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Accelerated long-term forgetting:
A sensitive paradigm for detecting
subtle cognitive impairment and
evaluating BACE1 inhibitor
e�cacy in preclinical Alzheimer’s
disease

Masuo Ohno*

Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, United States

Given a long preclinical stage of Alzheimer’s disease (AD) continuum before the

onset of dementia, there is a growing demand for tools capable of detecting

the earliest feature of subtle cognitive impairment and optimizing recruitment

to clinical trials for potentially disease-modifying therapeutic interventions such

as BACE1 inhibitors. Now that all BACE1 inhibitor programs in symptomatic and

prodromal AD populations have ended in failure, trials need to shift to target

the earlier preclinical stage. However, evaluating cognitive e�cacy (if any) in

asymptomatic AD individuals is a great challenge. In this context, accelerated

long-term forgetting (ALF) is emerging as a sensitive cognitive measure that can

discriminate between presymptomatic individuals with high risks for developing

AD and healthy controls. ALF is characterized by increased forgetting rates

over extended delays (e.g., days, weeks, months) despite normal learning and

short-term retention on standard memory assessments that typically use around

30-min delays. This review provides an overview of recent progress in animal

model and clinical studies on this topic, focusing on the utility and underlying

mechanism of ALF that may be applicable to earlier diagnosis and BACE1 inhibitor

e�cacy evaluation at a preclinical stage of AD.
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accelerated long-term forgetting, Alzheimer’s disease, preclinical stage, BACE1 inhibitor,

amyloid-β (Aβ), mouse model, clinical trials

Introduction

The β-secretase BACE1, which initiates amyloid-β (Aβ) production, is a long-standing
prime therapeutic target for Alzheimer’s disease (AD) based on solid evidence that Aβ

increase is the first event driving subsequent pathological changes and cognitive symptoms
(Hanseeuw et al., 2019; Jack et al., 2019). However, BACE1 inhibitors tested to date in clinical
trials have yielded no benefit first in patients with mild-to-moderate AD and more recently
in early or prodromal AD populations (Imbimbo and Watling, 2019; McDade et al., 2021;
Bazzari and Bazzari, 2022). Given Aβ deposition commencing decades before the symptom
onset (Bateman et al., 2012) (Figure 1), symptomatic AD brains already harbor significant
Aβ burden less sensitive to BACE1 inhibitor interventions (Peters et al., 2018) and even if
reduced, downstream detrimental consequences of Aβ may continue. Prior clinical trials
have targeted Aβ reduction at least by∼50% and in many cases by more than 70%, resulting
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FIGURE 1

Time-course changes in cognitive symptoms along Alzheimer’s

disease (AD) continuum. ALF, accelerated long-term forgetting;

SCD, subjective cognitive decline; MCI, mild cognitive impairment.

in discontinuation due to futility or toxicity issues (Imbimbo
and Watling, 2019; McDade et al., 2021; Bazzari and Bazzari,
2022). In particular, cognitive worsening (rather than expected
improvement) was found using the highest dosage of multiple
BACE1 inhibitors. This is most likely reflective of side effects
of overdosed BACE1 inhibitor drugs given that the Icelandic
mutation (A673T) in the amyloid-β precursor protein (APP) gene
resulting in only ∼30% lifelong reduction of Aβ is protective
against AD and age-related cognitive decline (Jonsson et al., 2012;
Martiskainen et al., 2017). Moreover, given that the inhibitor drugs
tested have limited or no selectivity for BACE1 over the isoform
BACE2, we cannot completely rule out the possibility that BACE2
inhibition may contribute to cognitive worsening (Hampel et al.,
2021; McDade et al., 2021). Collectively, low-dose BACE1-specific
inhibitor trials initiated at the earliest preclinical stage of AD is
most promising, while evaluating the cognitive efficacy (if any) in
asymptomatic individuals at a risk of developing AD is challenging
(Mortamais et al., 2017).

