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Tra�c-related air pollution and
APOE4 can synergistically a�ect
hippocampal volume in older
women: new findings from UK
Biobank

Vladimir A. Popov*†, Svetlana V. Ukraintseva*†, Hongzhe Duan,

Anatoliy I. Yashin and Konstantin G. Arbeev

Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham,

NC, United States

A growing research body supports the connection between neurodegenerative

disorders, including Alzheimer’s disease (AD), and tra�c-related air pollution

(TRAP). However, the underlying mechanisms are not well understood. A deeper

investigation of TRAP e�ects on hippocampal volume (HV), a major biomarker of

neurodegeneration, may help clarify thesemechanisms. Here, we explored TRAP

associations with the HV in older participants of the UK Biobank (UKB), taking

into account the presence of APOE e4 allele (APOE4), the strongest genetic

risk factor for AD. Exposure to TRAP was approximated by the distance of the

participant’s main residence to the nearest major road (DNMR). The left/right

HV was measured by magnetic resonance imaging (MRI) in cubic millimeters

(mm3). Analysis of variance (ANOVA), Welch test, and regression were used

to examine statistical significance. We found significant interactions between

DNMR and APOE4 that influenced HV. Specifically, DNMR <50m (equivalent of

a chronically high exposure to TRAP), and carrying APOE4 were synergistically

associated with a significant (P = 0.01) reduction in the right HV by about

2.5% in women aged 60–75 years (results for men didn’t reach a statistical

significance). Results of our study suggest that TRAP and APOE4 jointly promote

neurodegeneration in women. Living farther from major roads may help reduce

the risks of neurodegenerative disorders, including AD, in female APOE4 carriers.

KEYWORDS

hippocampal volume, neurodegeneration, air pollution, TRAP, major road, APOE, aging,

Alzheimer’s disease

1 Introduction

A growing body of research points to a connection between exposure to air pollution

and neurodegenerative disorders, including Alzheimer’s disease (AD), thoughmechanisms

are not fully understood (Tham and Schikowski, 2021; Parra et al., 2022; Finch, 2023;

Franz et al., 2023; Yuan et al., 2023). Various pollutants are present in the air, and

some may pose risks to human health. For example, inhalable particulate matter (PM)

and nitrogen dioxide (NO2) have been intensively studied in this regard (Akimoto,

2003; Craig et al., 2008; Dominski et al., 2021). A recent study of UKB (UK Biobank,

2023) data found that higher exposure to PM2.5 (median particle with diameter ≤

2.5µm) and NO2 was associated with multimorbidity in a dose-dependent manner
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(Ronaldson et al., 2022). The PM, NO2, and volatile organic

compounds (VOCs) are common components of the traffic-

related air pollution (TRAP). These and other types of air

pollution (such as ozone, sulfur oxides, carbon monoxide, and

lead), might be harmful to the central nervous system (CNS)

and promote neuroinflammation and neurodegeneration (Hogan

et al., 2015; Calderón-Garcidueñas et al., 2016a; Cheng et al., 2016;

Spangenberg and Green, 2017; Costa et al., 2020). A review of

epidemiological and experimental studies of the role of PM in

neurodegeneration emphasized a link between chronic exposure

to PM and onsets of cognitive deficits, dementia, and AD (You

et al., 2022). A meta-analysis of 14 studies concluded that PM2.5 is

a risk factor for dementia, with more limited support for nitrogen

oxides, though the authors stressed that these results should be

interpreted with caution (Wilker et al., 2023). Higher exposure to

NO2 itself was associated with lower cortical thickness of brain

regions relevant to AD (Crous-Bou et al., 2020). Another study that

used the UKB data (Li et al., 2023) reported an association between

residential distance to major roads and dementia that was mediated

by TRAP, mainly NO2.

Exposure to environmental pollutants, including TRAP, could

be especially detrimental for hippocampus, a key brain structure for

learning and memory, and a primary brain region affected by AD

(van der Flier and Scheltens, 2009; Rao et al., 2022). Hippocampal

atrophy, manifested in reduced hippocampal volume (HV), is

considered one of the major biomarkers of neurodegeneration and

preclinical AD pathology (Jack et al., 2018; Grober et al., 2021).

