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Introduction: This work presents an approach to collision avoidance in multi-
agent systems (MAS) by integrating Conflict-Based Search (CBS) with Model
Predictive Control (MPC), referred to as Conflict-Based Model Predictive Control
(CB-MPC).

Methods: The proposed method leverages the conflict-avoidance strengths of
CBS to generate collision-free paths, which are then refined into dynamic
reference trajectories using a minimum jerk trajectory optimizer and then
used inside a MPC to follow the trajectories and to avoid collisions. This
integration ensures real-time trajectory execution, preventing collisions and
adapting to online changes. The approach is evaluated using a magnetic
planar drive system for realistic multi-agent scenarios, demonstrating
enhanced real-time responsiveness and adaptability. The focus is on the
development of a motion planning algorithm and its validation in dynamic
environments, which are becoming increasingly relevant in modern adaptive
production sites.

Results:On theMAS demonstrator with four active agents, ten different scenarios
were created with varying degrees of complexity in terms of route planning. In
addition, external disturbances that hinder the execution of the paths were
simulated. All calculation and solution times were recorded and discussed.
The result show that all scenarios could be successfully solved and executed.,
and the CB-MPC is therefore suitable for motion planning on the presented MAS
demonstrator.

Discussion: The results show, that the CB-MPC is suitable formotion planning on
the presented MAS demonstrator. The greatest limitation of the approach lies in
scalability with regard to increasing the number of agents.
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1 Introduction

Traditional assembly lines, forming the backbone of
conventional manufacturing, are inherently linear and sequential,
limiting flexibility and adaptability – crucial attributes needed to
meet the dynamic demands of modern production. Recent
advancements in Multi-agent Systems (MAS) propose a
paradigm shift towards adaptive and decoupled manufacturing
processes, heralding the era of smart manufacturing (Brecher,
2012; Göppert et al., 2018; Hu et al., 2011). MAS enhance
manufacturing systems by enabling autonomous agents to
dynamically transport components, optimizing production flow,
and enabling customization. This flexibility can result in
increased system productivity by reducing bottlenecks and idle
times (Komesker et al., 2022). Figure 1 illustrates the contrast
between traditional conveyor belts and advanced planar drive
systems, highlighting the potential of MAS and advanced control
algorithms (Brecher et al., 2017).

However, managing multiple autonomous agents to avoid
collisions remains a significant challenge. Multi-Agent Path
Finding (MAPF) is crucial in applications such as automated
warehousing and production intralogistics, where numerous
agents handle transportation tasks. Although MAPF algorithms

can generate collision-free paths, they often lack real-time
monitoring and adaptability to dynamic changes, limiting their
effectiveness. In dynamic environments such as on colaborative
production sites, adressing these limitations are vital for enhancing
the utility of MAS (Komesker et al., 2022).

An exemplary application of MAS is the integration of a
magnetic planar drive system for intralogistic processes. A
magnetic planar drive allows frictionless product transport and
can facilitate flexible, non-linear process chains (Janning et al.,
2025; Wang et al., 2024). Planar drive systems consist of a
stationary plane (stator) consisting of multiple modular tiles and
movable transport units (movers). The stator’s conductor coils
generate electromagnetic fields interacting with the movers’
permanent magnets, enabling precise multi-directional
movement. This technology suits cleanroom production and
modern Industry 4.0 applications, allowing for adaptable path
changes and high-precision transport (Janning et al., 2025; Wang
et al., 2024). The flexibility and precision of planar drives make them
a suitable testbed for evaluating the proposed motion planning
algorithm. Figure 2A shows a self-developed MAS demonstrator,
which consists of a Beckhoff Automation XPlanar system with 3 ×
4 stator tiles and four movers, each embodying an agent, visualized
in Figure 2B. The system is controlled via a Beckhoff PLC with the

FIGURE 1
Schematic comparison between linear and decoupled production intrologistics systems.

FIGURE 2
Presentation of a multi-agent system demonstrator based on a magnetic planar drive system with four levitating movers acting as independent
transport units (A) and a schematic representation of the system showing the tile-based modular design (B).
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TwinCAT environment. By adding stations for tasks such as
pipetting liquids and visual inspections, adaptive processes can be
implemented that require flexible modifications of the process
chains and thus of the mover paths.

TheMAPF required for this purpose is a computational problem
that entails planning conflict-free paths for multiple agents. Each
agent aims to reach a designated target while avoiding collisions with
both static obstacles and other agents. The goal is to minimize either
the sum of their travel times, the makespan, or other optimization
criteria (Stern et al., 2019; Yu, 2016). The mathematical
fundamentals of MAPF problems are extensively described by
Stern et al. MAPF solvers are generally divided into optimal and
suboptimal algorithms. Suboptimal algorithms are further classified
into bounded and unbounded solvers (Gao et al., 2024). In the
context of production and logistics, suboptimal solvers are prevalent
because finding a solution quickly is often more important than
finding an optimal solution through high computational effort (Gao
et al., 2024; Liu et al., 2024). However, this study investigates
whether optimal solvers can also be designed for practical
application with sufficient speed and scalability. A common
approach for the optimal solution of MAPF problems is conflict-
based search (CBS). CBS is particularly well-suited for small to
medium-sized scenarios where optimal paths are needed for a
limited amount of agents. However, as the number of conflicts
grow exponentially with the number of agents, CBS becomes less
efficient for large and complex problems. In such cases, extensions
are made to employ Improved CBS (ICBS) to provide faster
solutions (Sharon et al., 2015; Stern, 2019).

