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Alzheimer’s disease (AD) takes a more aggressive course in women than men,

with higher prevalence and faster progression. Amnestic AD specifically targets

the default mode network (DMN), which subserves short-term memory; past

research shows relative hyperconnectivity in the posterior DMN in aging women.

Higher reliance on this network during memory tasks may contribute to women’s

elevated AD risk. Here, we applied connectome-based predictivemodeling (CPM),

a robust linear machine-learning approach, to the Lifespan Human Connectome

Project-Aging (HCP-A) dataset (n = 579). We sought to characterize sex-based

predictors of memory performance in aging, with particular attention to the

DMN. Models were evaluated using cross-validation both across the whole group

and for each sex separately. Whole-group models predicted short-term memory

performance with accuracies ranging from ρ = 0.21–0.45. The best-performing

models were derived from an associative memory task-based scan. Sex-specific

models revealed significant di�erences in connectome-based predictors for men

and women. DMN activity contributed more to predicted memory scores in

women, while within- and between- visual network activity contributed more

to predicted memory scores in men. While men showed more segregation of

visual networks, women showed more segregation of the DMN. We demonstrate

that women and men recruit di�erent circuitry when performing memory tasks,

with women relying more on intra-DMN activity and men relying more on visual

circuitry. These findings are consistent with the hypothesis that women draw

more heavily upon the DMN for recollective memory, potentially contributing to

women’s elevated risk of AD.

KEYWORDS

healthy aging, defaultmode network, sex di�erences, functionalMRI, connectome-based
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1. Introduction

In addition to outnumbering men with Alzheimer’s disease (AD) by 2:1 (‘2022

Alzheimer’s disease facts figures’, 2022), women with AD face faster accumulation

of pathology and more severe illness with the same pathologic burden (Barnes

et al., 2005; Buckley et al., 2018; Edwards et al., 2021). AD specifically targets

the default mode network (DMN), which subserves short-term memory (Greicius

et al., 2004; Sheline et al., 2010; Mormino et al., 2011; Brier et al., 2012). Yet,
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sex differences in the DMN over the course of aging, which may

provide important clues to women’s higher vulnerability to AD, are

poorly understood.

Prior research assessing sex differences in the aging brain has

demonstrated that healthy aging women show lower segregation

of functional networks (i.e., more cross-hemispheric/-module

connections; Ingalhalikar et al., 2014). Women have relatively

higher DMN connectivity overall (Biswal et al., 2010; Ferretti et al.,

2018; Ritchie et al., 2018), and demonstrate higher connectivity

than men in posterior DMN nodes, which relates to short-term

memory performance (Ficek-Tani et al., 2022).

Prediction-based approaches, in which models are built on

training data and tested on unseen data, can help increase

generalizability and reproducibility of findings (Yarkoni and

Westfall, 2017; Scheinost et al., 2019; Poldrack et al., 2020; Marek

et al., 2022; Yarkoni, 2022), and have the potential to generate useful

biomarkers (Gabrieli et al., 2015; Rosenberg et al., 2018).

In this work, we use a predictive modeling-based

approach to robustly characterize sex differences in the

aging functional connectome. We used connectome-based

predictive modeling (CPM) to predict short-term memory

performance scores in a large dataset of healthy adults aged

36–100. We hypothesized that (a) predictive edges would

vary substantially between men and women, (b) predictors

would especially feature the DMN, with women relying more

on within-DMN edges for memory task performance, and

(c) women would show decreased network segregation than

do men.

2. Methods

2.1. Participants

The data used were collected from participants enrolled in the

Human Connectome Project-Aging (HCP-A) study (Bookheimer

et al., 2019). Neuropsychological data were drawn from the

2.0 release, which included updates to these data. Imaging

data were from the 1.0 release of the HCP-A dataset, as raw

imaging data was not updated for the 2.0 release. Imaging data

consisted of 689 healthy subjects aged 36 to 100 from four data

collection sites. See Bookheimer et al. (2019) for full exclusion

criteria. As described previously (Ficek-Tani et al., 2022), we

implemented additional exclusion criteria based on motion (see

below for details), missing data, and anatomical abnormalities.