It has been associated with a decline in cognitive function and

progression of mild cognitive impairment (MCI) to AD (Jack et al.,

2000; Henneman et al., 2009; Qu et al., 2023). It was shown that

exposure to PM can create profound metabolic disturbances in

hippocampus, and adversely affect HV (Park et al., 2020; Balboni

et al., 2022). A study that used brain imaging and air pollution

data from the UKB found an association between higher PM2.5

concentration and smaller left HV in adult UKB participants

(Hedges et al., 2019).

Genetic factors may also influence HV. For example, carrying

the APOE e4 allele (APOE4), the strongest genetic risk factor for

AD, may accelerate hippocampal atrophy, along with cognitive

decline (Abushakra et al., 2020). Several studies (Tohgi et al., 1997;

Reiman et al., 1998; O’Dwyer et al., 2012; Saeed et al., 2021)

reported that individuals with APOE4 have markedly smaller HV,

along with increased risks of AD and other dementias, compared to

those without APOE4. The APOE4may also interact with exposure

to air pollution, including TRAP, potentially modifying its effects

on AD-related traits (Schikowski et al., 2015; Ma et al., 2023).

In this study, we used the UKB data to further explore the

interactions between APOE4 and TRAP, to better understand how

the exposure to TRAPmay influence HV in older adults, who carry

the strongest genetic risk factor for AD.

2 Materials and methods

2.1 Data and phenotypes

This study was performed using the UKB (UK Biobank, 2023),

a population-based study with extensive genetic and phenotypic

TABLE 1 UKB sample used for analysis.

Group/subjects Female, age
60–75

Male, age
60–75

DNMR 661 584

noDNMR 9,968 9,102

APOE4 2,969 2,627

noAPOE4 7,660 7,059

DNMR APOE4 199 167

DNMR noAPOE4 462 417

noDNMR APOE4 2,770 2,460

noDNMR noAPOE4 7,198 6,642

All 10,629 9,686

data for approximately 500,000 individuals from across the UK.

Data for the study were obtained (November, 2019) from the

UKB database. Written informed consent was obtained by the

UKB from the participants in accordance with the UK national

legislation and the UKB requirements. The latest (at the time of

calculations) available information on participants’ withdrawal in

UKB was taken into account.

In our analysis, TRAP was approximated by the participant’s

residence distance (in meters) to the nearest major road (DNMR).

The DNMR was defined based on the local road network

taken from the Ordnance Survey Meridian 2 road network 2009

with scale 1:50,000 and one meter accuracy (McGarva, 2017;

Environmental Exposures Metadata and Resource 2010 UK, 2023).

The median value of the DNMR was 377.4 (interquartile range:

[165.9, 751.9]).

Among those subjects who had both DNMR andAPOE4 carrier

status information, participants aged between 60 and 75 years,

who attended the assessment center during the first imaging visit

(starting January 1, 2014), were chosen. The APOE4 carrier status

was approximated by carrying C allele of the SNP rs429358. The

left and right HV were measured in cubic millimeters (mm3),

and respective information was obtained from the UKB data-fields

25019 and 25020. To normalize for head size, these measurements

were multiplied by the head size scaling factor obtained from the

UKB data-field 25,000 (Smith et al., 2022; Supplementary material,

MRI measurements).

The analytic sample (Table 1) was divided into one factor and

two factor groups, as follows:

G1. One factor groups

DNMR group consists of subjects with residential proximity to

the nearest major road <50m, noDNMR group consists of subjects

with residential proximity to the nearest major road more than

50m, APOE4 group consists of APOE4 carriers, noAPOE4 group

consists of APOE4 non-carriers.

G2. Two factor groups

DNMR_APOE4 group contains subjects from both DNMR

and APOE4 groups, DNMR_noAPOE4 group contains subjects

from both DNMR and noAPOE4 groups, noDNMR_APOE4

group contains subjects from both noDNMR and APOE4 groups,
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noDNMR_noAPOE4 group contains subjects from both noDNMR

and noAPOE4 groups.

The study sample contained participants having DNMR and

APOE4 carrier status data, who attended the assessment center

during the first imaging visit (between January 1, 2014 and October

31, 2019) at age 60–75 years. It, thus, only included individuals, who

were at risk for the late-onset but not the early onset AD.

