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Introduction: Decades of research in population health have established

depression as a likely precursor to Alzheimer’s disease. A combination of causal

estimates and machine learning methods in artificial intelligence could identify

internal and external mediating mechanisms that contribute to the likelihood of

progression from depression to Alzheimer’s disease.

Methods: Wedeveloped an integrated predictivemodel, combining themarginal

structural model and an artificial intelligence predictive model, distinguishing

between patients likely to progress from depressive states to Alzheimer’s disease

better than each model alone.

Results: The integrated predictive model achieved substantial clinical relevance

when using the area under the curve measure. It performed better than the

traditional statistical method or a single artificial intelligence method alone.

Discussion: The integrated predictive model could form a part of a clinical

screening tool that identifies patients who are likely to progress from depression

to Alzheimer’s disease for early behavioral health interventions. Given the

high costs of treating Alzheimer’s disease, our model could serve as a cost-

e�ective intervention for the early detection of depression before it progresses

to Alzheimer’s disease.

KEYWORDS

depression, major depressive disorder, Alzheimer’s disease, MDD to AD progression,

marginal structural model, artificial neural network, predictive model

1 Introduction

Decades of research in population health have established depression as a likely

precursor to Alzheimer’s disease (AD) along with internal and external mediating

mechanisms (Chen et al., 1999; Jorm, 2001; Kessing and Andersen, 2004; Ownby et al.,

2006; Dotson and Beydoun, 2010; Goveas et al., 2011; Köhler et al., 2016; Almeida et al.,

2017; Steffens, 2017). Some of these mechanisms are modifiable if intervened early, e.g.,

deficient serotonin bindings or inaccessible services (Köhler et al., 2016). Further literature

shows that depression is highly prevalent among patients with mild cognitive impairment,
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which may then progress to AD (Figure 1; Barnes et al., 2006;

Geda et al., 2006; Dotson and Beydoun, 2010; Goveas et al.,

2011; Snowden et al., 2015; Ismail et al., 2017; Ding et al.,

2023). Research suggests that depression among patients with mild

cognitive disorders substantially accelerates cognitive decline many

years before the onset of dementia (Snowden et al., 2015). These

findings support the direction of causation (depression then AD)

and suggest a window for treatment (Almeida et al., 2017; Steffens,

2017; Dafsari, 2020). Further research could identify those patients

most likely to develop AD so that timely treatment could be

offered (Thapar et al., 2022). However, investigating each factor

individually is resource-intensive. Further understanding how each

factor interacts with all the other factors is not feasible without

computational assistance. Artificial intelligence models could assist

(Orimaye et al., 2020a).

The present study builds on existing literature seeking to

predict progression from Major Depressive Disorder (MDD)

to AD by integrating artificial intelligence models with more

traditional statistical methods, specifically a marginal structural

model (MSM) and a Multi-Layer Perceptron (MLP) model (Ding

et al., 2023). MSMs are commonly used in healthcare to assess

associative relationships and causal relationships between variables

in observational data. The use of artificial intelligence models in

behavioral health is relatively new (Orimaye et al., 2017; Orimaye

and Wong, 2018). While artificial intelligence models can capture

complex underlying patterns in healthcare data (Orimaye and

Wong, 2018), how those data should be interpreted is not always

clear—i.e., the black box concern. In addition, while artificial

intelligence training data are adequate for determining associations,

they may be limited for identifying causal relationships between

variables without a more rigorous methodology. In healthcare,

such data are often incomplete, raising concerns regarding whether

their findings generalize to the broader population. For instance,

commonly used Centers for Medicare and Medicaid Services

(CMS) Limited Data Sets (LDS) contain incomplete patient data

as, e.g., patients move in and out of enrolment or data are

censored. MSMs often apply inverse probability weighting to

address such confounding biases. Thus, combining MSMs with

an artificial intelligence model may increase prediction power

while reducing common concerns about interpretability and

generalization (Athey, 2015; Wang and Chen, 2019; Prosperi et al.,

2020; Balzer, 2021).

The present study aims to develop an integrated predictive

model (IPM), combiningMSM andMLPmodels, that distinguishes

between patients likely to progress from depressive states to

Alzheimer’s disease better than each model alone. In addition

to including patient factors (e.g., gender, comorbidities, etc.),

we include exogenous factors (e.g., healthcare accessibility) in

this model that research already suggests influence progression.