After exclusion, the remaining sample size was n= 579 (330 female;

249 male).

Participants were well-matched in age, race, ethnicity, years

of education, and handedness, but women outnumbered

and outperformed men in global cognitive function

(Montreal Cognitive Assessment), in-scanner memory task

performance (FaceName task), and verbal learning (Rey

Auditory Verbal Learning Test; Table 1). Participants self-

identified their sex at birth as male or female. While an

“Other” option for sex was offered by the HCP-A study,

no participants chose this option; gender identity was

not assessed.

2.2. Imaging parameters

All subjects enrolled in HCP-A were scanned in a Siemens

3T Prisma scanner with 80 mT/m gradients and 32-channel head

coil. In addition to acquiring four resting-state fMRI (rfMRI)

and three task-fMRI (tfMRI) scans per subject, structural MRI

data [including one T1-weighted (T1w) scan] were also collected

(Harms et al., 2018). In this study, we focus on the seven

fMRI scans.

A multi-echo MPRAGE sequence [refer to Harms et al. (2018)

for scanning parameter details] was used for all T1w scans. A

2D multiband (MB) gradient-recalled echo (GRE) echo-planar

imaging (EPI) sequence (MB8, TR/TE = 800/37ms, flip angle =
52◦) was used for all fMRI scans.

For each subject, four rfMRI scans consisting of 488 frames and

lasting 6.5min each (for a total of 26min) were acquired, during

which participants were instructed to remain awake while viewing

a small white fixation cross in the center of a black background. The

rfMRI scans were split between two sessions that occurred on the

same day, with each session including one rfMRI with an anterior

to posterior (AP) phase encoding direction and one rfMRI with a

posterior to anterior (PA) direction.

The HCP-A includes the following three fMRI tasks,

which were all programmed in PsychoPy (Peirce, 2007, 2008)

and collected with PA phase encoding direction: Visuomotor

(VisMotor), Conditioned Approach Response Inhibition Task

(“CARIT” Go/NoGo task), and FaceName (Bookheimer et al.,

2019). As below, we focus on the FaceName task scan both

because of its relevance to short-term memory performance and

because models derived from this scan outperform models derived

from other scans. In the FaceName task, three blocks (encoding,

distractor, and recall blocks) are repeated twice for each set of faces,

totaling to a single, 276-second run. See Harms et al. (2018) for

full details on the HCP-A structural and functional MRI imaging

parameters, and see Bookheimer et al. (2019) for full details on

tfMRI task administration.

2.3. Image preprocessing

The preprocessing approach has been described elsewhere

(Greene et al., 2018; Horien et al., 2019). MPRAGE scans

were skullstripped with optiBET (Lutkenhoff et al., 2014) and

nonlinearly registered to the MNI template in BioImage Suite

(BIS; Joshi et al., 2011). BIS was used to linearly register each

participant’s mean functional scan to their own MPRAGE scan.

Skull-stripped and registered data were visually inspected for

structural abnormalities and distortions, and participants were

excluded for significant structural lesions including meningioma,

vascular abnormalities or ventriculomegaly significant enough to

distort cortical anatomy, as well as for significant scanner artifacts.

Functional data were motion-corrected using SPM8; participants

whose scans showedmaximummean frame-to-frame displacement

(FFD) above 0.3mm were excluded to limit motion artifacts

(Greene et al., 2018; Horien et al., 2018, 2019; Ju et al., 2020).

Using Wilcoxon rank sum tests, we determined no differences in

mean FFD between female and male subjects across all seven scan
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TABLE 1 Demographics and selected neuropsychological assessment and in-scanner task scores of HCP-A participants included in this study (Costa and

McCrae, 1992; Nasreddine et al., 2005; Bean, 2011; Bookheimer et al., 2019).

