profile of the Inconel plates, where the peak temperature
was recorded to be around 1,000°C, localized to the welding regions
only. This figure shows the temperature distribution across the plates,
with the maximum temperature focused on the welding regions and
an almost uniform distribution in the x-direction. These results
demonstrate that the temperature distribution of Inconel 718 is
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more concentrated around the welding regions, resulting in better
heat dissipation across the plates. This suggests that Inconel 718 may
have better resistance to thermal degradation and a longer lifespan at
high temperatures. Figure 3B shows a 1D temperature profile of the
workpiece across the welding centerline, with the highest
temperatures concentrated around the welding nugget at 1,000°C.
Figure 3C shows the 1D average grain size across the welding
centerline, emphasizing grain refinement in the weld zone with a
grain size of 50 μm, while Figure 3D displays the 1D hardness profile
across the welding centerline, where hardness peaks in the weld zone
at 410 HV and tapers off with increasing distance from the weld,
showing a flat performance close to the nugget zone.

Based on the developed finite element model, a dataset was
generated by parameterizing the process parameters (rotational
speed, axial force, welding speed, shoulder diameter and pin
diameter) and capturing the dynamic behavior of the FSW process.
One-wayANOVAwas used to understand the effect of these parameters
on the workpiece temperature, where the Tukey Simultaneous 95%
Confidence Intervals (CIs) graph from the ANOVA results provides
insightful comparisons across various parameters of the FSW process

(See Supplementary Figure S2; Table 1; Supplementary Table S2). The
obtained results reveal significant differences where the CIs do not cross
the zero line, highlighting influential relationships between parameters
such as welding speed, axial force, and rotational speed. Notably, the
significant deviation in axial force across different settings suggests its
critical role in influencing material deformation and joint quality during
welding. Conversely, the temperature comparisons across multiple
parameters (shoulder diameter, pin diameter, welding speed) mostly
cross the zero line, indicating no significant differences. This suggests
that temperature remains relatively stable across these variables, possibly
due to effective thermal management within the tested range. Such
findings are crucial for optimizing FSW parameters, where
understanding the impact of axial force and rotational speeds could
guide adjustments to achieve optimal weld conditions. Meanwhile, the
stable temperature response across various settings supports the
robustness of the process under the tested conditions.

Supplementary Figure S3–S6 present the outcomes of the
nonlinear regression analysis for predicting workpiece
temperature based on process parameters (rotational speed, axial
force, and welding speed) using non-linear regression conducted
with Minitab software. Equations 1–10 summarize the main
equations used to develop the process control methodology. The
final model equation shows temperature as a function of time (X1),
rotational speed (X2), welding speed (X3), and axial force (X4),
including quadratic terms and interactions:

Temperature °C( ) � 25.33 + 0.7829X1 + 1.1894X2 − 0.1388X3

+ 18.123X4 − 0.005194X12 − 0.00761X22

− 0.17246X42 − 0.000938X2*X4

(1)

FIGURE 3
(A) 3D Temperature profile, (B) 1D Temperature profile, (C) 1D Hardness profile, and (D) 1D Average grain size.

TABLE 1 Analysis of variance.

Source DF Adj SS Adj MS F-value p-value

Factor 5 13457040 2691408 741.81 0.000

Error 204 740142 3,628 - -

Total 209 14197182 - - -

Significance Level: 0.05

S = 60.2341; R-sq = 94.79% R-sq(adj) = 94.66% R-sq(pred) = 94.48%
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The model building sequence chart indicates the incremental
addition of terms, starting with the most significant variable, axial
force (X4), followed by rotational speed (X2), their quadratic
terms, and interactions, culminating in an adjusted R-squared
value near 100%, reflecting a high model fit. The right-hand graphs
show the incremental impact of each variable on R-squared,
highlighting that axial force contributes the most significant
increase (approximately 45%) in explaining temperature
variance. Furthermore, the “Each X Regressed on All Other
Terms” graph reveals that axial force and rotational speed are
the most influential variables, contributing substantially to the
model’s explanatory power.