Accelerated long-term forgetting (ALF) refers to faster
forgetting of episodic memories over prolonged periods (days,
weeks, months) despite normal acquisition and short-term
retention ranging from 20 to 40min, which is typically used in
clinical practice of objective memory testing (Elliott et al., 2014;
Geurts et al., 2015). In animal models of AD, ALF proves to
represent a sensitive measure to successfully detect subtle cognitive
phenotypes in young 5XFAD and PDAPP transgenic mice that
retain intact hippocampal long-term potentiation (LTP: a synaptic
plasticity model for episodic memory formation) and the ability
to learn contextual and spatial memory tasks (presymptomatic
AD models) (Kimura and Ohno, 2009; Beglopoulos et al., 2016;
Ohno, 2021). Consistent with these findings, emerging clinical
investigations reveal that ALF during longer delays (1 week to 6
months) is one of the earliest cognitive changes that occur at an
asymptomatic stage in ApoE ε4 carriers (Zimmermann and Butler,
2018; Tort-Merino et al., 2021a) and individuals with familial AD
(FAD) (Weston et al., 2018; O’Connor et al., 2020; Yang et al.,
2021) or subjective cognitive decline (SCD) (Manes et al., 2008;

Tort-Merino et al., 2021b), who are still normal in standard or
short-term memory tests (Figure 1). This article reviews recent
advances in this field, which demonstrate (1) distinct functions
and mechanisms underlying ALF and classic hippocampal amnesia
in AD continuum and (2) the utility of ALF and its potential
biomarkers in optimal design of next-generation BACE1 inhibitor
trials at preclinical AD stages.

ALF and the underlying mechanisms in
preclinical AD

The term ALF was previously designated as long-term amnesia
(Kapur et al., 1997; Mayes et al., 2003) that describes a phenomenon
that episodic memories are normally learned and retained for
standard delays around 30min, whereas considerable impairments
are observed if the same tests are given at extended delays ranging
from days to months. This phenomenon was first described and
has been extensively studied in patients with epilepsy (Blake et al.,
2000; Mameniškiene et al., 2020). Recently, ALF has been gaining a
great deal of attention as a sensitive measure for detecting subtle
memory dysfunction in other neurological conditions, including
traumatic brain injury (Lah et al., 2017), stroke (Geurts et al., 2019;
Lammers et al., 2022), limbic encephalitics (Helmstaedter et al.,
2019) and enhanced risks for AD (Manes et al., 2008; Weston
et al., 2018; Zimmermann and Butler, 2018; O’Connor et al., 2020;
Tort-Merino et al., 2021a,b; Yang et al., 2021). ALF associated with
neurodegenerative diseases can be considered as a harbinger of
preclinical dementia and allows the earliest diagnostic detection of
AD way before the onset of clinically measurable cognitive deficits
in standard tests that underestimate subtle cognitive changes.

Does ALF that becomes evident only after extended delays
reflect neurobiological mechanisms that are qualitatively distinct
from those underlying typical forgetting in classical hippocampal
amnesia where memories decay faster within a short time window
(generally∼30min) after learning? (Mayes et al., 2019). Otherwise,
two different types of memory disorders after short- and long-
term delays may represent only quantitatively different expression
of the same underlying mechanisms (Cassel and Kopelman, 2019).
Learning rapidly triggers local changes in activated hippocampal
synapses and episodic memory formation initially requires synaptic
plasticity (e.g., LTP) and structural changes within hippocampal
circuits. As memories mature with time, they increasingly become
independent of the hippocampus and memory traces are gradually
stabilized and eventually consolidated into remote memories
within cortical networks, especially medial prefrontal cortical
regions including the anterior cingulate cortex (ACC) (systems
consolidation) (Frankland and Bontempi, 2005; Tonegawa et al.,
2018; Klinzing et al., 2019). There is currently no consensus about
the exact time delay after which ALF occurs or whether ALF falls
into the time frame of deficient systems consolidation processing.
Importantly, evidence from mouse model studies is accumulating
to support the hypothesis that ALF following intact hippocampal
memory encoding may reflect the impairment of systems memory
consolidation in preclinical AD.

ALF is well characterized in the 5XFAD and PDAPP mouse
models of AD (Kimura and Ohno, 2009; Beglopoulos et al., 2016;
Ohno, 2021). 5XFAD mice represent one of the earliest-onset
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and most aggressive amyloid models based on the overexpression
of human APP and presenilin 1 (PS1) harboring five FAD
mutations (Oakley et al., 2006; Ohno et al., 2006), providing a
presymptomatic AD model at the young age (Figure 2A). 5XFAD
mice developAβ deposition as early as∼2months of age, exhibiting
significant memory impairments on standard hippocampus-
dependent paradigms (e.g., contextual fear conditioning, Morris
water maze) at ∼6 months concomitant with moderate Aβ