For the MAS demonstrator an ICBS involves representing the
planar drive system as a graph where each tile acts as a vertex, and
the distance from the center of one tile to the center of an adjacent
tile is represented as an edge. This graph representation (Diestel,
2012) is vital for accurately modeling the movement and interaction
of movers on the planar drive system. Moreover, defining and
communicating the accessible space in this context, a binary map
is used, where “true” indicates an obstacle and “false” signifies a free
vertex or location. Thus, ICBS can effectively generate optimal
collision-free paths by resolving conflicts, but it is limited on
path planning and does not monitor the execution of these
paths. Consequently, it cannot guarantee that agents will not
collide during execution, especially if an agent malfunctions or
encounters difficulties executing its plan, due to interruptions
from the environment. Additionally, MAPF typically assumes
agents can move freely to any node on the graph without
constraints, which is not practical for scenarios where agents
have specific motion constraints and dynamics. To address these
shortcomings, it is essential to combine pathfinding with motion
planning. While Networked Model Predictive Control (Net-MPC)
can theoretically integrate path planning, collision avoidance, and
trajectory following into a single optimization problem, this
approach often falls short in complex and non-linear scenarios
(Maciejowski, 2002). Therefore, a hybrid approach is proposed,
merging the strengths of CBS and Net-MPC. CBS provides
preliminary optimal plans, simplifying the task for a centralized
MPC (CMPC) (Albin Rajasingham, 2021). The CMPC then
monitors these plans, ensuring collision avoidance and optimal
motion execution in real-time. In this work, this integration is
referred to as Conflict-Based MPC (CB-MPC) to indicate the

operating principle. Therefore, a theoretical framework was
developed, the corresponding algorithm was implemented for
application on the MAS demonstrator, and its performance was
evaluated. The objective of these investigations is to validate the CB-
MPC approach as an optimal solver for a real-world MAPF problem
and to identify its limitations with regard to scalability.

2 Development of CB-MPC

CMPC unifies path planning properties, collision avoidance,
and trajectory following for simple scenarios but struggles in
complex environments. Conversely, ICBS excels in computing
collision-free paths in intricate scenarios, addressing static
conflicts but not dynamic constraints, cycle conflicts, or
transition conflicts (Stern, 2019).

Figure 3 (left) illustrates how two movers (M1 and M2) are
navigated from their initial position (■) to their target position (x)
using CBS. Here, the movers are considered as point masses, so that
a collision occurs due to the overlapping physical dimensions of the
movers, even if the positions of the two movers p1 and p2 are not
identical at any point in time t. If CBS is selected as the path finding
algorithm and a MPC is used for the execution of these paths,
additional constraints can be considered (Figure 3, right). The
algorithm then enables constraint-based motion planning to
ensure a collision-free solution to the MAPF problem.

The CB-MPC framework is a hybrid approach, where ICBS
computes conflict-free paths offline, and CMPC executes these paths
online in real time. The integration process involves converting
ICBS-generated discrete path plans, which may include abrupt
transitions and high acceleration variations, into jerk minimized
paths via a reference trajectory optimizer. This optimizer smooths
the trajectory references, enabling effective execution by CMPC and
assuring feasibility for real-world multi-agent coordination
applications. The CMPC and ICBS are integrated within a
unified CB-MPC framework for MAPF as structurally illustrated
in Figure 4.

The ICBS receives the start positions (SPs) and target positions
(TPs) of all mover agents involved in the MAPF problem. In
addition, a binary map is read out, which indicates whether areas
of the grid contain obstacles or are inaccessible. The conflict-free
paths determined from this are then converted into waypoints
(WPs) for each individual mover. The trajectory optimizer
modifies these waypoints as well as the speed and acceleration
profiles and returns new reference trajectories (xref,i) for each
mover i. These then allow the CMPC to control the state vecors
(x) with the control input vectors (u).

The development of the ICBS is explained in Section 2.1,
followed by a description of the Trajectory Optimizer in Section
2.2 and the CMPC in Section 2.3. Testing of the entire CB-MPC
framework is presented in Section 3.

2.1 Development of a pathfinding algorithm

2.1.1 Conflict-based search
CBS, as a two-level search-based MAPF algorithm, handles

collisions by adding constraints at the high level, while at the low
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level, it computes paths that satisfy these constraints (Sharon et al.,
2015). A constraint specifies that a particular agent cannot occupy a
specific vertex at a specific time.

At the high level, CBS performs a best-first search on the
Conflict Tree (CT) illustrated in Figure 5. Each node in the CT
contains a set of constraints that agents must follow as well as the
current solution for their paths. The root node starts with no
constraints, and each subsequent node adds a new constraint
from a detected conflict. The low-level search independently
finds paths for each agent while satisfying the constraints
imposed by the high-level node. In this work an A* algorithm
was chosen due to its optimality, completeness and flexibility
(Duchoň et al., 2014). A* is a pathfinding method that evaluates
vertices based on their costs to find an optimal path. In this
application of mover motion planning, costs are defined as the
length of the path from initial to target position of a mover, which is
calculated geometrically.