In addition, Supplementary Figure S7 illustrates the Multiple
Regression for Temperature Prediction and Optimization report,
which was generated using Minitab software to establish a
relationship between workpiece temperature and the process
parameters: rotational speed, axial force, and welding speed. The
goal was to achieve a target temperature of 700°C. The predicted
optimal settings to reach this temperature are presented, with the
equation yielding a predicted Y value of 700°C within a 95%
prediction interval of 675.16°C–724.84°C. Additionally, the top
five alternative solutions with predicted T values closest to the
optimal solution are provided, demonstrating slightly varied
combinations of process parameters that still achieve a
temperature near 700°C, ensuring the reliability and robustness of
the model.

On the other hand, FSW is characterized by significant
nonlinearities. An initial system identification was conducted
using MATLAB’s System Identification Toolbox, leveraging the
FSW dataset generated from the COMSOL finite element model.
After importing the numerical experimental data into the
toolbox, a curve fitting procedure was utilized to approximate
the FSW process model. Among the various tested models, it is
found that the ARXQS (Fourth-order autoregressive ARX model)
and TF (Transfer Function) generate the best estimates. This is
shown in Supplementary Figure S8. It was concluded that the
match of the ARXQS model output with that of numerical
experimental data is 99.21% whereas that of continuous time
TF has a match of 99.63% and discrete time TF has a match of
99.95. These three have good matches but do not actually capture
the real system behavior due to the inherent nonlinearities. Thus,
the system identification toolbox could not give a realistic system
model of the FSW. Among all the tested models, the closest fit
found was the discrete time model using transfer function which
is given below:

0.38248 z−1

1 − 0.6078 z−1( ) 1 + 0.2544 z−1( ) 2.095 × 10−5 z−1

1 − z−1( ) 1 − 0.1662 z−1( ) 3.7657 z−1

1 − 0.8189 z−1( ) 1 + 0.1232 z−1( )[ ]
(2)

Accordingly, here the Nonlinear Model Identification and
refinement is proposed, where the initial application of the
system identification toolbox captured main features of the
process but failed to accurately capture the whole system
dynamics, necessitating a refinement of the model identification
process. This was achieved by integrating expert knowledge and
insights about the physical system to address accuracy issues and
obtain a valid nonlinear model. Adopting this strategy, an initial
nonlinear model was established, and various parameters and

nonlinear elements were fine-tuned to optimize the correlation
with experimental data. Multiple iterations enhanced the model’s
fit significantly. This refined process led to the accurate
identification of a nonlinear state-space model as described below:

State equations:

_x1 � -10.43x1-12.86x2 + 12.86 u1

_x2 � x1

_x3 � 0.0011 u2 − 0.056( )x4

_x4 � −12.5
0.0011 u2 − 0.0555

x3 − 11.25x4 + 12.5 u2

_x5 � x6

_x6 � −8.75x5 − 8.25x6 + 8.75 u3

Output equation:

y � −0.00075 u1 + 1.21( )x2 − x3 + −0.2396 u3 + 21.3( )x5

Where

u1 � Rotational Speed

u2 � Welding Speed

u3 � Axial Force

y � Temperature

x1, x2, x3, x4, and x5 are state variables of the space − spacemodel

x1 - x6 are state variables of the space-space model with x1 being the
instantaneous weld temperature at the primary welding zone. x2
(given that _x2 = x1) represents accumulated thermal energy at the
weld area. As for x3 and x4, these variables interact with u2 (axial
force) representing themechanical aspects of the weld process which
indirectly influence heat generation process. Variable x5 and x6 (with
_x5 being = x6) represent additional dynamic variables of
displacement and displacement rate related to the welding tool’s
travel along the weld line influencing the spread and
dissipation of heat.