Our predictive model has the potential to be at the core of an

artificial intelligence-based behavioral analysis and intervention

clinical screening tool that identifies patients who are likely

to progress from depression to AD for early behavioral health

intervention. Using such an integrative approach has previously

proved effective for diabetes care provisioning (Kalia et al., 2022).

To our knowledge, this is the first time such an integrative approach

has been used to predict the progression from depression to AD.

2 Materials and methods

2.1 Study population/datasets

The primary data sources for our study are the de-identified

Medicare inpatient and skilled nursing facility files of the Centers

for Medicare and Medicaid Services (CMS) Limited Use Datasets

(LDS). The dataset contains 6,567,071 Medicare beneficiary claims

from 2012 to 2019, which comprise 5% of the total Medicare

beneficiaries. CMS is a federal health care program in the

United States that is mainly composed of residents who are 65 and

older. From this data set, we identified 282 MDD patients who

progressed to AD and a randomly selected equal number of patients

with MDD who never progressed to AD between 2012 and 2019.

We used the International Classification of Diseases, Clinical

Modification (ICD-CM) coding systems, including ICD-9-CM and

ICD-10-CM, to identify depression and AD diagnoses. The ICD-9-

CM diagnosis applies to data from 2012 to 2015, and the ICD-10-

CM diagnosis applies to data from 2016 to 2019.

Together with the CMS LDS, we used the county-level Health

Professional Shortage Areas (HPSA) classification to identify the

shortage of health professionals in each patient’s county and

the 2013 county-level Economic Research Service Rural-Urban

Continuum Codes (RUCCs) to classify whether an observation is

from a designated rural or urban county (Hardeman et al., 2022;

Tan et al., 2022). The Office of Management and Budget uses the

RUCC to classify large metros with at least 1 million residents

and small metro areas with <1 million residents as urban. Other

non-metropolitan regions are classified as rural.

2.2 Study variables

2.2.1 Outcome variable
We measured the outcome variable as a binary representation

of patients who, between 2012 and 2019, made at least one

claim for depression and later made at least one claim

for AD. We excluded observations where claiming an AD

diagnosis precedes a depression diagnosis. Thus, each patient’s

MDD diagnosis must precede the AD diagnosis within the

longitudinal 8-year period. Further, the underlying unique

pattern for predicting a future outcome (progressed to

AD or not) is captured in the variability of the predicting

variables, many of which increase or decrease over a

longitudinal period.

2.2.2 Predictor variables
Predictor variables include demographic variables: age, gender,

race, and rural-urban location. The patient’s location was included

because there is growing evidence of increasing disparities in

the prevalence of AD between the urban and rural parts

of the United States (Bradford et al., 2009; Mehta, 2017;

Zissimopoulos et al., 2018; Jack et al., 2019; Orimaye et al.,

2020b). Additional predictors include the HPSA classification

that captures counties with shortages of health professionals

for access to early and preventive behavioral health services,
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FIGURE 1

A representation of the major depressive disorder (MDD) to Alzheimer’s disease (AD) continuum indicates a potential intervention window to detect

patients with the likelihood of progression.

including mental and behavioral health practitioners, dentists,

and primary care providers. The HPSA classification includes

a whole shortage area (the entire county is underserved

with health professionals), a partly shortage area (the county

has some health professionals), and no shortage (the county

has substantial health professionals). Research has shown that

accessibility to early detection through professional healthcare

services provides effective treatment strategies for preventing

AD (Eichler et al., 2015; Orimaye et al., 2017, 2020a; Dafsari,

2020).

Other variables include Medicare utilization days count

after MDD diagnosis through inpatient hospital admission

or residence at a skilled nursing facility, any comorbidity

diagnoses secondary to or co-occurring with the primary major

depressive disorder (MDD) diagnosis, the count of claims for

MDD diagnosis indicating the probable number of patient-

provider visits for pharmacological or non-pharmacological

intervention, and a follow-up visit variable that indicates whether

patients made subsequent claims or visits after their first

MDD diagnosis.

2.3 Assessment and diagnosis of
depression

We operationalized MDD as clinical depression that includes

all three severity levels of depression (mild, moderate, and

severe) for single (F.32) and recurrent (F.33), including

recurrent brief depressive episodes (Hasin et al., 2018). We

consider 296.2X for ICD-9-CM and the F.32.X for ICD-10-

CM (Association, 2015). According to the DSM-5, MDD is

characterized by a minimum of five depressive mood symptoms

presenting as feelings of sadness, emptiness, hopelessness,

tremendous weight loss or daily bidirectional changes in

appetite, insomnia or hypersomnia, agitation, fatigue, feelings

of worthlessness, reduced cognitive or executive functions, and

thoughts of suicide.