Considering a 3 × 4 grid with two mover agents (M1 and M2),
initially, an individual, shortest possible path is planned for each
agent without any constraints. As shown in Figure 5, the path forM1

is (A3, A2, B2, C2, D2) and the path for M2 is (A1, A2, B2, C2, C3,
D3). When these paths are checked, a conflict is found at A2 at time
t = 1. The low-level search recomputes individual paths for each
agent, considering the new constraint. The CBS high-level search
expands the CT with two child nodes with, each forcing one of the
agents to avoid A2 at t = 1. In the first node, agent M1 is prohibited
from being atA2 at t = 1. The new path forM1 is (A3, B3, B2, C2, D2)
and the path forM2 stays the same. In the second node the path for
M1 stays the same and a new path for M2 is tested. For both new
nodes the paths are again checked for conflicts. If another conflict is
found, more nodes are created and more constraints are added. This
process is repeated until a solution is found where all agents have
collision-free paths and the total cost is minimized. CBS guarantees
optimality and completeness by systematically expanding all nodes

FIGURE 3
Prevention of transition conflicts in CBS-based mover coordination through MPC.

FIGURE 4
CB-MPC structure.
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in the CT until a solution is found or all possibilities are exhausted.
Only the possibility of same-cost solutions remain.

2.1.2 CBS improvement
To integrate A* into the CBS framework, modifications were

made to allow the algorithm to take constraints as inputs and re-plan
paths for multiple constrained agents. Additionally, a specific
adjustment enables agents to leave their target positions if the
start position was the same as the target, thus avoiding
potential deadlocks.

Prior research has introduced numerous techniques to enhance
the performance of conflict-based search. These techniques include
disjoint splitting (Li et al., 2019b), meta-agent utilization (Sharon
et al., 2012), conflict prioritization (Yang and Wooldridge, 2015),
conflict bypassing (Boyarski et al., 2015), and the integration of
heuristics to speed-up CBS (Li et al., 2019a). In this work, Disjoint

Splitting and Dependency Graph heuristics are implemented to
accelerate CBS. Figure 6 illustrates the overall structure of the
improved CBS for MAPF.

Disjoint splitting addresses the inefficiencies of standard CBS
splitting by ensuring that subproblems do not share solutions (Li
et al., 2019b). This method employs both positive and negative
constraints: Positive constraints forcing an agent to be at a specific
vertex at a particular time and negative constraints prohibiting an
agent from being at a specific vertex at a given time. For every
potentially conflict-free plan in a parent CT node, at least one of the
two contraints must be satisfied. This approach is called disjoint
because both contraints cannot be satisfied simultaneously for a
plan. This leads to pruning of nodes, resulting in smaller CTs.

Heuristics are used to enhance the efficiency in selecting possible
nodes to be searched for conflicts for expanding the CT (Li et al.,
2019a). This research tested three established heuristics: Prioritizing

FIGURE 5
Conflict tree.
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Conflicts (PC), Conflict Graph (CG) and Dependency Graph (DG).
The Performance of the heuristics within the ICBS framework was
simultatively evaluated using ten random scenarios per agent, with a
runtime limit of 5 s. The effectiveness of conflict resolution was
tested by comparing the success rates for increasing numbers of
agents for each heuristic. In addition, three different grid
environments (3 × 4, 4 × 8, 4 × 20) were tested, each with and
without the disjoint splitting method. The results shown in
Supplementary Material S1 show the highest efficiency using the
DG heuristics in every scenario. Due to the superior performance of
the dependency graph heuristics combined with disjoint splitting,
these are utilized for the implementation of the CB-MPC.

To illustrate the feasibility, Supplementary Material S2, presents
the pseudo code of the algorithm used. The improvements to the
CBS are based on the approach taken by Felner and Li (Felner et al.,
2018; Li et al., 2019a).

2.1.3 Implementation into a programmable logic
controller environment

To validate the algorithm in a real-world setting, the
Programmable Logic Controller (PLC) environment
TwinCAT3 from Beckhoff Automation (Beckhoff Automation
GmbH & Co. KG, 2025), which includes Beckhoff’s simulation
environment for the XPlanar planar drive system, was utilized. A
TwinCAT program was developed to facilitate data exchange
between the XPlanar system and the algorithm. This program
reads the tile layout, mover dimensions, and positions,
transmitting the binary map for the accessible grid, start
positions and target positions to the algorithm and receiving way
points for collision-free paths in return. These paths are then
converted into reference trajectories for execution by the CMPC;
compare Figure 4.

As a communication interface between TwinCAT and the
algorithm in Python the Automation Device Specification (ADS)
protocol (Beckhoff Automation GmbH & Co. KG, 2025) is utilized.
Upon initialization, the TwinCAT program sends a handshake
signal to the communication program, indicating readiness for
data transfer. Following this, the communication program
converts the algorithm’s instructions into a format compatible
with TwinCAT and transmits them back. This process leverages
ADS functions such as read_by_name and write_by_name for

efficient data access. Figure 7 partially illustrates the class
diagram of the ICBS with PLC communication. Supplementary
Material S3 shows the class diagram in detailed form.
Additionally, a configuration file in XML format is utilized to
define key parameters for the integration, including the AMS Net
ID of the PLC, the selection of heuristics for the algorithm, the
dimensions of the movers, and the overall layout.

The GVL_PlanarDrive receives the results of the algorithm in
the form of lists with velocities and waypoints of the individual
movers, which are written to global variable lists (GVLs). By setting
individual trigger GVLs, individual methods of the MoverControl
class, such as initializations or the execution of the paths, are
activated. In doing so, all current positions of the movers and the
obstacle map states are transmitted to the GVL_MoverInfo. The
PLCDataReader reads these information and passes them back to
the ICBSSolver. The ICBSSolver additionally receives the
information of the XML file and the PLC settings from the
PLCSettingsReader class. The OPC is then specified with these
information and the pathfinding problem is solved. The
calculated paths are then passed to the PLCDataWriter, which in
turn writes the GVLs of the GVL_PlanarDrive.