The state-space model in matrix form is as follows:
System matrix (A)

A �

-10.43 -12.86 0 0 0 0
1 0 0 0 0 0
0 0 0 -0.056 0 0
0 0 -0.0555 -11.25 0 0
0 0 0 0 0 1
0 0 0 0 -8.75 -8.25

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Input matrix (B)

B �

12.86 0 0
0 0 0
0 0.0011 0
0 12.5 0
0 0 0
0 0 8.75

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Output matrix (C)

C � 0 1.21 -1 0 21.3 0[ ]
Feedthrough matrix (D)

D � −0.00075 0 −0.2396[ ]
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3.2 Model construction and validation

The developed nonlinear model was implemented in Simulink,
as depicted in Figures 4A, B. Figure 4A presents the subsystem block
diagram, and Figure 4B details the internal configuration of the
Simulink model. The model achieved an excellent match with the
numerical experimental data, a conclusion supported by numerous
simulations using varied control input values. Supplementary Figure
S9 illustrates the system’s response from simulations of the
nonlinear model alongside plots of experimental data for selected
cases. The model was also exposed to input disturbance in the form
of step change of axial force as shown in Supplementary Figure S10.
This confirms the model’s ability to satisfactorily capture the

underlying physical system dynamics. Having developed a
satisfactory mathematical model, it is feasible to design adequate
control systems that accurately track the desired reference welding
temperature across different operating conditions.

3.3 Process control

For the purpose of FSW process control, two primary control
strategies are explored: Proportional-Integral-Derivative (PID) and
Model Predictive Control (MPC). Each strategy is implemented in
two distinct configurations: single-variable and multi-variable
control modes. In the single-variable mode, rotational speed

FIGURE 4
Simulink implementation of nonlinear model (A) Block diagram (B) Detailed description of the Simulink implementation.
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serves as the primary control variable for adjusting the welding
temperature, with axial force and welding speed treated as external
disturbances. This approach focuses on straightforward control by
manipulating one key variable to achieve desired temperature
outcomes. The reason for selecting rotational speed is due to its
significant effect on the workpiece temperature, and it is practically
easier to control compared to axial force. Conversely, the multi-
variable mode leverages a more comprehensive approach by
simultaneously controlling multiple variables—rotational speed,
axial force, and welding speed. This mode aims to optimize the
control performance by adjusting several inputs in concert, allowing
for a more refined and responsive control system. These
configurations highlight the versatility and adaptability of PID
and MPC strategies in addressing different complexities within
the FSW process.

3.3.1 PID control
PID control is one of the most widely used controllers for

industrial processes. The PID controller utilizes three terms to
compute the control signal sent to an actuator, these are the
Proportional (P) Term, Integral (I) Term, and the Derivative (D)
Term. Proportional Term responds immediately to the current error
value - a larger error results in a higher output correction. Integral
Term addresses long-term errors by accumulating the error over
time. It helps eliminate any steady-state error, where the output
settles at a value different from the setpoint. Derivative Term
anticipates future errors by considering the rate of change of the
error signal. It helps reduce oscillation and speeds up the system’s
response to setpoint changes.

The control law for PID controller can be expressed in the
Laplace domain as follows:

C s( ) � Kp + Ki

s
+ Kds (3)

where Kp,Ki and Kd are the P, I, and D parameters. In time-domain,
the controller output u(t) is formulated as follows:

u t( ) � Kpe t( ) + Ki ∫ e t( )dt + Kd
d

dt
e t( ) (4)

Where e(t) is the error signal, defined as the difference between
the setpoint and the process variable.

3.3.1.1 Controller design and tuning methodology
For the design of PID controllers, Ziegler-Nichols method was

used initially to estimate appropriate controller adequate controller
parameters. This method is based on the system’s response to open-
loop testing. The Ziegler-Nichols method starts by pushing the
system to its limits to identify two critical parameters, namely Ku
(Ultimate gain) and Tu (Ultimate period). Based on the system’s
model Ku and Tu values are found to be ≈3.741 and 1.516 s

FIGURE 5
PID control for FSW process. Rotational Speed is taken as control input, Welding Speed and Axial force are treated as disturbances.

FIGURE 6
Closed-loop response of the FSW system with single PID
controller.
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respectively. Having determined the ultimate gain and period,
Ziegler-Nichols formula was applied as follows:

Kp � 0.6 × 3.741 � 2.2446

Ki � 2 × 2.2446
1.516

� 2.9640
1

second
( )

Kd � 2.2446 × 1.5168
8

� 0.4233 seconds( )

With these initial estimates, further fine-tuning was conducted
using Matlab’s advanced PID tuning App. For the FSW process, two
different control modes are considered to design and implement the
PID controller, single variable, and multi-variable modes.