2.2 Analytic approach

Analysis of variance (ANOVA), the Tukey’s test, and the

Welch test (Welch, 1947; Chambers et al., 1992; Yandell, 1997)

were utilized. We considered three sets of regression models

Set1 = HV∼Age,dnmr (8 models), Set2 = HV∼Age,snp

(8 models), and Set3 = HV∼Age,snp,dnmr (64 models)

(Supplementary material, Analytic approach) having HV as a

response variable HV = HV (mm3) left/right and independent

variables: dnmr = 1 (DNMR < 50), dnmr = 0 (DNMR ≥ 50),

snp = 1 (APOE4 carrier), snp = 0 (APOE4 non-carrier), and age at

the time attending assessment center during the first imaging visit

as the Age variable.

The regression models were evaluated using the Akaike

information criterion (AIC) (Akaike, 1973). The optimal, with

respect to theminimal AIC criteria, significant results for regression

model were found for the regression sets described above. Here,

significant regression model means that all regression coefficients

were significant (P < 0.05) in a specific model, non-significance

means the opposite. R standard software packages (version 3.6.3),

along with glmulti package (Calcagno, 2022), were utilized.

3 Results

We found significant difference in the right HV between groups

DNMR and noDNMR, between groups APOE4 and noAPOE4,

and between groups DNMR_APOE4 and noDNMR_noAPOE4 for

females aged 60–75 years (Table 2, Figure 1). One can see that there

was a 0.5% decrease in the right HV for APOE4 carriers, a 1.0%

decrease in the right HV for those with DNMR < 50, and a 2.5%

decrease in right HV for APOE4 carriers with DNMR < 50. Note

that joint impact of DNMR and APOE4 is larger than separate

contributions of APOE4 and DNMR (2.5% > 0.5%, 2.5% > 1.0%),

or their sum (2.5% > 0.5%+ 1.0%).

There was a 0.6% decrease in the left HV for APOE4

carriers in women aged 60–75 years; differences between other

groups were not statistically significant (Supplementary Table 1,

Supplementary Figure 1). Normal aging is associated with gradual

reducing of HV even without any possible adverse factors (Harman,

2001; Fotuhi et al., 2012; López-Otín et al., 2013). In our analysis,

we performed the Welch test to check a possible difference in

age between groups (Supplementary Tables 2, 3). We found that

on average the subjects in the group DNMR were older than

the subjects in the group noDNMR, which might contribute

to the reduced HV in the group DNMR compared to the

group noDNMR. The subjects in the group APOE4, on average,

were younger than the subjects in the group noAPOE4. Note

that such age difference between APOE4 and noAPOE4 groups

strengthened our results because younger subjects generally tend

to have bigger HV than the older ones. The subjects in the group

DNMR_APOE4, on average, were the same age as the subjects in

the group noDNMR_noAPOE4.

Difference in the right HV between two groups DNMR and

noDNMR in the Figure 1A could be attributed to the age only,

with participants in the DNMR group older than participants in

the noDNMR group (Supplementary Table 3). Based on Table 3,

the decrease in the right HV became more pronounced with age

in women aged 60–75 years: from 0.8% at age 60 to 0.9% at

age 75 for the right HV. Difference in HV between two groups

APOE4 and noAPOE4 in the Figure 1B could be attributed to the

age and APOE4 carrier status, with participants being younger in

the APOE4 compared those in noAPOE4 (Supplementary Table 3).

Based on Table 3, the decrease in the right HV became more

pronounced with age in women aged 60–75 years: from 0.6% at

age 60 to 0.8% at age 75 for the right HV. When taking into

account three factors (age, proximity to the nearest major road,

and APOE4 carrier status), based on Table 3, difference in the right

HV gradually increased from 2.4% at age 60 to 2.8% at age 75, for

APOE4 carriers with proximity to the nearest major road <50m.

The right HVdecreased with age in women aged 60–75 years, losing

about 27 mm3/year.

For males aged 60–75 years differences in the left/right

HV between studied groups (Supplementary Tables 4, 5)

were not statistically significant. For males aged 60–75

years, regression analysis found that for all regression sets

Set1=HV∼Age,dnmr (8 models), Set2=HV∼Age,snp (8 models),

Set3 = HV∼Age,snp,dnmr (64 models) the best (with respect to

the minimal AIC criterion) models depend only on Age variable

(Supplementary Tables 6–8).