2.4 Assessment and diagnosis of
Alzheimer’s disease

Using the ICD codes in the CMS LDS, we identified AD

with ICD-9-CM code 331.0 and ICD-10-CM codes G30.0, G30.1,

G30.8, and G30.9 (Sachdev et al., 2014). Based on the DSM-5,

AD is a progressive neurodegenerative disease that causes the

death of nerve cells in various parts of the brain, mainly in the

frontotemporal region. This loss of function results in a decline of

cognitive abilities such as memory and language.

2.5 Multi-layer perceptron

We learned the underlying representation of the different levels

of abstraction of the covariates and predictors using an efficient

backward propagation (backpropagation) method for the Multi-

Layer Perceptron (MLP) deep learning algorithm (Zhou et al.,

2021). The backpropagation method uses the chain rule, enabling

the MLP to systematically understand the underlying structure

in reverse order, beginning from the output layer of the network

(outcome variable) to the input layer (covariates and predictors).

Thus, the MLP considers the complex underlying representation

of the observational data and the contextual interaction among the

covariates and predictors, often challenging to identify by standard

regression models and incredibly difficult to calculate manually.

The underlying abstraction of the data is captured as the weights

connecting several internal layers of the predictor and covariate

structures. A unique underlying weight structure adequately

predicts the progression from depression to AD. Similarly, the

control group, non-progressive depression (no progression from

depression to AD), has an underlying weight structure, which is

inherently different from the progression group.

We performed a grid search to identify optimal values

for the MLP. Parameter values include the rectified linear
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unit (ReLU) activation function, the limited-memory Broyden–

Fletcher–Goldfarb–Shanno (lbfgs) solver, an alpha of 1e-8,

tolerance level of 1e-3, learning rate initialization of 0.1, hidden

layers of 6, max iteration of 1,200, and a random state of 4. ReLU is

known for its exemplary performance in computing the predicted

probabilities for the underlying weight structure (Hara and Saito,

2015). Also, the lbfgs is known for its efficiency on small to medium

datasets, as observed in our training set. Finally, we trained theMLP

model on 80% of the dataset and tested it with the remaining 20%.

The proposed fully connected structural representation of the

observational data using the MLP architecture is presented in this

section. With the predictors and covariates fed as inputs to the

network structure, the hidden layer helps compute the weights

using a specified activation function. The weights capture the

underlying pattern within the data. The MLP then classifies the

output as one of the outcome categories. Figure 2 depicts a simple

three-layer structure of an MLP model.

2.6 Marginal structural model

MSM is a class of causal models on observational data, which

accounts for time-varying confounders when examining the effect

of a time-dependent exposure. Its use has been encouraged to

eliminate bias in observational data (Athey, 2015; Prosperi et al.,

2020).

Thus, we present the causal model as a directed acyclic

graph (DAG). The DAG indicates the time-varying covariates,

confounders, and the underlying connection with MDD diagnosis

and the risk of progression to AD. In the DAG, X indicates the

factors affecting the progression from MDD to AD, E denotes the

exposure for having been diagnosed with MDD, U is the unknown

factor(s) affecting the outcome, and Y is the outcome, which is

the progression from MDD to AD. The DAG shows that the

probability of being diagnosed with MDD at E(0) is conditioned on

covariates and confounding factors X(0) in the data. E(1) and X(1)

are conditioned on E(0) and X(0). The inverse of these conditional

probabilities of receiving exposure E(1) given E(0) and X(0) are

referred to as the inverse probability of treatment weights (IPTW;

Austin, 2016). A priori, the IPTW for the MSM is calculated using

the following equation:

IPTW =

T∏

t=0

P(Et|Et−1,X0)

P(Et|Et−1,X0,Xt−1)
(1)

where t indicates the time lag in years for T number of years with

t = 0 as the baseline year and t − 1 as the 1-year time lag, Et
indicates the MDD diagnosis at a particular time or time lag in

years. X is a set of time-varying and non-time-varying confounders.