3.3.1.1.1 Single variable PID control
In the first configuration of PID control strategy, a single PID

controller is designed, as indicated in the Simulink block diagram of
Figure 5. The Rotational Speed (RtS) is taken as the control input,
whereas Axial Force (AF) and Welding Speed (WS) are treated as

disturbances. The initial design of the PID controller is fine-tuned
using the Simulink Response Optimization Toolbox. The tuned PID
controller parameters are given in Supplementary Table S3. It is
worth mentioning that the controller parameters are tuned to tackle
the actuator saturation problem as well. That is, the controller
ensures the performance while keeping all the variables within
their defined limits.

The simulation results corresponding to the designed controller
with the welding speed equal to 35 mm/min and Axial Force equal to
25 kN are shown in Figure 6. The controller successfully stabilized
the temperature at the desired value (in simulations at 700°C). The
simulations are repeated for several different values of welding speed
and axial force, and it is seen that the controller successfully tracks
the reference signal despite variations in AF andWS, which facilitate
the setting of the AF and WS at any level and the controller will
automatically adjust the RtS to achieve desired temperature. The
response of the system to a step change in Axial Force at time T =
10 s is shown in Supplementary Figure S11, which again shows the
proficiency of the controller. One advantage of single PID controller
is the freedom to choose any suitable, convenient and cost-effective
values of WS and AF.

3.3.1.1.2 Multi-variable PID control
In the second case, three distinct PID controllers are tuned, each

controller to control each of the three control inputs, that is the RtS,
WS, and AF. The Simulink block diagram corresponding to this
scenario is shown in Figure 7. The parameters of the PID controllers
are optimally tuned using the Simulink Response Optimization
Toolbox, the parameters of the tuned PID controllers are given
in Supplementary Table S4. Like the previous case of single PID
controller, the problem of actuator saturation is taken care of for the
three PID controllers. The simulation results corresponding to the
case of three PID controllers are shown in Figure 8. It can be clearly
seen that this design can also successfully track the reference
temperature with good performance.

Compared with the case of one PID controller, the three PID
controller automatically adjusts all the three control inputs (RtS,

FIGURE 7
Three PID controllers with adjustable weights are designed for FSW.

FIGURE 8
Response of FSW with three PID controllers.
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WS, and AF) to track the desired temperature, thereby, putting
proportional load to all the control inputs. However, with this
arrangement, we lose the freedom of manual adjustments on the
AF and WS. An additional advantage in the three PID controller
case is that tunable weights associated with three control inputs are
also provided. These tunable weights can provide additional
freedom which can be utilized to achieve some other
optimization. For example, if any of the three control inputs is
associated with some additional cost/energy consumption, that
variable can be given more weight to achieve the desired
temperature with less consumption of energy.

3.3.2 Model predictive control
MPC is an advanced technique used to control dynamic systems

while adhering to constraints. Unlike PID controllers which focus on
the present error, MPC takes a future-oriented approach. MPC relies
on a mathematical model that predicts the future behavior of the
system based on current state and control inputs. MPC considers a

finite window of time steps into the future, called the prediction
horizon. It predicts the system’s response for various control actions
over this horizon. MPC solves an optimization problem to determine
the control sequence that minimizes a cost function while keeping the
predicted system behavior within specified constraints.

3.3.2.1 MPC controller design
Given the aforementioned actual system state-space model, the

model configuration baseline can be established through the
matrices that describe the system’s dynamics, where:

_x � Ax + Bu, y � Cx +Du (5)
Where, x represents the state vector, u is the input vector, and y

is the output vector.
The next step in configuring the MPC controller is to choose an

appropriate Prediction and control horizon (Np and Nc) values. For the
FSW process, where the response characteristics might change rapidly,
an initial moderate horizon ofNp = 10 was selected to balance foresight
with computational tractability.NcDefines the number of future control
moves the controller optimizes at each step of the time horizon. A value
of Nc = 3 was selected as part of the initial controller configuration.