Additionally, the ICBS algorithm operates on demand, activated
by a user command or a higher-level order. Figure 8 shows the state
chart illustrating the ICBS for planning and executing required
movements and processes. The ADS and algorithm components are
merged and packaged into an executable (.exe) file. Supplementary
Material S4 illustrates the ICBS interface, showcasing the algorithm’s
real-time execution in a path planning scenario.

With the start of the path plan execution, the lists with WPs for
the individual movers are passed to a trajectory optimizer,
whereupon these time-discretized trajectories are executed
by the CMPC.

2.2 Reference trajectory optimization

To ensure smooth and dynamically feasible trajectories within
the CB-MPC framework, the pre-build Minimum Jerk Trajectory
Optimizer, available in MATLAB/Simulink is utilized (The
MathWorks, Inc, 2021). This is particularly important for the
transportation of delicate items, where smooth trajectories are

FIGURE 6
ICBS structure.
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essential to avoid abrupt motions and high acceleration variations.
This optimizer minimizes the jerk, which is the third derivative of
position with respect to time (Lozer et al., 2025). The optimization
problem can be formulated as minimizing the integral of the squared
jerk (Equation 1) over the trajectory duration T:

min
x t( )

∫T

0

d3x t( )
dt3

�������
�������
2

dt (1)

The calculus of variations is used to determine the function x(t)
that minimizes the integral of the squared jerk over the duration of
the trajectory. This process ensures that the resulting trajectory is
smooth by avoiding abrupt changes in acceleration. This approach
shows that the sixth derivative of the position (x) must be zero
(Equation 2):

d6x t( )
dt6

� 0 (2)

This condition implies that x(t)must be a polynomial of at most
fifth order. Thus, a fifth-order polynomial (Equation 3) is chosen to
model the position trajectory, ensuring continuity:

x t( ) � α0 + α1t + α2t
2 + α3t

3 + α4t
4 + α5t

5 (3)

Taking the first and second derivatives, the velocity v(t)
(Equation 4) and acceleration a(t) (Equation 5) are given by:

v t( ) � dx
dt

� α1 + 2α2t + 3α3t
2 + 4α4t

3 + 5α5t
4 (4)

a t( ) � d2x
dt2

� 2α2 + 6α3t + 12α4t
2 + 20α5t

3 (5)

The optimizer ensures that the coefficients α0, α1, α2, α3, α4,
α5 satisfy the boundary conditions for position, velocity, and
acceleration at the initial (t = 0) and final (t = T) times. This
results in a smooth trajectory that complies with dynamic

FIGURE 7
Simplified class diagram showing the communication between ICBS algorithm and PLC.

FIGURE 8
ICBS statechart.
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constraints, minimizing abrupt changes in movement
direction and high acceleration variations, making the
trajectories suitable for real-time execution by CMPC;
compare Figure 9.

The multi-agent path finding problem is initially solved by the
ICBS, presented in Section 2.1. This results in collision-free
trajectories being output as waypoints for all agents involved.
However, these trajectories are not practical for real-world
applications, as they do not prohibit abrupt changes in direction
(see Figure 9, left). For this reason, these individual trajectories are
minimized in terms of their jerks; in other words, the curves are
smoothened and less abrupt (Figure 9, right). These individual
optimized reference trajectories are then passed to the MPC,
which ensures the collision-free execution of the MAPF solution.
This is illustrated in Figure 4.

2.3 Development of a centralized model
predictive control

To implement the CMPC, the acados software package is
utilized (Verschueren et al., 2022). Its core, written in C, enables
the use of optimal control methods for real-time applications,
while interfaces for C++, Matlab, and Python offer versatile
accessibility. These high-level interfaces use CasADi for
modeling nonlinear functions and derivatives, allowing
comparisons with other optimization libraries (Frey
et al., 2023).

The workflow starts by defining the optimal control problem
(OCP) using high-level interfaces, which simplifies the problem
setup. Next, a self-contained C project is generated, which
includes all the necessary functions and solvers needed to
solve the OCP. To use this C project within Simulink, a
MATLAB S-function is built. The S-function acts as a bridge,
allowing Simulink to interface with the C code. This integration
enables testing and validation of the control algorithm within
Simulink. Once the model is successfully tested, the automatic
code generation feature is used to deploy the solution on
TwinCAT for real-time implementation.

2.3.1 Prediction model
The CMPC is designed to control multiple agents by solving a

centralized optimization problem. Each agent, or mover, is modeled
using double integrator dynamics, also known as the point-mass
model, to represent its free movement in a two-dimensional (2D)
plane. In both the simulation and experimental setup, the state
variables (px, py, vx, vy) represent the Mover’s position and velocity,
while the control inputs (ax, ay) represent accelerations. The action
diagram is represented by Figure 10 (left) and a schematic
drawing (right).