Female subjects Male subjects P-value

Total number of participants 330 (57%) 249 (43%) N/A

Age 56.94 (14.03) 58.20 (14.13) 0.284

Race American Indian/Alaska

Native: 1

Asian: 19

Black/African

American: 53

White: 231

More than one race: 18

Unknown/Not

reported: 8

American Indian/Alaska Native: 1

Asian: 26

Black/African American: 34

White: 177

More than one race: 9

Unknown/Not reported: 2

0.167

Ethnicity Hispanic or Latino: 36

Not Hispanic or

Latino: 293

Unknown/Not

reported: 1

Hispanic or Latino: 18

Not Hispanic or Latino: 231

Unknown/Not reported: 0

0.216

Years of Education 15.38 (1.76) 15.62 (1.82) 0.121

Handedness Right: 283

Left: 21

Ambidextrous: 26

Right: 197

Left: 21

Ambidextrous: 31

0.100

MOCA Total (points out of 30) 26.86 (2.24) 26.21 (2.56) 1.24E-3

FaceName Task Total (# face-name pairs recalled, out of 10) 6.97 (2.72) 5.90 (2.96) 1.27E-5

RAVLT Sum of Trials 1–5 (# words recalled, out of 75) 48.22 (9.71) 44.06 (10.50) 1.44E-6

RAVLT Trial 6 (# words recalled, out of 15) 10.13 (2.99) 9.07 (3.31) 7.47E-5

T-tests or chi square tests were performed as appropriate, excluding unknown/not reported values. MOCA, Montreal Cognitive Assessment; RAVLT, Rey Auditory Verbal Learning Test.

types (Supplementary Table 1). Linear, quadratic, and cubic drift, a

24-parameter model of motion (Satterthwaite et al., 2013), mean

cerebrospinal fluid signal, mean white matter signal, and global

signal were regressed from the data as described in Ficek-Tani et al.

(2022).

2.4. Memory performance measures

Because we were interested in predictors of memory

performance, we used performance on the FaceName task

and the Rey Auditory Verbal Learning Test (RAVLT) as

outcomes for our predictive models. For the FaceName task,

participants were shown a total of 10 distinct faces, resulting

in a maximum FaceName-Total Recall (FN-TR) score of 10

correctly identified faces. We also assessed both the learning

(L) and immediate recall (IR) metrics from the RAVLT (Bean,

2011), a standard neuropsychological measure of declarative

memory. In this assessment, a 15-word list is read to the

participant, who is then asked to verbally recall as many

as possible, five times. The total number of words recalled

during this five-trial “learning period” sums to a RAVLT-L

(“learning”) score out of 75 words. After being read a separate

(interference) list and asked to recall it, the participant is

read List A again, and the number of correctly-recalled words

in this sixth trial is collected as the RAVLT-IR (“immediate

recall”) score. RAVLT-IR is a sensitive metric for early-stage AD

(Estévez-González et al., 2003).

2.5. Connectome-based predictive
modeling

To predict memory performance using both rfMRI and tfMRI

data from HCP-A, we used connectome-based predictive modeling

(CPM), the details of which are described elsewhere (Shen et al.,

2017).

In brief, connectivity matrices were constructed from each

fMRI scan using the Shen 268-node atlas (Shen et al., 2013). These

matrices and the memory performance scores of each participant

were used to create our predictive models. Three subject groups

were analyzed: all subjects, female-only, and male-only. Edges from

connectivity matrices for each subject per scan were correlated to

the three aforementioned memory performance measures, totaling

to seven connectivity matrices and three memory scores per subject

(21 total correlated matrices). Motion and age covariates were

also included in the CPM analyses to account for in-scanner head

motion, age, and their interaction in our predictions, as previously

done (Scheinost et al., 2021; Dufford et al., 2022; Horien et al.,

2022).