Being a predictive control strategy, MPC optimizes control
action using a system model by employing a solver to minimize
the error between model predictions and actual value through a cost
function as given below:

J � ∫
T

0

xD t( ) − x t( )( )TQ t( ) xD t( ) − x t( )( )dt (6)

Where, Q(t) is the time-varying weight matrix that emphasizes
different state deviations at various times. The discrete-time version
of such cost function is as follows:

J � ∑Np

k�0
y k | t( ) − r k( )���� ����2Q +∑Nc

k�0
u k( )‖ ‖2R (7)

FIGURE 9
Single MPC for FSW with WS and AF considered as disturbances.

FIGURE 10
Response of FSW with single MPC.
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Q and R, are constant or time-invariant weighting matrices that
penalize the deviation from the reference trajectory and the use of
control inputs, respectively. The minimization of cost function is
subject to the system dynamics and constraints that limit control
actions within operational limits as described by:

umin ≤ u t( )≤ umax, 0≤ t≤T (8)
Implemented within MATLAB/Simulink for both

simulation and real-time control, the MPC’s performance is
validated through various tests, including step response and
disturbance rejection. Adjustments to the weight matrices Q and
R and the horizons Np and Nc are made based on the observed
performance.

For the FSW process, two different strategies, like the
situations in the design of PID controller, are proposed to
design and implement MPC. That is, in the first strategy, a
single MPC is there to control RtS and treat AF and WS as
disturbances. In the second strategy, three different MPC to

adjust each of the three control inputs (RtS, WS and AF) to
track the temperature.

3.3.2.1.1 Single mode predictive control. The block diagram of
a single MPC for the FSW is shown in Figure 9. Like the case of
single PID controller, there is a freedom to choose any value of the
AF and WS and the MPC will adjust the RtS to track the reference
temperature. The simulation results for the case of single MPC are
shown in Figure 10.

3.3.2.1.2 Multi-variable model predictive controllers. In the
second case of MPC, where three MPC are designed to control
each of the three control inputs, that is the Rotational Speed,
Axial Speed and the Welding Speed. The block diagram of three
MPC is shown in Figure 11. The MPC are designed using
Simulink Model Predictive Control Toolbox. Each of the three
control inputs have some saturation limits, therefore, saturation
blocks are also added in the design procedure. Furthermore, two
gain blocks are added to the controller against welding speed and
axial force. These gain blocks are adjustable and can be utilized
for some additional optimization, for example, energy/cost
optimization. For the design of the MPC, the following
parameters are set.

• Sampling time: 0.5 (seconds)
• Prediction Horizon: 5
• Control Horizon: 1

The simulation results for the case of three MPC is shown
Figure 12. It can be seen from the figure that the three MPC case can
also be utilized to maintain the temperature at the desired level.
Furthermore, the effect of sudden disturbance in Axial Force
introduced at a time of T = 10 s is shown in Supplementary
Figure S12. It is observed that the controller can maintain the
temperature despite some bias or variation in some of the actuators.

FIGURE 11
Simulink diagram of three MPC for FSW.

FIGURE 12
Response of closed loop system with three MPC.
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3.3.3 Comparison of designed control systems
After exploring various control system designs, it is beneficial to

compare and evaluate them to gain a comprehensive understanding
of their performance, along with the advantages and disadvantages
of each model. It is worth mentioning that all controllers have been
tuned to give the best possible performance. Figure 13 below
presents a comparison of the PID and MPC controllers in both
their single andmulti-variable control modes through a hypothetical
scenario of temperature set point alteration and disturbances in axial
force and welding speed.

Initially, during the transient state, all controllers exhibit
similar responses, with the PID controllers (3PID followed by
1PID) responding slightly faster than their MPC counterparts, a
trend that persists after the second temperature setpoint change.
At the 70-s mark, when the temperature setpoint dropped by
400°C, the PID controllers maintained their faster response, but
the multi-variable controllers (3PID and 3MPC) experienced
noticeable undershoots with approximately 30°C, while the
single-variable controllers (1PID and 1MPC) approached the
new setpoint more steadily. During the axial force disturbance
introduced at 85 s, the single-variable controllers (1PID and
1MPC) managed the disturbance more effectively, showing
minimal overshot. In contrast, both multi-variable controllers
(3PID and 3MPC) struggled with significant overshoots up to
150°C. Surprisingly, when it came to handling disturbances from
welding speed at 100 s, the multi-variable controllers (3PID and
3MPC) performed better, exhibiting minimal undershoot, while
the single-variable controllers displayed more significant
undershoot up to 20°C. Throughout the remainder of the
test, PID controllers consistently demonstrated a faster

response to changes in desired temperature, indicating their
potential superiority in scenarios where speed of response is
critical. Figure 14 illustrates the response of the four designed
control systems to changes in the temperature setpoint and
disturbances caused by variations in axial force and
welding speed.