The agent state vector (xi) of an individual agent indexed with i
and the individual agent control input vector (ui) are defined and
form the following point mass model (Equations 6, 7):

xi �
xi,1

xi,2

xi,3

xi,4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �
xi,1

xi,2

_xi,1

_xi,2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �
pi,x

pi,y

vi,x
vi,y

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, ui � ui,1

ui,2
[ ] � €xi,1 €xi,2[ ] � ai,x

ai,y
[ ]

(6)

_xi � Axi + Bui 5

_xi,1

_xi,2

_xi,3

_xi,4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
xi,1

xi,2

xi,3

xi,4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ +
0 0
0 0
1 0
0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ui,1

ui,2
[ ] (7)

For the CMPC, the following state-space model is derived to
describe the dynamics of N agents, where each agent i has a state
vector xi of size n and an input vector ui of size m. The overall state
vector (x) and overall control input vector (u) for theN agents are defined
as concatenations of the individual state and input vectors (Equation 8):

x �
x1
x2
..
.

xN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ∈ Rn·N×1, u �

u1

u2

..

.

uN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ∈ Rm·N×1 (8)

The state space representation is given as follows (Equation 9)
and the dynamics of each agent are governed by a common system
matrix A ∈ Rn×n and an input matrix B ∈ Rm×m, constructed as
block-diagonal matrices (Equation 10):

_x � Ax + Bu (9)

FIGURE 9
Schematic representation of the optimized and non-optimized trajectories.
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A �
A 0 . . . 0
0 A . . . 0
..
. ..

.
1 ..

.

0 0 . . . A

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ∈ Rn·N×n·N,B �

B 0 . . . 0
0 B . . . 0
..
. ..

.
1 ..

.

0 0 . . . B

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ∈ Rm·N×m·N

(10)
Each block A in the matrix A describes the internal dynamics of

an individual agent, and each block B in the matrix B describes how
the inputs affect the states of an individual agent.

2.3.2 Cost function
To fomulate the OCP, the following differentziable cost function

(Equation 11) is used that penalizes the running costs ls(x(t),u(t))
and the final stage cost lf(x(tf)). JOCP is the total cost function to be
minimized and thus is set 0 and formulated as follows:

JOCP x t( ), u t( )( ) � lf x tf( )( ) + ∫tf

t0

ls x t( ), u t( )( )dt (11)

subject to:

_x t( ) � f x t( ), u t( ), t( ),∀t ∈ t0, tf[ ] (12)
x t0( ) � x0 (13)

h x tf( )( ) � 0 (14)
g x t( ), u t( )( )≤ 0,∀t ∈ t0, tf[ ] (15)

In this case, the running costs from the initial point in time (t0) to
the final state time (tf) are integrated. ls is the stage cost function,
which depends on the state x(t) and the control u(t). lf is the end cost
portion only depending on the final state x(tf). The differential
equation _x (t) is the dynamic system equation and describes the
momentary change of the state vector. The term x0 defines the initial
state. The function h(x(t)) represents the end condition for the state x
at the end time tf. The inequation g(x(t), u(t)) describes limitations
of the system that must apply over the entire period of time.

For the implementation for model predictive control, the
OCP must be time discretized, assuming the system input is
constant during the sampling period, approximating the input
signal by its staircase form. Therefore the multiple shooting
method (Bock and Plitt, 1984) is used and employed directly
due to the use of Acados. This method discretizes the time
horizon into multiple segments and converts the OCP into a
structured nonlinear programming problem with continuity
constraints, enhancing numerical stability, parallel
computation, and robustness to initial estimations.

min
x ·|k( ),u ·|k( )

∑Z−1
j�1

x k + j
∣∣∣∣k( ) − xref k + j( )����� �����2Q + ∑Z−1

j�0
u k + j

∣∣∣∣k( )�����
− uref k + j( )‖2R + xZ − xref ,Z

���� ����2Qf
(16)

subject to:

x k + j+1 | k( ) � f dis x k + j
∣∣∣∣k( ), u k + j

∣∣∣∣k( )( ), j � 0, . . . , Z − 1 (17)
x k|k( ) � x k( ) (18)

umin ≤ u k + j
∣∣∣∣k( )≤ umax , j � 0, . . . , Z − 1 (19)

xmin ≤ x k + j
∣∣∣∣k( )≤ xmax , j � 0, . . . , Z (20)

xϑ k + j
∣∣∣∣k( ) − xδ k + j

∣∣∣∣k( )����� �����2 ≥d 2
min , ϑ, δ � 1, . . . , N

ϑ ≠ δ, j � 0, . . . , Z
(21)

Equation 16 shows the discretized form of the OCP formulation.
Here, the deviation between the state x and the reference state xref is
minimized, as well as the deviation between the control input u and
the reference control input uref, which is set to zero because there is
no explicit reference and the control effort should be kept as low as
possible. ‖ · ‖2Q and ‖ · ‖2R are weighted quadratic costs, with
weighting matrices Q and R. Instead of integrating over time t,
the time increments k from 0 to Z are summed up. Equation 17
replaces the continuous differential equation, where fdis represents
the discretized model of the dynamics. Equation 18 describes the
initial or current system state. Equations 19, 20 describe the control
input and state restrictions, respectively. These constraints include
the dynamic model of the system, initial state conditions, and box
constraints on both the inputs (acceleration) and states (position
and velocity) to ensure they remain within their feasible bounds. The
position constraints represent the grids’s size where the movers can
operate. Equation 21 shows the collision avoidance constraint,
which prohibits all N agents from reducing their distance to each
other agent below a minimum value dmin. This collision constraint is
further explained in the following.

2.3.3 Collision avoidance constraints
Due to collision avoidance constraints, movers are not allowed

to operate in areas occupied by other movers and obstacles. This
restriction makes the set of their motion non-convex, leading to a
collision avoidance optimization problem that is inherently non-
convex. Consequently, this problem falls into the category NP-hard
problems (Canny, 1988).