accumulation and the onset of Schaffer collateral-CA1 synaptic
dysfunctions (basal transmission and LTP) (Oakley et al., 2006;
Ohno et al., 2006; Kimura and Ohno, 2009; Ohno, 2009; Devi and
Ohno, 2010, 2015; Kimura et al., 2010). Faithfully recapitulating a
time lag between the onset of Aβ build-up in human AD brain and
that of objective memory impairments on standardized cognitive
tests (Bateman et al., 2012), this model has an asymptomatic phase
(2–6 months of age) on hippocampal learning tasks (Figure 2A),
during which Aβ continues to increase dramatically. Remarkably,
while the standard procedure of 24-h memory assessment is
not sensitive enough for detecting subtle impairment in the
contextual fear conditioning in 5XFAD mice at this stage (4
months), ALF is evident when a longer delay (30 days) intervenes
between training and memory testing (Kimura and Ohno, 2009).
Furthermore, a recent study reports that 5XFADmice at∼2months
of age already show significantly impaired LTP in the prefrontal
cortex concomitant with its considerable Aβ deposition (Chen
et al., 2022), preceding the onset of hippocampal LTP deficits
(Kimura and Ohno, 2009). Similarly, pre-pathological PDAPP
mice are also normal in hippocampus-dependent acquisition and
spatial memory performance tested 10min after water maze
training, whereas they show ALF after a long delay (7 days)
(Beglopoulos et al., 2016). Notably, young PDAPP mice exhibit
impairments in 7-day memory retrieval-associated glucose uptake
(not in basal uptake levels) in cortical areas rather than in the
hippocampus. Together, AD mouse models at a very incipient
stage can perform normally in memory tests after a short delay
reminiscent of negative diagnosis of classical hippocampal amnesia
on standard memory tests in asymptomatic AD individuals
(Figure 2B). After a prolonged delay, ALF emerges concomitant
with cortical dysfunction in presymptomatic mouse models of AD,
strongly suggesting that ALF may reflect impaired remote memory
consolidation in the medial prefrontal cortex.

Recent clinical investigations show that ALF over an extended
retention interval is detectable in presymptomatic individuals with
high genetic risks for AD. First, Weston et al. (2018) reported
that asymptomatic carriers of autosomal dominant AD mutations,
who were on average 7 years from estimated symptom onset,
were normal in initial learning and 30-min memory recall on
three tasks (word list, short story, and complicated visual figure)
but showed ALF as compared with non-carrier controls from the
same families when they were tested 7 days later. A correlation
between ALF and SCD was found together with the increased
severity of ALF with proximity to the symptom onset. Similarly,
verbal and visual measures of ALF (7-day delay) were detected in
clinically normal individuals who carried APP/PS1 FAD mutations
but remained intact in the standard 30-min memory performance,
starting approximately a decade prior to estimated symptom onset
(O’Connor et al., 2020). More recently, Yang et al. (2021) identified

a couple of senescence-related blood borne factors whose changes
were closely associated with ALF after 7-day delay, independent of
age, in asymptomatic individuals with FAD mutations. The study
demonstrated a possibility for promising diagnostic biomarkers for
the prediction of ALF at a preclinical stage of AD. It has also been
studied whether ALF may occur in asymptomatic individuals who
carry the principal genetic risk factor for developing a sporadic
form of AD. Apolipoprotein E (APOE) ε4 status is associated with
ALF over 7-day delay in healthy people who have no discernible
change in memory encoding and forgetting over the first 30min
(Zimmermann and Butler, 2018). Notably, the severity of ALF
increases linearly with the number of copies of the APOE ε4 allele.
Furthermore, Tort-Merino et al. (2021a) found ALF over 3 months
in asymptomatic APOE ε4 carriers and a significant negative
correlation between the forgetting rate and the CSF Aβ42/p-
tau ratio, providing evidence that ALF may serve as cognitive
predisposition toward developing AD.