Using 5-fold cross validation, connectivity matrices and

memory scores were divided into independent training (subjects

from four of the folds) and testing (subjects in left-out fold)

sets. Edge strength and memory were linearly related within

the training set, and using a feature selection threshold of p =
0.01, a consensus connectivity matrix including only the edges

most strongly positively or negatively correlated to memory was

generated. Edge strengths in each subject’s connectivity matrix
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corresponding to the consensus matrix were summed into a single-

subject connectivity value. A predictive model built using the linear

relationship between the single-subject connectivity values and

memory score was applied to the subjects in the testing set to

generate memory performance predictions.

2.6. Model performance comparison

For all subject groups, Spearman’s correlation and root

mean square error [defined as: RMSE (predicted, observed) =√
(1/n

∑n
(i=1) (actuali − predictedi)

2)] were used to compare the

similarity between predicted and observed memory scores to assess

predictive model performance. After performing 1,000 iterations

of each CPM analysis, we selected the median-performing model

to represent the model’s overall performance. To compare model

performances between female and male groups for each fMRI scan,

we used Wilcoxon rank sum tests.

We also tested our models against randomly permuted models

by randomly shuffling participant labels prior to attempting to

predict memory scores. After performing 1,000 iterations of this

permutation, we calculated the number of times the permuted

predictive accuracy was greater than the median unpermuted

prediction accuracy to generate a non-parametric p-value, as done

in Scheinost et al. (2021):

P = (#{rhonull ≥ rhomedian})/1000,

where #{rhonull ≥ rhomedian} indicates the number of permuted

predictions numerically greater than or equal to the median of

the unpermuted predictions. We applied the Benjamini-Hochberg

procedure to these non-parametric p-values to control for multiple

comparisons and correct for 21 tests for each of our three subject

groups (Benjamini and Hochberg, 1995).

2.7. Inter-network significant-edge
analyses

To visualize sex differences at the network level, we first

split the aforementioned consensus matrix into two binarized

matrices (a “positive” matrix containing edge with significant

positive correlations to memory and the other “negative” matrix

of edges with significant negative correlations to memory) for each

predictive model. Categorization of nodes by functional network

was determined using the 10-network parcellation of the Shen 268-

node atlas (Horien et al., 2022). In this network grouping, the

medial frontal (MF) network also includes some temporal and

frontal nodes which often cluster with the DMN. Inter-network

edges were defined as the number of significant edges between each

pair of networks normalized by the total number of edges between

the same network pair. As done in previous work, we defined

edges as “significant” if they appear in at least 2 out of 5 folds in

40% of 1,000 iterations of CPM to minimize noise while retaining

meaningful connections (Rosenberg et al., 2016; Yip et al., 2019;

Horien et al., 2022). In addition to using heatmaps to visualize the

inter-network edges of both female and male groups separately, we

subtracted male-group positive edges from female-group positive

edges (and the same with the negative edges) across corresponding

matrix cells to evaluate the inter-network sex differences. Following

this, we used the same internally cross-validated procedure as

above to apply our sex-based models on subjects of the opposite

sex (i.e., testing male-data-trained models on female subject data,

and vice versa) and see if they were adequate predictors for the

other sex.

2.8. Intra-network significant-edge
analyses

Intra-network analyses were performed similarly to inter-

network analyses above. Edges from binarized positively and

negatively correlated connectivity matrices were summed across

the 5 folds and 1,000 iterations to generate a single value for

each edge. These values were then used to generate the intra-

DMN edge heatmap, with values ranging from −5,000 (maximum

negatively correlated) to 5,000 (maximum positively correlated

value). To evaluate differences in the “top-performing” nodes

according to sex, individual edge values were summed across

each row from the matrices, and divided by 2 to account

for the symmetric nature of the matrix, generating a summed

vector (SV).

2.9. Network segregation analyses

We evaluated network segregation, a measure of the relative

strength of within-network connections to between-network

connections, using a novel association ratio metric. We defined

the association ratio as the weighted sum of all edges within

the network of interest, normalized by the weighted sum of

all edges between this network and the whole set of regions

of interest. Higher association ratio is therefore indicative of

higher network segregation. To compare network segregation levels

between sexes, we calculated and compared (using two-sample t-

tests) the association ratio for certain networks of interest in women

and men for each scan type. Benjamini-Hochberg correction (see

above) was applied to correct for 7 significance tests (for each

model) across the 4 networks.