As observed in Figure 14, there are slight variations in the
response of each controller to changes during steady-state
conditions, which can be attributed to differences in their level of
complexity and operating principles. Nonetheless, all proposed
control systems demonstrate satisfactory performance in
maintaining the temperature within acceptable operating limits.
These observations and analysis underscore that while no single
controller excels in every aspect, the choice between them can be
optimized based on specific operational priorities such as response
speed, stability, or disturbance handling.

3.4 Effect of workpiece temperature on
weld quality

In FSW technology, the workpiece temperature plays a crucial
role in determining both the surface quality and the mechanical
properties of the welded material. Elevated temperatures during
FSW facilitate the plastic deformation and material flow necessary
for forming a solid-state bond, directly influencing the surface finish
by reducing defects and ensuring a smoother weld seam.
Additionally, the temperature affects grain size and distribution,
which in turn impacts the mechanical properties such as hardness,
strength, and ductility of the welded joint. Optimal temperature

FIGURE 13
Comparison of designed control systems.
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control ensures a balance between sufficient material mixing and
minimizing thermal degradation, resulting in superior surface
quality and enhanced mechanical performance of the
welded material.

Supplementary Figure S13 illustrates the results of a multiple
regression analysis performed using Minitab software to explore
the relationship between the average grain size (Y) in µm of a
friction stir welded workpiece and its temperature (X) in °C. The
analysis aimed to establish a quadratic model, yielding
the equation:

Y � 16.39 − 0.09086X + 0.000117X2 (9)

The fitted line plot shows the quadratic model’s curve,
indicating how average grain size varies with temperature. The
p-value (<0.001) confirms that the relationship between grain size
and temperature is statistically significant. The R-squared value
(99.09%) demonstrates that the model explains 99.09% of the
variation in average grain size, signifying a high degree of
reliability. This regression model can be used to predict average
grain size from temperature data, thereby aiding in the estimation
of workpiece surface quality by monitoring the workpiece
temperature.

Moreover, Supplementary Figure S14 presents the results of
a multiple regression analysis conducted using Minitab
software to determine the relationship between the
microhardness (Y) of a friction stir welded workpiece and its
temperature (X) in °C. A quadratic model was fitted, resulting in
the equation:

Y � 246.5 + 0.4079X − 0.000243X2 (10)

The fitted line plot illustrates the model’s curve, showing how
microhardness varies with temperature. The p-value (<0.001)
indicates a statistically significant relationship between
microhardness and temperature. The R-squared value
(98.70%) reveals that the model explains 98.70% of the
variation in microhardness, indicating a high level of accuracy.
This regression model can be utilized to predict microhardness
based on temperature data, thereby assisting in the estimation of
the workpiece’s mechanical properties by monitoring its
temperature.

4 Conclusion

This research outlines a comprehensive methodology for
controlling the workpiece temperature of friction stir welds in
Inconel 718 through the integration of finite element simulations,
statistical analysis, and system control. Initial high-accuracy
numerical modeling provided a robust dataset that informed
the statistical optimization of process parameters. The insights
gained from ANOVA guided the selection of best process
parameters then the development of a nonlinear state-space
model, which was validated for accuracy against a secondary
dataset. The confirmed model underpinned the formulation of
precise PID and MPC control strategies, optimizing thermal
dynamics during welding. Both PID and MPC strategies in
their single variable and multi-variable modes proved to be
successful in controlling the FSW workpiece temperature with
minor differences in terms of response time and disturbance
handling. The application of these strategies effectively addresses

FIGURE 14
Controller output.
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temperature control issues commonly known for causing defects
associated with FSW. This approach not only advances the FSW
process for Inconel 718 but also sets a precedent for applying
similar methodologies to other high-performance alloys, with
implications for enhancing manufacturing processes and
operational scalability.
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