The conditional probabilities for the numerator and denominator

were computed using the predicted probabilities from a logistic

regression model that controls for the non-time-varying and time-

varying confounders. Finally, the IPTW computes a stabilized

weight that controls for time-varying confounding variables. It

provides better causal estimates on observational data. Figure 3

depicts a simple MSM.

2.7 Integrated predictive model (IPM)

Our integrated model combines the MSM and MLP models

using an ensemble learning method called the Gradient Boosting

Classier (GBC;Wade, 2020). This method uses an additivemodel to

reflect the contribution of each model. Hyperparameter tuning was

performed to control overfitting by introducing randomness to the

model using a 60% subsample of the training set for each boosting

iteration without replacement. Thus, the parameters for the GBC

include random_state = 28, n_estimators = 100, learningrate =

0.01, max_depth = 3, and subsample = 0.6. Also, each model in

the ensemble model used the same training data. The integrated

prediction for progression from MDD to AD is computed using

Equation 2 as follows:

IPMi = [pANNi, pMSMi] (2)

where IPMi is the integrated prediction model for the i-th

observation, pANNi indicates the MLP model prediction for the

i-th observation, and pMSMi is the MSM prediction for the i-th

observation. Thus, we used the IPM to classify unseen observations

likely to progress from MDD to AD. The IPM weighs the

predictions from the pANN and pMSM models and effectively

integrates them as features for the final predictive outcome. The

predictive features from each model represent varying aspects

of the underlying patterns of the data. More importantly, the

MSM features capturemarginal relationships between the variables,

while the MLP features capture more complex, non-linear patterns

from the data. Therefore, the IPM leverages the diverse feature

representations to make the final predictions.

Further, we evaluated the model using the Area Under the

Curve (AUC), accuracy, precision, recall, and the f1-score (Jiao,

2016; Carrington et al., 2022).

2.8 Sensitivity analysis

We performed sensitivity analysis (SA) as part of the safeguards

for prediction modeling and explainable artificial intelligence

models from observational data (Smith, 2021). Specifically, we

demonstrated the robustness and precision of the IPM using

external validation techniques (Peters and Bühlmann, 2016).

Thus, we deliberately distorted the original dataset by randomly

replacing 40% of the data with missing values across all the

predictors. Further, we used the Markov Chain Monte Carlo

multiple imputation technique to impute the missing values using

the original data’s predictive distribution (multivariate normal

distribution; Rezvan and Lee, 2015). We then evaluated the

IPM on the imputed dataset and compared findings to the

original dataset.

2.9 Statistical analysis and machine
learning platforms

To show the similarity between the characteristics of patients

who remained MDD and progressed to AD, we conducted the

chi-square test of independence on all the categorical variables
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FIGURE 2

A sample representation of the proposed Multi-Layer Perceptron (MLP) with one hidden layer of four units. ADRD means Alzheimer’s disease (AD)

and related dementia, often used interchangeably with AD alone.

FIGURE 3

The directed acyclic graph (DAG) describes the relationship between the exposure, covariates, time-varying predictors, and progression from major

depressive disorder (MDD) to Alzheimer’s disease (AD).

(age, gender, race, rural-urban, HPSA, comorbidity, and follow-

up visit). Further, we performed a two-sided independent

sample t-test on all numerical variables (follow-up visit and

count of claims for MDD). We conducted t-tests, chi-square

tests, and logistic regression models for computing the IPTW

stabilized weights (Equation 1) using the Statistical Analysis

Software (SAS) version 9.4 on SAS Studio. All statistical tests

were performed at a 95% confidence interval (CI). We also

used Python 3.12.1 to develop the MSM with the Weighted

Least Squares (WLS) estimation function of the statsmodels

module version 0.15.0. The WLS function takes the IPTW

as weights to fit the MSM and generates the predictive

probabilities. Finally, we used the Scikit-learn version 1.1

Python machine learning module to implement the MLP

model and the Gradient Boosting Classifier that performed the

IPM. Note that 80% of the patients per group were used

as the training set. There were 282 beneficiaries per group

(remained MDD vs. progressed to AD), which equates to

∼226 patients per group for training and ∼56 patients for

testing. The exact proportions were used across the IPM, MSM,

and MLP.

3 Results

3.1 Sample characteristics

Table 1 shows the descriptive characteristics of the samples used

in developing our model. A total of 282 unique patients met the

definition of the outcome variable by progressing fromMDD to AD

diagnosis. A randomly selected group of 282 patients who remained

MDD as of 2019 was used as a control group. Patient demographics

were broadly similar across groups par the statistical significance

tests at 95% CI. Descriptively, there were more older patients

who progressed to AD compared to those who remained MDDs.