It is important to note that ALF is often observed in parallel
with SCD in presymptomatic carriers of FAD mutations and
APOE ε4 allele (Weston et al., 2018; O’Connor et al., 2020;
Tort-Merino et al., 2021a) (Figure 1). The key features of SCD
include (1) the self-experienced persistent decline of cognitive
function compared with previous normal levels that is unrelated
to acute events and (2) the normal performance on standard
cognitive tests used for classifying mild cognitive impairment
(MCI) (Jessen et al., 2014). Meanwhile, MCI is a clinical condition
that is not only characterized by subjective cognitive complaints
but also confirmed by poor performance on standard memory
assessments. MCI subjects who reach learning criteria equivalent
to healthy controls with additional trials exhibit an increased
rate of forgetting within 30-min delay and more importantly a
greater rate of forgetting is evident at 1-week delay (i.e., ALF)
(Walsh et al., 2014) (Figure 1). However, it seems difficult to
reveal increased forgetting rates over longer delays in MCI patients
compared with age-matched controls without controlling them
for equated initial learning (Grönholm-Nyman et al., 2010; Alber
et al., 2014; Vallet et al., 2016). In comparing between SCD and
MCI subjects, ALF at 6-week delay is detectable in both groups,
while standard 30-min memory testing is sensitive enough to
detect impairments only in the MCI group (Manes et al., 2008). A
recent study also demonstrates ALF over 3 months in cognitively
unimpaired individuals with high SCD ratings, particularly, in
those with abnormal Aβ42 levels (Tort-Merino et al., 2021b).
Given that SCD assessment may be affected by many artifact
factors including the way of quantifying cognitive complaints,
recruitment settings and the threshold used for cognitive normality,
ALF provides a more powerful preclinical cognitive measure that
can detect objectively subtle changes at the earliest stage of AD
continuum. It is tempting to speculate that ALF detectable in
SCD individuals before diagnosis may be associated with altered
functional connectivity in prefrontal cortical areas including the
ACC (Yuan et al., 2022), which shows highest regional Aβ

load associated with local atrophy by PET imaging (Chételat
et al., 2010). The findings support the concept that changes in
different brain structures may underlie two distinct forms of
amnesia, classical hippocampal amnesia (MCI and thereafter)
and ALF at an earlier preclinical stage reflecting impaired
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FIGURE 2

Accelerated long-term forgetting (ALF) as one of the earliest cognitive changes that can be identified in a preclinical stage of Alzheimer’s disease

(AD). (A) The onset of AD-like traits in 5XFAD model mice. (B) Cortical dysfunction-related ALF over extended delays precedes the onset of classical

hippocampal amnesia on standard memory tests with short delays.

cortical long-term memory consolidation. Further investigation of
neuroimaging biomarkers and neural network characterization is
required to finely locate key brain regions responsible for ALF in
preclinical AD.

ALF and potential biomarkers to
evaluate BACE1 inhibitors in
preclinical AD

Although ALF is barely used as a preclinical cognitive marker
to evaluate therapeutic interventions, a recent animal model
study demonstrated that ALF in 4-month-old 5XFAD mice can
be rescued by the selective BACE1 inhibitor GRL-8234 (39-fold
selectivity vs. BACE2) (Chang et al., 2011) administered during
a long delay (28 days) after training in the contextual fear
conditioning (Ohno, 2021). The standard 24-h memory assessment
was not sensitive enough for detecting subtle impairment at this
stage. These findings provide an experimental foundation for the
utility of ALF as an early feature of subtle cognitive impairment

that is applicable to presymptomatic efficacy evaluation of BACE1
inhibitors. Interestingly, 5XFAD mice exhibit age-dependent
increases in serum Aβ42 concentrations up to 4.5 months that
correlate with Aβ accumulation in the brain, while decreased serum
Aβ42 coincides with the subsequent development of widespread
and large plaques (Botella Lucena et al., 2022). It is possible that
an initial increase of serum Aβ42 may represent a biomarker that
correlates with the occurrence of ALF at a preclinical AD phase and
is useful for preventive BACE1 inhibitor evaluation. Meanwhile,
unlike GRL-8234, other BACE1 inhibitor drugs tested to date have
poor or no selectivity for BACE1 over its homolog BACE2 (up to∼3
folds) and their clinical trials at symptomatic AD stages were halted
because of futility or adverse effects including cognitive worsening
at the highest dosage (Imbimbo and Watling, 2019; McDade et al.,
2021; Bazzari and Bazzari, 2022). Given recent evidence for the
physiological role of BACE2 as an AD-suppressor gene (Alić et al.,
2021; Luo et al., 2022), further investigation is required to address
whether cross-inhibition of BACE2 activity by non-selective or
partially selective BACE1 inhibitors may diminish the benefit of
BACE1 inhibition or contribute to the untoward worsening effect
on ALF (if any) in preclinical AD.
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What mechanisms may underlie the occurrence of ALF and
its prevention with BACE1 inhibitors? Among senescence-related
blood borne factors that directly affect neurogenesis and synaptic
plasticity (Villeda et al., 2011; Katsimpardi et al., 2014; Gan
and Südhof, 2019), downregulation of the rejuvenating factor
thrombospodin-4 (THBS4) and upregulation of the pro-aging
factor CC chemokine ligand 11 (CCL11) or growth differentiation
factor 11 (GDF11) in plasma correlate with ALF after 7-day delay
in presymptomatic FAD mutation carriers who are normal on
standard 30-min memory testing (Yang et al., 2021). The findings
indicate that these blood borne factors may serve as potential
biomarkers for ALF, although the underlying mechanisms and
responsiveness to BACE1 inhibitors remain to be determined.