2.10. Data and code availability

Data from the HCP-A study are openly available (https://www.

humanconnectome.org/study/hcp-lifespan-aging/data-releases).

Image preprocessing was performed using BioImageSuite, a

publicly-available software (https://medicine.yale.edu/bioimaging/

suite/). Scripts for running CPM are available through GitHub

(https://github.com/YaleMRRC/CPM). Other MATLAB scripts for

CPM analyses can be found at https://github.com/frederickslab/

CPM_HCP-A_sex_difference_study. Custom MATLAB colormap

palettes were derived from ColorBrewer (http://colorbrewer.org/;

Brewer, 2022).
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FIGURE 1

Positive and negative matrices from the RAVLT-IR-predicting model showing inter-network connections (number of significant edges normalized by

network size for each network pair) for female and male subjects, as well as the di�erence between both sexes (derived by subtracting male

inter-network edges from female inter-network edges). Both sexes show positive predictors in the intra-DMN edges. Female subjects show more

positive predictors in the intra-VI-network edges relative to male subjects, while male subjects show more positive predictors in the intra- and

inter-visual-(VII and VAs)-network edges relative to female subjects. Negative predictors of both sexes relied on edges between DMN and visual

networks; however, male subjects’ negative predictors relied more on edges between the MF and VII networks than those of female subjects (F,

female; M, male; MF, medial frontal; FP, fronto-parietal; DMN, default mode network; Mot, motor; VI, visual I; VII, visual II; VAs, visual association

areas; SAL, limbic; SC, basal ganglia; CBL, cerebellum; RAVLT-IR, RAVLT-Immediate Recall).

3. Results

3.1. Model performance comparison

Please see Supplementary Methods/Results for details onmodel

comparisons, including comparisons between models derived

separately for each sex. Briefly, we trained and cross-validated

models using functional connectivity data from all 7 scans

to predict memory performance scores. Whole-group models

robustly predicted all memory measures, with accuracies ranging

from Spearman’s rho = 0.21 (RMSE = 3.34, p < 0.0001) to

rho = 0.45 (RMSE = 2.67, p < 0.0001) across all models

(Supplementary Figure 1). Models using the FaceName tfMRI scan

consistently outperformed all othermodels; we therefore proceeded

with models from this scan for the remaining analyses.

3.2. Inter-network significant-edge
analyses

Visualizations of inter-network edges (number of significant

edges normalized by network size) across all FaceName tfMRI

models revealed differences in key edges predicting memory score

for each sex. In particular, edges within the DMN and visual (visual

I [VI], visual II [VII], and visual association areas [VAs]) networks

showed the largest differences (Figure 1, Supplementary Figure 5).

Given previous work showing measures of declarative verbal

memory (including RAVLT metrics) can be predicted from the

gray matter density of DMN structures, and because lower RAVLT-

IR scores are associated with preclinical AD, we concentrated on

the RAVLT-IR predictors derived from FaceName tfMRI models

(Estévez-González et al., 2003; Moradi et al., 2017). In addition to

visualizing the inter-network edges of females andmales separately,

we subtracted male-group edges from female-group edges across

corresponding heatmap cells to evaluate inter-network differences

between the sexes (Figure 1).

Both sexes show positive predictors with intra-DMN edges,

with female scores predicting intra-DMN connectivity more

strongly than those of males. Female positive predictors also relied

more strongly on intra-VI edges than those of males, while male

positive predictors relied more strongly on the intra- and inter-

network connectivity of the VII and VAs networks relative to

those of females. Both sexes displayed negative predictors with

edges between DMN and visual networks; however, males show
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more negative predictors with edges between the MF and VII

networks, as well as between the DMN and VII networks, relative

to females. Additionally, testing our sex-based models on subjects

of the opposite sex revealed that our female models successfully

predicted outcomes for male subjects across all our memory tasks,

while our male models successfully predicted only the RAVLT-L

outcome for female subjects (see Supplementary Table 10 for model

performance statistics).