Both groups contained a higher percentage of female than male

patients (remained MDD 59.22% and progressed to AD 65.96%).

White was the most common ethnicity in both groups (remained

Frontiers inDementia 05 frontiersin.org

https://doi.org/10.3389/frdem.2024.1362230
https://www.frontiersin.org/journals/dementia
https://www.frontiersin.org


Orimaye and Schmidtke 10.3389/frdem.2024.1362230

TABLE 1 Descriptive characteristics of the sample.

Predictors Remained MDD (N = 282) Progressed to AD (N = 282)

N % N %

Age∗

<65 117 41.49 32 11.35

65–69 17 6.03 30 10.64

70–74 6 2.13 44 15.6

75–79 100 35.46 66 23.40

80–84 28 9.93 62 21.99

>84 14 4.96 48 17.02

Gendera

Male 115 40.78 96 34.04

Female 167 59.22 186 65.96

Racea

White 241 85.46 245 86.88

Black 29 10.28 27 9.57

Others 12 4.26 10 3.55

Rural-urban∗

Rural 233 82.62 204 72.34

Urban 49 17.38 78 27.66

HPSAa

None 30 10.64 32 11.35

Whole 94 33.33 73 25.89

Partly 158 56.03 177 62.77

Comorbiditya

None 78 27.66 64 22.70

One or more 204 72.34 218 77.30

Follow-up visita

At least two visits 69 24.47 66 23.40

No follow-up visit 213 75.53 216 76.60

Mean ± St. dev

Utilization days count after MDD diagnosis 9.65± 9.55 10.90± 8.39

Count of claims for MDDa 1.78± 3.03 1.58± 2.63

∗Statistical significance difference observed between “Remained MDD” and “Progressed to AD” at p < 0.05.
aNo statistical significance observed.

MDD 85.46% and progressed to AD 86.88%) groups. Most patients

lived in rural locations (remained MDD 82.62% and progressed to

AD 72.34%), experiencing partial healthcare shortages (remained

MDD 56.03% and progressed to AD 62.77%). Both groups utilized

healthcare services with similar frequencies (remained MDD 9.65

days and progressed to AD 10.90 days).

3.2 Model performance and clinical
relevance

Table 2 shows the performance of the MSM, MLP, and

IPM on 20% held-out test data. In terms of predicting MDD

patients who progressed to AD, the MSM outperformed

the MLP across all the statistical measures except precision.

However, the IPM showed improved model performance

across all the statistical measures compared to the MSM

or MLP. We observed that the IPM showed a higher

precision in detecting patients who remained MDD

than those who progressed to AD. Figure 4 shows the

graphical representation of the area under the curve (AUC)

measure of clinical relevance, depicting the differences

between the predictive effectiveness of the MSM, MLP,

and IPM. Only the IPM achieved substantial clinical

relevance when considering the AUC measure above 80%

(Verbakel et al., 2020; Carrington et al., 2022).
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3.3 Influencing variables in the IPM

We evaluated the trained models to identify influencing

features and their significant contributions to the IPM. Table 3

shows the ranking of features by importance to the ensemble

model. We ranked the MSM features using the marginal structural

model’s weighted least square regression coefficients. Additionally,

we ranked the MLP features by computing the feature importance

based on the sum of absolute weights for each input feature

connected to the first hidden layer of the neural network.

Significant coefficients and weights were identified at p < 0.05.

In determining significant variables, the results of the MSM-

fitted model generate the coefficients and the corresponding p-

values. However, for computing p-values for the MLP, we used an

independent t-test to reject the null hypothesis that the mean of the

feature weights is zero.

Four variables significantly influence the MSM model, with

three of the four ranked as the top three features. They include, in

order, any comorbidity diagnoses secondary to or co-occurring with

MDD, residing in a rural location, age, and Medicare utilization

days count after MDD diagnosis. On the other hand, race is the

only significant feature in the MLP model, but it contains two of

the four MSM top-ranked features in its top four ranked features

(comorbidity and rural location). Thus, we show that the MSM

features compensate for the bias in the IPM as they capture the

underlying patterns in the data.