While divergent mechanisms are proposed to account for
forgetting (Davis and Zhong, 2017; Ryan and Frankland, 2022),
Rac1, a small GTPase, plays a key role not only in natural
forgetting in health but also in pathological forgetting in disease.
Interestingly, Rac1 is aberrantly activated by exposure to Aβ

(Manterola et al., 2013) in the brains of young AD model mice
including 3-month-old APP/PS1 and 6-week-old 3xTg-AD as well
as in brain and plasma samples of AD patients (Borin et al.,
2018; Wu et al., 2019). Moreover, Rac1 inhibition rescues faster
forgetting in young APP/PS1 mice that retains intact spatial
learning ability and memory up to 4 h after training in the Morris
water maze (Wu et al., 2019). These results suggest that excessively
activated Rac1-mediated pathways may contribute to ALF in
preclinical AD.

Endocytosis of AMPA receptors containing the GluA2 subunit
from the postsynaptic membrane is known to mediate forgetting
by weakening synaptic connectivity among memory engram
cells (Davis and Zhong, 2017; Ryan and Frankland, 2022). This
mechanism is also involved in physiological forgetting of long-
term memory (Dong et al., 2015; Migues et al., 2016) and
Aβ-induced synaptic depression and dendritic spine loss (Hsieh
et al., 2006). Notably, blocking GluA2-containing AMPA receptor
endocytosis in 1.5-month-old APP23/PS45 mice after a single
inhibitory avoidance training prevents the subsequent long-term
forgetting over 30 days (Dong et al., 2015). In addition to Aβ-
mediated mechanisms, β-secretase-cleaved C-terminal fragment
(β-CTF or C99), an intermittent β-metabolite of APP, may
also contribute to faster forgetting in preclinical AD, via well-
defined endosomal enlargement that precedes Aβ accumulation
and accompanies accelerated endocytosis (Nixon, 2017). β-CTF-
dependent (but Aβ-independent) overactivation of Rab5, a small
GTPase associated with early endosome, has been shown to cause
endosomal abnormalities in neurons from AD patients (Kim et al.,
2016), induced pluripotent stem cells (iPSCs) derived from AD
patients (Israel et al., 2012) and CRISPR/Cas9-generated iPSC
lines carrying FAD mutations (Kwart et al., 2019). Remarkably,
a recent study demonstrates that directly overactivating Rab5
in mice recapitulates many key features of early AD including
enlarged endosome pathology and accelerated endocytosis of
GluA2-containing AMPA receptors (Pensalfini et al., 2020). Given
that both Aβ and β-CTF are responsive to reductions by BACE1
inhibitors that rescues ALF in young 5XFAD mice (Devi et al.,
2015; Ohno, 2021), it is important to explore signaling mechanisms
underlying aberrant AMPA receptor removal associated with
ALF. Further mechanistic understanding of ALF and validated

biomarkers will increase the utility of ALF as a new standard
cognitive measure for earlier diagnosis and BACE1 inhibitor
evaluation in preclinical AD populations.

Discussion

Whereas this review is focused on BACE1 inhibitors whose
efficacy in rescuing ALF has been demonstrated in asymptomatic
AD mouse models (Ohno, 2021), ALF assessment is expected
to provide a great opportunity to sensitively evaluate other Aβ-
reducing interventions such as γ-secretase modulators in a long
preclinical phase of AD continuum. In particular, ALF should
be more powerful in testing preventive Aβ-lowering therapy, if
applied in combination with the use of earliest biomarkers such as
increased blood Aβ42 concentrations indicative of the initiation of
Aβ accumulation in the brain (Botella Lucena et al., 2022).