3.3. Intra-network significant-edge
analyses

Given the preferential contribution of intra-DMN edges to

the female models, we examined all intra-DMN edges and

evaluated their strengths in male and female models. To do

so, we generated a heatmap of intra-DMN edges (Figure 2). In

the RAVLT-IR model, we found that edges from more posterior

DMN nodes were preferentially increased in females as opposed

to males. This trend held true for the RAVLT-L model and FN-

TR models (Supplementary Figure 7). Negatively correlated edges

negligibly contributed to both male and female models (Figure 2,

Supplementary Figure 7). Both sexes displayed strong connections

in the left posterior cingulate cortex (L PCC) and precuneus, known

hubs of the DMN.

To summarize node-level differences, we summed the number

of edges associated with each node and found consistent

female preference for activity of the right posterior inferior

parietal lobe (R pIPL) and left anterior medial prefrontal cortex

(L amPFC)/paracingulate cortex (Figure 2). The R pIPL was

consistently and preferentially elevated in all female models

analyzed (Supplementary Figure 7).

3.4. Network segregation analyses

We then evaluated and compared a metric of network

segregation (see Methods, “Network Segregation Analysis”) within

the DMN and visual (VI, VII, VAs) networks between females

and males, given the strong brain-behavior correlations in

these networks across all memory performance outcomes. Our

analysis demonstrated increased network segregation of the

DMN in females relative to males, and increased network

segregation of VII and VAs in males relative to females

(Table 2). Additionally, these findings echoed our previous CPM

analysis results in that we also observed sex differences in

neurobiological organization.

4. Discussion

We use CPM to identify sex differences in the functional

connectivity underlying memory performance in a large sample

of healthy aging adults. We provide evidence that distinct edges

for men and women predict short-term verbal memory task

performance, and that within-DMN edges contribute more to

memory scores in females than in males. Predictive edges for

males, in contrast, include more edges within and across visual

sensory and association networks. In contrast to prior literature

suggesting globally decreased network segregation in older women

compared with men, we also show higher segregation of the DMN

(but lower segregation of visual sensory and association networks)

in women.

These findings imply that when compared with males, females

have a higher reliance upon connections within the DMN, the

intrinsic connectivity network targeted in AD, in performing

memory-related tasks. Increased DMN connectivity, particularly

in posterior nodes, has been associated with vulnerability to

Alzheimer’s disease (Bookheimer et al., 2000; Filippini et al., 2009;

Sperling et al., 2009; Mormino et al., 2011; Schultz et al., 2017);

increased connectivity in preclinical AD settings is thought to

represent the compensatory response of a network under stress

(Bondi et al., 2005; Filippini et al., 2009; Qi et al., 2010; Mormino

et al., 2011), and symptomatic disease is associated with progressive

hypoconnectivity across the network (Greicius et al., 2004; Sheline

et al., 2010; Brier et al., 2012).

This study and our previous findings in the same dataset

(Ficek-Tani et al., 2022) converge on an emerging narrative of

increased connectivity and functional segregation of the DMN

in aging women. Women rely upon specific DMN edges for

memory performance; connections between the bilateral pIPL

and the two greatest hubs of the DMN, the mPFC and the

PCC/precuneus are the strongest predictors. Our prior work

suggests that women have relatively increased within-DMN

connectivity compared with men, particularly in posterior nodes

and particularly during perimenopausal decades (Ficek-Tani et al.,

2022). Reliance upon intra-DMN edges for memory performance

likely has its advantages: we and others have shown that DMN

connectivity, particularly between posterior nodes, correlates with

memory task performance (Fredericks et al., 2019; Natu et al., 2019;