Mathematically, the collision avoidance constraint between two
movers M1 and M2 can be modeled using the Euclidean distance.

FIGURE 10
Simplified action diagram of the dynamics of a mover on a planar drive.
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p1(t) and p2(t) denote the positions of M1 and M2 at time t,
respectively. The collision avoidance constraint ensures that the
squared distance betweenM1 andM2 at any time t is greater than the
square of a minimum safe distance dmin (Equation 22):

g x t( )( ) � p1 t( ) − p2 t( )���� ����2 − d 2
min ≥ 0,∀t (22)

In the event that more than two movers are active within a
feasible space, as shown in Figure 11, the collision avoidance
constraint g(x(t)) is extended accordingly for each respective
mover relationship. Further constraints are defined to restrict the
x- and y-dimensions of the feasible space.

Acados uses Sequential Quadratic Programming (SQP) for solving
the OCP. SQP solves nonlinear optimization problems through a
sequence of quadratic approximations, achieving superlinear
convergence for smooth problems (Boggs and Tolle, 1995; Nocedal
and Wright, 2006). This method iteratively linearizes the problem to
update u(τ), efficiently computing optimal inputs. SQP is advantageous
for motion planning in autonomous systems due to its computational
efficiency, predictable load, and manageable memory requirements,
making it suitable for real-time applications in embedded systems
(Nocedal and Wright, 2006). Although Interior Point Methods
(IPM) can application-dependent outperform SQP, their complexity
and higher memory demands limit their practicality in embedded
environments. For real-time tasks, the Real-Time Iteration (RTI)
scheme (Diehl et al., 2005) provides suboptimal solutions in each
time step, ensuring feasibility within small sampling times.

The SQPmethod addresses problems with nonlinear constraints
by iteratively solving Quadratic Programming (QP) subproblems. In
each subproblem, the objective function is approximated
quadratically, and the constraints are linearized. For collision
avoidance constraints, this involves linearizing the squared
Euclidean distance constraint at each iteration and incorporating
it into the QP subproblem. In this context, the High-Performance
Interior Point Method (HPIPM) solver (Frison and Diehl, 2020) is
utilized for solving these QP subproblems.

2.3.4 Implementation workflow
The implementation of the CMPC into a PLC environment from

Beckhoff Automation (TwinCAT) involves multiple integration
steps, using both software and hardware components. Figure 12

shows the toolchain for developing and deploying the
CMPC algorithm.

The described optimization problem is exported to a JSON file,
which serves as a basis for rendering templates via the Tera renderer.
The Acados interface includes a MEX wrapper that, along with the
generated C code, allows for integration with MATLAB. The next
stage involves simulating and deploying the generated C code in
Simulink. Since TwinCAT does not allow direct use of external
libraries, the S-Function builder in Simulink is used to incorporate
the algorithms written in C. This integration is crucial for testing,
validating, and deploying the CMPC algorithm in a simulated
environment. To ensure real-time execution on Beckhoff
hardware, the TE1400 TwinCAT 3 Target for Simulink is used.
This tool generates real-time executable code from the Simulink
models using Simulink Coder, bridging the gap between simulation
and real-world deployment. The result of this automatic code
generation process is a function block that can be utilized within
the TwinCAT environment. This function block is illustrated in
Supplementary Material S5 and encapsulates the entire CMPC
algorithm and provides an interface for integration with other
components in the control system. The block includes inputs and
outputs necessary for executing the CMPC logic, allowing seamless
interaction with the hardware and facilitating real-time control
operations.

3 Testing and validation

To demonstrate the capabilities of the developed CB-MPC
framework, a magnetic planar drive system is utilized with a 3 x
4 tile configuration and with four active movers representing the
agents; compare Figure 2. Physical dimensions are illustrated in
Figure 11. For evaluating the CB-MPC performance regarding
MAPF success rate, computation time and robustness, 10 path
finding scenarios are defined representing different challenges for
the solver. Figure 13 illustrates the setup for each scenario,
highlighting the initial positions (■) and target positions (x) of
each mover (M1 – M4). Movers that are locked in place but are still
part of the MAPF problem are marked with an anchor. Tiles that are
defined as not accessible obstacles are blackened.

FIGURE 11
Mover collision avoidance constraint illustration.
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3.1 Setup and configuration

The formulation of the optimization problem for the
experimental setup is presented as follows. The objective is to
minimize the deviation of each agent’s state and control inputs
from their respective reference trajectories while considering
collision avoidance and constraints on states and control inputs.
The time-discretized OPC is defined as follows (Equation 23):

min
x ·|k( ),u ·|k( ),ϵx,ϵu,ϵc

∑4
ϑ�1

∑Hp

j�1
xϑ k + j

∣∣∣∣k( ) − xref ,ϑ
����� �����2Qϑ

⎛⎝

+ ∑Hp−1

j�0
uϑ k + j

∣∣∣∣k( ) − uref ,ϑ

����� �����2Rϑ

+ ρx,ϑ∑Hp

j�1
ϵx,ϑ k + j

∣∣∣∣k( )����� �����2

+ ρu,ϑ ∑Hp−1

j�0
ϵu,ϑ k + j

∣∣∣∣k( )����� �����2 + ρc,ϑ∑Hp

j�1
ϵc,ϑ k + j

∣∣∣∣k( )����� �����2) (23)

subject to:

xw,ϑ k|k( ) � xw,ϑ k( ), ϑ � 1, 2, 3, 4, (24)
−150 − ϵu,w k + j

∣∣∣∣k( )≤ uw k + j
∣∣∣∣k( )≤ 150 + ϵu,w k + j

∣∣∣∣k( ), w
� 1, . . . , 8, j � 0, . . . , Hp − 1, (25)
90 − ϵx,w k + j

∣∣∣∣k( )≤ xw k + j
∣∣∣∣k( )≤ 870 + ϵx,w k + j

∣∣∣∣k( ), w
� 1, 5, 9, 13, j � 1, . . . , Hp, (26)