Now that all BACE1 inhibitor programs in symptomatic and
prodromal AD have ended in failure (Imbimbo and Watling, 2019;
McDade et al., 2021; Bazzari and Bazzari, 2022), trials need to
shift to target the earlier preclinical stage across the AD spectrum
such as secondary prevention (presymptomatic populations) and
primary prevention [before Aβ build-up preceding symptom
onset by ∼15 years (Bateman et al., 2012)] (Figure 1). As a
reliable readout of subtle cognitive impairment that precedes
symptom onset in standard memory tests, ALF is useful for
objectively detecting cognitive benefits (if any) that may be
produced by lower, physiologically relevant levels of BACE1
inhibition (∼30% or even smaller). This idea is supported by
clinical observations that the Icelandic APP mutation (A673T)
that reduces Aβ by 28% is protective against AD and age-
related cognitive decline (Jonsson et al., 2012; Martiskainen
et al., 2017). While ALF represents an easy-to-test paradigm
with additional delayed test(s) for memory recall (ranging from
a week to several months), the standardized procedure (e.g.,
delay intervals, test materials) is instrumental in establishing ALF
as an objective measure for cognitive decline in preclinical AD
populations (Rami et al., 2023).

The major concern over prior clinical trials is that high-dose
BACE1 inhibitor strategies tested to date, which often achieved
>70% Aβ reduction, suffered from the side effects, especially,
unexpected cognitive worsening at the highest dosing of most
BACE1 inhibitors in prodromal AD (Imbimbo and Watling,
2019; McDade et al., 2021; Bazzari and Bazzari, 2022). In this
regard, it is important to note that a growing number of BACE1
substrates besides APP uncover new physiological roles of this
protease (Barao et al., 2016; Hampel et al., 2021). Although
further research is needed, cognitive worsening, which occurs
soon after treatment and is non-progressive and reversible after
withdrawal of high-dose BACE1 inhibitors, may be associated
with synaptic BACE1 substrates such as seizure protein 6 (SEZ6)
involved in maintaining spine dynamics (Filser et al., 2015; Blume
et al., 2018; Zhu et al., 2018a,b), close homolog of L1 (CHL1)
related to axonal organization in adulthood (Ou-Yang et al., 2018;
Vassar, 2019), and so forth. In fact, BACE1 knockouts and BACE1
inhibitors administered at an overdose level toxic to normal
adult mice induce synaptic and/or cognitive adverse effects at
least in part through these detrimental mechanisms. Importantly,
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partial BACE1+/− reduction and lower-dose BACE1 inhibitors
are, however, devoid of such mechanism-based side effects (Ohno,
2016; Zhu et al., 2018b), supporting the promise of a rational,
low-dose approach initiated at the earliest preclinical stage of
AD. As a proof of concept, it was recently demonstrated that
chronic administration of the selective BACE1 inhibitor GRL-
8234 at the safe dosage within ∼50% β-cleavage suppression (Devi
et al., 2015) can rescue ALF over an extended delay in 5XFAD
mice at an asymptomatic stage that retain normal performance
on the standard memory paradigm with a short delay (Ohno,
2021).

One of the weaknesses of current clinical trials is that
determining the efficacy/safety of BACE1 inhibitors largely depends
on final cognitive outputs (i.e., lack of biomarker-based end points).
Further study is required to establish blood-based biomarkers
such as Aβ42 elevations (Botella Lucena et al., 2022) and Aβ

PET imaging analysis in defined brain structures (Syvänen et al.,
2022) that are closely associated with the occurrence of ALF
and its rescue with BACE1 inhibitors. Undoubtedly, more work
also needs to be done to better understand the mechanisms
of cognitive worsening and identify the underlying substrates
that can serve as markers to track side effects of overdosed
BACE1 inhibitors. In this context, given hormetic roles of Aβ

peptides in cognitive and synaptic functions, it should be kept
in mind that BACE1 inhibitors should be given in a way that
would return excess Aβ levels toward normal but certainly not
to below-physiological levels especially when they are applied at
time well before clinical symptoms (Ohno et al., 2004; Ohno,
2016). Collectively, optimal clinical trials should be designed by
initiating interventions with selective BACE1 inhibitors at the
earliest preclinical AD stage, utilizing very sensitive cognitive
paradigms and relevant biomarkers for efficacy, and targeting
safe levels of reduction in β-secretase activity (∼50% or lower)
supported by safety biomarker assessments to avoid potential side
effects. This can be dealt with successfully if cognitively normal

individuals on standard memory testing are reliably diagnosed
as at-risk preclinical AD suitable for preventive BACE1 inhibitor
interventions according to genetic predisposition, ALF assessment
and related biomarker profiles. Advances in this line of research
are highly expected to form the basis of personalized medicine
for AD.
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