Kang et al., 2021; Vanneste et al., 2021; Ficek-Tani et al., 2022), and

the literature consistently demonstrates that women outperform

men across the lifespan in tests of verbal episodicmemory (Bleecker

et al., 1988; Herlitz et al., 1997; Golchert et al., 2019). We also noted

that there were more positive than negative correlations for intra-

DMN edges predicting memory performance in both women and

men.We believe this finding reflects the strong andwell-established

positive relationship between connectivity within the DMN and

short-term memory performance (Greicius et al., 2004; Sheline

et al., 2010; Mormino et al., 2011; Brier et al., 2012).When we tested

our female models on male subjects, and vice versa, we discovered

that they both performed well in predicting memory outcomes

for subjects of the opposite sex (Supplementary Table 10). This

suggests that while the models themselves may be complex, there

may be a common “core” architecture that allows for predictive

power across subgroups despite meaningful network connectivity

differences between those subgroups.

We also find relatively greater functional segregation of the

DMN in women than in men. Functional segregation (i.e.,

reliance on within- more than between-network connectivity to

perform a network-associated task) declines across the brain with

aging, and is associated with decreased performance on tests of

attention and memory performance (Chan et al., 2014; Geerligs

et al., 2015; Ng et al., 2016). AD pathology is associated with

decreased functional segregation (Cassady et al., 2021), and prior

work in this field has suggested that women show decreased
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FIGURE 2

Intra-DMN connectivity di�erences between males and females. Intra-DMN edge counts from the RAVLT-IR models were calculated and plotted as a

heat map (female-male edge counts). Red indicates higher female counts and blue indicates higher male counts for each edge (RAVLT-IR,

RAVLT-Immediate Recall; L, left; R, right; dmPFC, dorsomedial prefrontal cortex; MFG, middle frontal gyrus; AG, angular gyrus; aMPFC, anterior

medial prefrontal cortex; PCC, posterior cingulate cortex; pIPL, posterior inferior parietal lobe; PHG, parahippocampal gyrus; vmPFC, ventromedial

prefrontal cortex; CC, corpus callosum; SV, summed vector).

TABLE 2 Network segregation di�erences between female and male subjects.

Scan type Default mode
network (DMN)

Visual I (VI)
network

Visual II (VII)
network

Visual association
areas (VAs)

REST1_AP 3.17 (0.0016) −1.32 (0.1879)† −9.02 (2.69E-18) −4.32 (1.87E-05)

REST1_PA 3.45 (0.0006) −0.40 (0.6920)† −7.79 (3.18E-14) −3.92 (0.0001)

REST2_AP 1.21 (0.2259)† −0.92 (0.3557)† −7.07 (4.42E-12) −5.16 (3.47E-07)

REST2_PA 2.04 (0.0419)† 0.07 (0.9425)† −6.38 (3.66E-10) −2.55 (0.0111)

CARIT 2.57 (0.0104) 2.11 (0.0349)† −5.33 (1.40E-07) −0.54 (0.5864)†

FACENAME 1.18 (0.2397)† 1.74 (0.0821)† −4.46 (9.71E-06) −1.03 (0.3017)†

VISMOTOR 0.20 (0.8399)† −0.47 (0.6360)† −3.33 (0.0009) −3.06 (0.0023)

Two-sample t-tests comparing the association ratios for networks of interest between the sexes revealed increased DMN segregation in female subjects and increased VII and VAs network

segregation in male subjects. Red indicates significantly higher network segregation in female subjects than male subjects and blue indicates significantly higher network segregation in male

subjects than female subjects. We report these results as “t-statistic (p-value)” in the table. †indicates the models that did not survive correction for multiple comparisons.
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functional segregation over the course of aging and during

memory task performance specifically (Ingalhalikar et al., 2014;

Rabipour et al., 2021; Subramaniapillai et al., 2022), potentially

relating to AD vulnerability (Rabipour et al., 2021). We show

that sex differences in segregation are network-specific: women

have relatively decreased segregation of visual sensory and visual

association networks, but increased DMN segregation relative

to men.

5. Limitations and future directions

While the HCP-A dataset has many strengths, it has limitations.