90 − ϵx,w k + j
∣∣∣∣k( )≤ xw k + j

∣∣∣∣k( )≤ 630 + ϵx,w k + j
∣∣∣∣k( ), w

� 2, 6, 10, 14, j � 1, . . . , Hp, (27)
−250 − ϵx,w k + j

∣∣∣∣k( )≤ xw k + j
∣∣∣∣k( )≤ 250 + ϵx,w k + j

∣∣∣∣k( ), w
� 3, 4, 7, 8, 11, 12, 15, 16, j � 1, . . . , Hp, (28)

xw,ϑ k + j
∣∣∣∣k( ) − xw,δ k + j

∣∣∣∣k( )����� �����2 ≥d 2
min − ϵc,ϑ,δ k + j

∣∣∣∣k( ), ϑ, δ
� 1, 2, 3, 4, ϑ ≠ δ, j � 1, . . . , Hp (29)

ϵx,w k + j
∣∣∣∣k( )≥ 0, w � 1, . . . , 16, j � 1, . . . , Hp, (30)

ϵu,w k + j
∣∣∣∣k( )≥ 0, w � 1, . . . , 8, j � 0, . . . , Hp − 1, (31)

ϵc,ϑ,δ k + j
∣∣∣∣k( )≥ 0, ϑ, δ � 1, 2, 3, 4, j � 1, . . . , Hp. (32)

Equation 24 declare discrete states for each agent. Equation 25
limits the acceleration of the movers to ±150 mm/s2. Equations 26,
27 limit the accessible area of the planar drive system in X- and
Y-direction. Equation 28 limits the speeds of the movers

to ±250 mm/s. Equation 29 defines the minimum distance that
all movers must maintain to all other movers. dmin is specified to
200 mm during all tests, compare Figure 11. ϵx, ϵu, ϵc are slack
variables that allow for constraint violation within specified bounds,
with corresponding penalty terms included in the cost function to
minimize these violations (Equations 30–32). Slack variables are
relevant because otherwise the optimization solver can become
infeasible during operation. Once the solver is infeasible, it is no
longer able to find solutions. Since real operating conditions are
often more stringent or unpredictable than in the simulation, slack
variables allow boundary conditions to be violated in a controlled
manner. This enables the MPC to work on a real controller.

The state vector for the four movers, with their respective
positions and velocities is given by (Equation 33):

x � p1,x, p1,y, v1,x, v1,y, p2,x, p2,y, v2,x, v2,y, p3,x,[
p3,y, v3,x, v3,y, p4,x, p4,y, v4,x, v4,y] (33)

The Q matrix used for the state weights is a diagonal matrix of
size 16 × 16, where the weights 1 and 0,6 alternate for position and
velocity respectively. This weighting prioritizes the position limits
over the velocity limits. The control input vector is given by
(Equation 34):

u � a1,x, a1,y, a2,x, a2,y, a3,x, a3,y, a4,x, a4,y[ ] (34)

The R matrix used for the accelarations weights is a diagonal
matrix of size 8 × 8 with the following structure (Equation 35):

Q �

1 0 0 / 0
0 1 0 / 0
0 0 0, 6 / 0
0 0 0 0, 6 0
..
. ..

. ..
.

1 ..
.

0 0 0 / 0, 6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R4·4×4·4,

R �

0, 1 0 0 / 0
0 0, 1 0 / 0
0 0 0, 1 / 0
0 0 0 0, 1 0
..
. ..

. ..
.

1 ..
.

0 0 0 / 0, 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R2·4×2·4 (35)

The CB-MPC framework is further configured with the
hyperparameter settings listed in Table 1.

FIGURE 12
CMPC algorithm deployment toolchain for Beckhoff Automation systems.
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3.2 Path finding performance evaluation

Table 2 presents the performance evaluation of the CB-MPC
framework across a set of simple (A1-A5) and complex scenarios
(B1-B5); compare Figure 13. These results highlight the framework’s
ability to manage collision avoidance in MAS under different
conditions.

All scenarios achieved a 100% success rate, indicating that CB-MPC
can reliably finds collision-free paths. Even Scenario B5, where only one
feasible path solution exists, could be solved. The ICBS solution times
range from 0.014 to 5,814 s for the A scenarios and from 0.018 to

848,343 s for the B scenarios, indicating the higher complexity. The
ICBS solution costs range from 11 to 36. The average CMPC
computation times are stable around 20 ms. The makespan,
describing the path execution time, ranges from 16 to 39.1 s.

A video showing the motion planning of the movers for all ten
scenarios is accessible via the following link: https://owncloud.
fraunhofer.de/index.php/s/XRJ02l5Db5MjjOo. This video provides a
demonstration of the CB-MPC framework’s performance across
different scenarios.