3.4 Error analysis

We performed an error analysis for the three models using

the respective confusion matrices generated on the test data

alone. Again, each model was trained on a separate training set

independent of the test set. We used each model’s confusion matrix

to compute the models’ overall precision, recall (sensitivity), and

specificity. The IPM shows 89.8% precision (53 true positives and 6

false positives), showing a minimal rate of false positives compared

to MSM’s 71.2% (42 true positives and 17 false positives) andMLP’s

52.5% (31 true positives and 28 false positives). However, the IPM

has a slightly low recall, 75.7%, but 86.0% specificity compared to

its precision value. MSM and MLP showed the same recall values

at 66.7 and 66.0%, but the MSM has a moderately higher specificity

(66%) than the MLP (57.6%). Thus, the IPM shows evidence of a

low rate of false positives (wrong predictions) among patients who

remained MDD while correctly identifying patients who are likely

to progress to AD the majority of the time.

3.5 Results of the sensitivity analyses

Tables 4A, B show the results of the Sensitivity Analysis (SA)

performed on the imputed data of the original sample using the

IPM and anMLP-only model. The IPMmaintained its effectiveness

and clinical relevance in predicting patients progressing to AD. The

AUC clinical relevance measure remained above 80% (Figure 5A).

Also, the IPM showed a high precision value of 82% despite the

distortion in the data.
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FIGURE 4

Clinical relevance with ROC curves, (A) ROC curve for the MSM, (B) ROC curve for the MLP, (C) ROC curve for the integrated predictive model.

TABLE 3 Ranked features by importance to the ensemble model.

Rank # MSM features MSM coe�cient MLP features MLP abs. weight

1 Comorbidity∗ 0.145 Comorbidity 4.600

2 Rural-urban∗ 0.142 Follow-up visit 4.303

3 Age∗ 0.089 HPSA 4.234

4 HPSA 0.036 Rural-urban 3.731

5 Gender 0.015 Gender 3.453

6 Utilization days∗ 0.005 # of MDD diagnosis 3.417

7 Follow-up visit 0.001 Race∗ 2.874

8 # of MDD diagnosis −0.005 Age 2.854

9 Race −0.030 Utilization days 1.279

∗p < 0.05.

Furthermore, Figures 5A, B demonstrate how the MSM helps

with bias removal in two ways: first, by modeling with the IPTW for

estimating treatment effects. The MSM features comprise IPTW,

which computes a stabilized weight that controls for time-varying

confounding variables. We emphasize that using IPTW has been

proven to eliminate bias compared to using ordinary variables

as feature representation (Athey, 2015; Prosperi et al., 2020).

Second, the sensitivity analysis confirms the effect of the estimated

treatment effect on the IPM by removing the IPTW from the model

and testing on the imputed dataset. Compared to the sensitivity

analysis results with the IPM, the MLP-only model showed a lower

AUC (Figure 5B). This shows the benefit of the removed IPTW

features as a bias-removing mechanism.

4 Discussion

In this study, we demonstrated the effectiveness of a clinically

relevant integrated predictive model (IPM) over a marginal

structural model (MSM) alone or the Multi-Layer Perceptron

(MLP)model alone. Our findings suggest that the IPM can combine

the strength of the other models to differentiate patients diagnosed

withmajor depressive disorder (MDD) who are likely to progress to

Alzheimer’s disorder (AD) from those who do not. Below, we briefly

review the relevance of these findings in light of previous research

and highlight the potential benefits of future clinical practice.

The effectiveness of using artificial neural network models, like

our MLP algorithm, in predicting health outcomes is an attractive

idea (Orimaye and Wong, 2018; Zhou et al., 2021). However, the

strength of an MLP predictive model is better realized on large

datasets. In this study, the temporal gap between MDD and AD

diagnosis limits the number of patients that meet the definition

of the outcome variable (N = 282). Nonetheless, the statistical

measure of precision demonstrated by the MLP model (Table 2) is

on par with the MSM (67 vs. 66%). Further, the AUC measure of

clinical relevance for the MLP model is only two points lower than

the traditional MSMmodel (68 vs. 70%).

Clinical support for combining artificial intelligence models

with other statistical models requires careful analysis and validation

across different statistical measures. Previous research focused on

diabetes (Kalia et al., 2022). Our study focused on predicting AD.