Specifically, while the dataset is large and offers very high-quality

neuroimaging and neuropsychological characterization, it is cross-

sectional, so we cannot assess for longitudinal effects. Second,

amyloid biomarkers are not available for the participants, so we

cannot examine the effect of preclinical AD on the measures of

interest. Third, the average education level of the participants in

HCP-A is high (15.5 years), which may limit the generalizability of

this model to individuals with lower access to education.

In terms of our results, we identify specific edges within

the brain connectome and within the DMN in particular that

contribute to memory performance in women specifically. The

translational impact of these findings will depend on future

work investigating whether these edges share a common gene

expression pattern or other characteristic at the cellular level,

which could be leveraged toward a potential therapeutic target.

Additionally, our analyses suggest that edges between the visual

sensory networks and the cerebellum may play an important

role in memory performance, particularly for women. Future

analyses that parcellate the cerebellum will be important for

interpreting this finding, given that the cerebellum participates

in many intrinsic connectivity networks (Buckner et al., 2011).

Although CPM includes internal cross-validation, ensuring the

robustness of our model, another important future direction is to

test the generalizability of our model in another dataset of healthy

aging. It will also be important to test whether our model can

predict memory performance in individuals with preclinical and

symptomatic AD, in order to assess whether it is able to predict the

cognitive decline associated with symptomatic illness, in addition

to predicting variance in health.

Finally, our work addresses the impact of self-reported sex on

network changes, but AD risk in women also depends upon gender-

based factors such as lack of access to activities which promote

cognitive reserve, such as cardiovascular exercise, occupational

complexity, and educational attainment (Mielke et al., 2014).

Additionally, the interplay of assigned sex at birth and gender

identity was not assessed due to a lack of the required information

in the HCP dataset. While we used self-identified sex to distinguish

subjects, this categorizationmay not capture the complex dynamics

that may contribute to the sex differences described above. Future

work should seek to incorporate other variables, as has been

recently suggested regarding ovarian hormone status (Rocks et al.,

2022), and to incorporate metrics of cognitive reserve.

6. Conclusion

In summary, this study makes three key contributions to our

understanding of sex differences in brain circuitry driving memory

performance, which could have implications for women’s higher

vulnerability to AD. First, we found that women relied more on

within-network DMN edges (specifically bilateral posterior inferior

parietal lobe and its connections to the major DMN hubs, medial

prefrontal cortex and posterior cingulate/precuneus) for memory

task performance than did men. Second, we determined that men’s

memory task performance was predicted by edges distributed

more broadly both within and between visual sensory and visual

association networks and the medial frontal network. Finally, in

contrast to prior literature which suggests increased generalization

of cognitive circuits in aging women, we show that women have

relatively greater functional segregation of the DMN than men

during memory task performance.

This work adds to the growing literature suggesting that

women rely more on the DMN than do men both at rest and

during memory task performance. At rest, women have relatively

higher DMN connectivity (Biswal et al., 2010; Scheinost et al.,

2015; Cavedo et al., 2018; Ritchie et al., 2018; Ficek-Tani et al.,

2022), with higher posterior DMN connectivity particularly during

the menopausal decades (Ficek-Tani et al., 2022); this increased

connectivity correlates with better performance on tests of short-

term memory (Fredericks et al., 2019; Natu et al., 2019; Kang et al.,

2021; Vanneste et al., 2021; Ficek-Tani et al., 2022). This profile is

similar to individuals with preclinical (amyloid-β +) or elevated

genetic risk (e.g., APOE-ε4+) for AD (Bookheimer et al., 2000;

Filippini et al., 2009; Sperling et al., 2009; Mormino et al., 2011;

Schultz et al., 2017).

We need to understand why AD has a more aggressive

phenotype in women. Taken together this work adds to a body of

literature that suggests that women’s relative increased reliance on

within-DMN connectivity could lead to “overuse” and vulnerability

of this network to pathology over time. Future work examining

the common cellular features of the nodes composing women’s

strongest predictive edges have the potential to translate as

therapeutic targets.
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