Comparison of the regression model with interactive term with

the reference model, i.e., the regression with main additive effects

(Table 3, model 13 in Set3: HV∼Age,snp,dnmr) allows estimating

deviation from the reference model, which was: deviation = 106.2

+ 0.4∗Age-(43.3+ 32.7)= 54.2, forAge= 60 and deviation= 60.2,

for Age = 75, that is, deviation gradually increases with age. This

observation reasonably supported synergy (Roell et al., 2017) in the

interaction between DNMR and APOE e4 status with respect to

HV decrease.

4 Discussion

Our study, using the UKB data, found that female APOE4

carriers aged 60–75 years, who live <50 meters from a major road,

had the right HV that was significantly smaller (by about 2.5%) than

the HV of the same age women without these conditions. We also

showed for the first time that exposure to TRAP (approximated

by closeness of participant’s main residence to major roads),

and carrying the APOE4, synergistically affected HV in women.

These findings imply that living farther from major roads may be

especially beneficial to older female APOE4 carriers and could help

reduce their risks of neurodegenerative disorders, including AD. In

our study, the right HV also decreased with age in women aged

60–75 years, losing, on average, about 27 mm3/year. This is in

agreement with an earlier report of the HV change with age by the

UKB (Nobis et al., 2019).
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TABLE 2 Comparison of the right HV between groups of females aged 60–75.

Test P-value 95% confidence intervals HV estimate (mm3)

Females, age 60–75, HV (mm3) right

ANOVA 2.30e-02

DNMR [5,038, 5,128] 5,082

noDNMR [5,123, 5,146] 5,135

DNMR – noDNMR [−98,−7] −53

Females, age 60–75, HV (mm3) right

ANOVA 3.42e-02

APOE4 [5,091, 5,134] 5,112

noAPOE4 [5,126, 5,151] 5,139

APOE4 – noAPOE4 [−51,−2] −26

Females, age [60–75], HV (mm3) right

Tukey 1.70e-01

DNMR_APOE4 [4,934, 5098] 5,012

DNMR_noAPOE4 [5,059, 5,161] 5,112

DNMR_APOE4 – DNMR_noAPOE4 [−226, 25] −100

Females, age [60–75], HV (mm3) right

Tukey 5.37e-02

DNMR_APOE4 [4,934, 5,098] 5,012

noDNMR_APOE4 [5,098, 5 140] 5,120

DNMR_APOE4 – noDNMR_APOE4 [−216, 1] −108

Females, age [60–75], HV (mm3) right

Tukey 1.04e-02

DNMR_APOE4 [4,934, 5,098] 5,012

noDNMR_noAPOE4 [5,127, 5,154] 5,140

DNMR_APOE4 – noDNMR_noAPOE4 [−235,−22] −128

Females, age [60–75], HV (mm3) right

Tukey 9.94e-01

DNMR_noAPOE4 [5,059, 5,161] 5,112

noDNMR_APOE4 [5,098, 5,140] 5,120

DNMR_noAPOE4 – noDNMR_APOE4 [−82, 67] −7

Females, age [60–75], HV (mm3) right

Tukey 7.36e-01

DNMR_noAPOE4 [5,059, 5,161] 5,112

noDNMR_noAPOE4 [5,127, 5,154] 5,140

DNMR_noAPOE4 – noDNMR_noAPOE4 [−99, 43] −28

Females, age [60–75], HV (mm3) right

Tukey 3.66e-01

noDNMR_APOE4 [5,098, 5,140] 5,120

noDNMR_noAPOE4 [5,127, 5,154] 5,140

noDNMR_APOE4 – noDNMR_noAPOE4 [−54, 12] −21

In this table, differences between the following groups are considered: DNMR and noDNMR, APOE4 and noAPOE4, DNMR_APOE4 and DNMR_noAPOE4, DNMR_APOE4

and noDNMR_APOE4, DNMR_APOE4 and noDNMR_noAPOE4, DNMR_noAPOE4 and noDNMR_APOE4, DNMR_noAPOE4 and noDNMR_noAPOE4, noDNMR_APOE4 and

noDNMR_noAPOE4. The sign minus between two groups denotes the difference between the means in two groups (effect size). For instance, DNMR_APOE4 - DNMR_noAPOE4 equals

to the difference between the right HV mean value in the group DNMR_APOE4 and group DNMR_noAPOE4. Scientific notation “e” means that the base number is multiplied by 10 raised to

the given power.
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FIGURE 1

The right HV (mm3) in groups of women aged 60-75 years, by DNMR and APOE4 status. Age—age at the time attending the assessment center

during the first imaging visit between January 1, 2014 and October 31, 2019. (A) UKB, HV right, DNMR < 50 m, females, aged 60–75 years. DNMR