In addition to the uninterrupted execution of all scenarios,
another run was performed with all scenarios, in which Mover

FIGURE 13
CB-MPC testing scenarios on a magnetic planar drive system.
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M1 was temporarily blocked during the execution of the paths by
holding it manually in place and then releasing it again after a few
seconds. This simulates an external disturbance. In all scenarios, it
was observed that this disturbance only affected MoverM1 if Mover
M1 did not force other movers to stop due to a blocked path. In no
scenario did the disturbance cause a collision or an error. After the
disturbance, the paths were completed identically to the undisturbed
trial. Themakespan was extended in accordance with the duration of
the disturbance.

The observations regarding the trajectories executed, which
can be seen in the linked videos, are described and
discussed hereafter.

4 Discussion

The successful solution of all scenarios demonstrates the
suitability of ICBS for offline calculation of mover paths and thus
for solving the MAPF problems. The test series with external
disturbance and the result that no collisions or errors were
generated demonstrate the suitability of MPC for the live
execution of the path plans. A proof of principle that CB-MPC is
suitable for motion planning on multi-agent systems was thus
experimentally provided using a magnetic planar drive MAS
demonstrator.

The performance evaluation of the ICBS in Table 2 shows that
the solution of some MAPF scenarios (A5, B1, B3, B4, B5) requires
significantly more computing time (>1 s) and may therefore not be
suitable for applications requiring fast response times. It was
observed that the increased computing time occurs more
frequently with specific properties of the scenarios: Firstly, when
two movers must change positions in a narrow space, which causes
both movers to move further away from their destination to enable
the position swap. Secondly, when movers that have already reached
their destination, must move away so that the other movers can
reach their destination. Thirdly, when only few theoretical solutions
exist for the MAPF problem in general. From these observations, it
can be deduced that the quotient of free space and space blocked by
movers should be above a certain value in order to reduce the
complexity of the MAPF problem. At the same time, it must also be
ensured that there are as few bottlenecks as possible. These
bottleneck locations can be identified by analyzing all durations
that individual tiles are blocked by traveling movers within a MAPF
scenario. This could be visualized with a traffic heatmap. If these two
aspects are considered when designing the layout of the system, the
solution speed can be increased.

The number of agents involved in route planning also affects the
performance of the solver. The scalability of the algorithm is a major
limitation. With increasing the number of movers on the system, the
number of collision constraints grows quadratically, significantly
raising computational complexity. This increase leads to a greater

TABLE 1 CB-MPC hyperparameters.

Parameter Value

Prediction horizon 10

Time horizon 1 s

Sampling time 0.1 s

nlp_solver Sqp_rti (max iteration one)

nlp_solver warm start yes

nlp_solver_tol_stat 1E-3

nlp_solver_tol_eq 1E-3

nlp_solver_tol_ineq 1E-3

nlp_solver_tol_comp 1E-3

nlp_solver step length 1

qp_solver full condensing HPIPM

qp_solver iter max 20

qp_solver warm start 1

regularize method CONVEXIFY

nlp_solver exact hessian False

TABLE 2 Performance evaluation of CB-MPC across different scenarios.

Scenario Success Average ICBS Computation
Time (s)

ICBS Solution
Cost

Average CMPC Computation
Time CMPC (ms)

Makespan
(s)

A1 True 0.014 20 19.71 16.50

A2 True 0.023 12 19.76 16.00

A3 True 0.099 11 19.75 16.10

A4 True 0.034 12 19.75 21.20

A5 True 5,814 18 19.75 26.20

B1 True 50,217 26 19.76 25.90

B2 True 0.018 15 19.75 17.00

B3 True 14,169 34 19.75 35.90

B4 True 228,815 34 20.60 38.20

B5 True 848,343 36 21.31 39.10
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number of optimization variables that the CB-MPC must solve in
each iteration, resulting in higher computational loads. Also, more
SQP iterations are required for the MPC to find acceptable solutions
with more agents. Supplementary Material S6 investigates the
average MPC computation time depended on the number of
agents and shows an exponential growth from 19.7 ms (4 Mover)
to 2,866.9 ms (10 Mover). This would accordingly increase the
MAPF makespan drastically. This underscores the need for
advanced heuristics and distributed control strategies to maintain
scalability and enhance performance. Approaches to modify the
algorithm to a non-optimal solver are also conceivable in order to
increase scalability.

One criticism of this work is that no direct comparison was
made between different established MAPF approaches and the CB-
MPC developed. A direct comparison using the same scenarios
would provide more quantitative statements about the performance
and potentials. Such comparative studies should be carried out in the
future in order to provide evidence that the state of the art
was improved.

5 Conclusion

Building upon the results presented, the CB-MPC framework
demonstrates its capability to handle complex multi-agent
pathfinding and collision avoidance in dynamic environments
and guarantees optimality. The integration of ICBS with MPC
proves to be effective in balancing optimal path planning and
real-time adaptability, which are crucial in modern industrial
applications. CB-MPC allows agents to navigate between stations
and perform nonlinear process steps without collisions. This
adaptability is particularly beneficial in scenarios requiring
customized processes and dynamic routing. The inclusion of a
minimum jerk trajectory optimizer ensures smooth paths and
reduces abrupt movements, enhancing overall system safety.

The main limitations of CB-MPC are linked to its scalability
issues. As the number of agents grows, the framework struggles with
the exponential increase in collision constraints and optimization
variables, impacting real-time performance. Reliance on Euclidean
distance for collision detection may introduce inefficiencies. Overall,
CB-MPC offers a practical approach to multi-agent pathfinding and
collision avoidance but requires further development to address its
scalability limitations.
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