Future studies may develop models for other diseases. Recent

studies have attested to the effectiveness of using an ensemble of

models to create an integrated predictive model (MacKay et al.,
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2021). In particular, the gradient-boosting classification algorithm

used in combining the MSM and MLP predictive probabilities

has a track record of reliability in healthcare data (Zhang et al.,

2019; Rufo et al., 2021). The literature attributes the effectiveness of

gradient-boosting classifiers to the careful combination of several

weak decision tree learning methods to create a more robust

decision tree with better predictive accuracy (Wade, 2020).

The precision of the IPM in predicting progression from

depression to AD supersedes that of MSM and MLP by at least 5

points. Effective classifiers tend to have similar precision and recall

values. We believe that the limited sample size for the outcome

can explain the gap between the precision and recall measures

for the IPM (71 vs. 90%). Nevertheless, the F1-score, accuracy,

and AUC statistical measures for the IPM demonstrated robust

predictive performance compared to the MSM or MLP alone.

TABLE 4 (A, B) Model performance from the sensitivity analysis using

imputed data (N = 564).

Statistical
measures

Remained MDD Progressed to AD

(A) Sensitivity analysis—MLP and MSM

Precision 0.76 0.82

Recall 0.87 0.68

F1-score 0.81 0.74

Accuracy 0.78

AUC 0.90 (CI: 0.84 – 0.96)

(B) Sensitivity analysis—without MSM

Precision 0.57 0.49

Recall 0.40 0.66

F1-score 0.47 0.56

Accuracy 0.52

AUC 0.61 (CI: 0.51 – 0.72)

Bold values highlight differences in the performance of the three models.

More importantly, findings from the sensitivity analysis further

attest to the robustness of the IPM model. Despite the distortion

introduced to the data, the IPM showed a substantial AUC close

to the AUC measured on the original dataset (Table 4A). With

only 60% of the distorted sensitivity analysis data maintaining an

actual discriminant pattern, we believe the IPM model correctly

emphasizes precision using only the portion of the data exhibiting

discriminant features.

The IPM could form a part of a clinical intervention screening

tool that identifies patients likely to progress from MDD to AD for

early behavioral health interventions. In addition to other freely

available datasets used in this study, we anticipate future research

sponsorship by the CMS or one of its agencies such that access to

the entire CMS Medicare data would be free for large-scale model

development. Using the model on electronic medical records in

real-time could save health systems and CMS costs by identifying

patients potentially in need of early behavioral health intervention

before they progress to AD. Given the high costs of treating AD

(Lynch, 2018), ourmodel could be cost-effective. However, how this

tool is sustained across time and what interventions are offered are

matters for future research.

This present study is not without limitations. First, the CMS

LDS dataset used in this study has inherent limitations, which are

popularly discussed in the literature (Lee et al., 2019; MacKay et al.,

2021; Velasquez and Orav, 2023). The CMS LDS dataset does not

provide the clinical diagnostic criteria and instruments for any

disease outcomes (MDD, AD, and other comorbidities). Second,

the lack of continuous enrollment for some eligible Medicare

beneficiaries creates censoring problems that are challenging to

capture. For instance, the data failed to capture why some patients

diagnosed with MDD did not make subsequent claims or visits

after their first diagnosis. Whether the patients stopped because an

intervention (treatment) worked after their first diagnosis or they

stopped because they did not want to pursue therapy is unclear.

Third, the control group was never matched using statistical

methods such as propensity score matching (Caliendo, 2008).

Instead, we randomly selected an equal number of MDD patients.

FIGURE 5

(A) ROC curve of the IPM on multiple imputation data. (B) ROC curve of the MLP model on multiple imputation data.
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In addition to the many practical limitations for creating a set of

balanced covariates across demographics such as age and race in

healthcare research (Reiffel, 2020), a matched set of observations

will likely limit the variability of the model, thereby reducing the

generalizability. Also, the intention of this study was not to estimate

the effect of an intervention as often required in targeted quasi-

experimental studies on observational data (Reiffel, 2020). Fourth,

unlike the MSM, it is still challenging to describe the effectiveness

of the learned weights of the artificial neural networks relative

to the combined model. Finally, the CMS LDS dataset used in

this study comprises only 5% of the total inpatient and skilled

nursing facilities data. The dataset excludes outpatients and carrier

files, which could provide additional observations relating to MDD

patients progressing to AD. This explains the small sample size

of 282 patients who progressed to AD over 8 years. Therefore,

future work should endeavor to train the predictive model on a

combination of inpatient, outpatient, and skilled nursing facilities

and the carrier files data to improve the model’s generalizability.
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