(HV: mean = 5,082, 95% CI: 5,038–5,128), noDNMR (HV: mean = 5,135, 95% CI: 5,123–5,146). (B) UKB, HV right, APOE4, females, aged 60–75 years.

APOE4 (HV: mean = 5,112, 95% CI: 5,091–5,134), no APOE4 (HV: 5,139, 95% CI: 5,126–5,151). (C) UKB, HV right, DNMR < 50m and APOE4, females,

age 60–75 years, DNMR_APOE4 (HV: mean = 5,012, 95% CI: 4,934–5,098), DNMR_noAPOE4 (HV: mean = 5,112, 95% CI: 5,059–5,161)

noDNMR_APOE4 (HV: mean = 5,120, 95% CI: 5,098–5,140), noDNMR no APOE4 (HV: mean = 5,140, 95% CI: 5,127–5,154). For more detailed

statistics, see Table 2.

Results of our study are broadly in line with earlier research that

demonstrated that exposure to air pollution (especially to PM2.5) is

associated with smaller brain/hippocampal volume (Wilker et al.,

2015; Hedges et al., 2019; Balboni et al., 2022). Several studies

investigated the role of air pollution in dementia and cognitive

decline, including in APOE4 carriers. Chen et al. (2017) reported

a modest increase in hazard ratio (1.07 [95% CI: 1.06–1.08]) of

dementia in people living <50 meters from a major road. Higher

PM2.5 exposure was linked to worse cognitive function in APOE4

carriers, but not in non-carriers (Franz et al., 2023). A paper found

that associations of PM2.5, PM10, and NO2 with cognitive function

were more pronounced in female APOE4 carriers (Schikowski

et al., 2015). Female APOE4 carriers were also more at risk

for air pollution-induced metabolic alterations in hippocampus

and cognitive deficits (Calderón-Garcidueñas et al., 2015, 2016b).

Another research that used the Women’s Health Initiative Memory

Study (WHIMS) data found that exposure to a high level of

PM2.5 preceded onset of cognitive impairment in older women,

and this relationship varied by APOE genotype, with the largest

adverse effect seen in e4/e4 carriers (Cacciottolo et al., 2017). The

authors suggested that exposure to PM in the air may accelerate

neurodegeneration through various pathways, amyloidogenic, as

well as independent of amyloid deposits. Amore recent study tested

the interaction between APOE genotypes and air pollution and

found that the long-term exposure to ambient air pollution was

associated with a more rapid cognitive decline in APOE4 carriers

(Kulick et al., 2020). Some studies, however, did not find significant

interactions between the air pollution and APOE4. For example,

a case-control study in northern Taiwan found no differences in

susceptibility to air pollution-associated dementia between APOE

genotypes (Wu et al., 2015).

One should note that DNMR, which was used as an explanatory

variable in our analysis, is an indicator of aggregated exposure

to various road-related pollutants, not only to those found in car

exhaust fumes. Some of these pollutants may also be potentially

relevant to AD pathology. E.g., the higher intensity traffic was

associated with the higher concentration of airborne fungi in urban

air environments. Examples include Alternaria and Cladosporium

species which may cause infection and inflammation, potentially

contributing to neurodegeneration (Alonso et al., 2017; Phuna and
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TABLE 3 Regression analysis, females, age 60–75.

Model/term Estimate Std.
error

P-value

Best model for Set1, HV (mm3) right, female 60–75

(Intercept) 6,938.4 (mm3) 90.6 <1.00e-50

Age −27.1 (mm3/year) 1.4 <1.00e-50

Best model for Set2, HV (mm3) right, female 60–75

(Intercept) 6,945.9 (mm3) 90.6 <1.00e-50

Age −27.1 (mm3/year) 1.4 <1.00e-50

Age∗snp −0.5 (mm3/year) 0.2 5.55e-03

Best model for Set3, HV (mm3) right, female 60-75

(Intercept) 6,947.7 (mm3) 90.6 <1.00e-50

Age −27.2 (mm3/year) 1.4 <1.00e-50

Age∗snp −0.4 (mm3/year) 0.2 3.25e-02

snp∗dnmr −106.2 (mm3) 41.5 1.06e-02

Model 13 in Set3 (reference model)

(Intercept) 6,954.1 (mm3) 90.7 <1.00e-50

Age −27.2 (mm3/year) 1.4 <1.00e-50

snp −43.3 (mm3) 22.7 5.69e-02

dnmr −32.7 (mm3) 12.2 7.51e-03

Response variable HV = HV (mm3) right, independent variables: dnmr = 1 (DNMR < 50

meters), dnmr = 0 (DNMR ≥ 50 m), snp = 1 (APOE4 carrier), snp = 0 (APOE4 non-

carrier), Age—age at the time attending assessment center during the first imaging visit

between January 1, 2014 and October 31, 2019. All models in the following three sets of basic

linear regression models with pairwise interactions were analyzed: Set 1 = HV∼Age, dnmr

(8 models), Set 2 = HV∼Age, snp (8 models), and Set 3 = HV∼Age, snp, dnmr (64 models).

The optimal, with respect to the minimal AIC criterion significant model was determined

for each set and shown in this table. Here, significance means that all regression coefficients

were significant (P < 0.05) in a specific model, non-significance means the opposite. See

Supplementary Tables 6–8 for more detailed information about regression analysis.

Madhavan, 2022; Muafa et al., 2024). The role of exposure to

airborne fungi in AD pathology deserves separate investigation,

especially in the light of our recent findings suggesting that the

impact of recurrent fungal infections on AD risk can be larger than

that of other types of infections, including bacterial and viral ones

(Ukraintseva et al., 2023). Other road-related pollutants, such as

noise (The Lancet Regional Health-Europe, 2023), light pollution

(Chepesiuk, 2009; Wyse et al., 2011; Aubrecht et al., 2013), and

electromagnetic fields (Ahlbom and Feychting, 2003; Kivrak et al.,

2017) might also be relevant to health risks. For instance, noise is

currently considered a health problem for citizens of the European

Union (European Commission, 2023).

We recognize several study limitations. Since only individuals

aged 60–75, who have HV measures, were included in the analysis,

the sample size in this study was substantially reduced compared to

the total UK Biobank sample. Also, different head-size correction

(normalization) strategies might yield various volumetric results

across studies (Arndt et al., 1991; Mathalon et al., 1993; Goldstein

et al., 1999; Seidman et al., 1999; Sanfilipo et al., 2004; Barnes

et al., 2010; O’Brien et al., 2011; Voevodskaya et al., 2014). Also,

in our study we evaluated regression models using the Akaike

information criterion. One should note that there is no universal

procedure by which one can determine the “best model”. We

applied the AIC approach calculating goodness-of-fit and model

variability in order to select the most parsimonious regression

model (Burnham and Anderson, 2002; Anderson, 2008; Burnham

et al., 2011). Another potential limitation could be that the formal

statistical association evaluated from regression analysis may not

imply actual causality, which should be further studied using causal

inference approaches. Finally, the UK Biobank is volunteer-based

study, and so it may not represent general population, therefore,

results obtained using this sample should not be extrapolated to the

entire UK population, or to other populations, and need further

confirmation in additional research.

5 Conclusion

In summary, this study found that the interaction

between APOE4 carrier status and chronic exposure to TRAP

(approximated by the closeness of a participant’s main residence

to a major road) is associated with a significant reduction in

hippocampal volume (HV) in female participants of the UK

Biobank aged 60–75 years. The results for males didn’t reach

statistical significance. Our findings suggest that traffic-related air

pollution and genetic risk factors for AD (specifically APOE4) can

synergistically promote neurodegeneration. Living farther from

major roads could help reduce the risks of neurodegenerative

disorders, including AD, in older female APOE4 carriers.
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