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Alzheimer’s disease (AD) is characterized by a long preclinical phase lasting more 
than a decade before the onset of its clinical phase of mild cognitive impairment 
(MCI) or dementia. Recent advances in psychedelic research underscore numerous 
neuroplastogenic and anti-inflammatory alterations induced by these compounds, 
making them promising therapeutic candidates for AD. In this mini review, we will 
briefly summarize the existing literature using human cerebral organoids to study 
the molecular and metabolic changes caused by various psychedelic compounds, 
focusing on their potential therapeutic applications for AD.
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1 Introduction

Alzheimer’s disease (AD) is characterized by a long preclinical phase lasting more than a 
decade before the onset of its clinical phase of mild cognitive impairment (MCI) or dementia 
(Sperling et al., 2011; Bateman et al., 2012; Dubois et al., 2016). Its pathogenesis involves a cascade 
of interconnected biochemical and cellular changes, including the accumulation of beta-amyloid 
(Aβ) fibrils in extracellular plaques and the hyperphosphorylation of Tau in intracellular tangles. 
These alterations lead to neuroinflammation, synaptic dysfunction, neuronal degeneration, and 
ultimately to cognitive and functional decline (De Strooper and Karran, 2016). Although genetics 
plays a significant role (Sims et al., 2020), the precise causes and sequence of these pathological 
events are not yet completely understood, which can potentially explain the recurring therapeutic 
failures in AD research. Since treatments may be most effective in the early stages of the disease, it 
is crucial to identify AD in presymptomatic individuals and those experiencing cognitive decline 
before reaching the clinically defined MCI or dementia.

In the hippocampus, prefrontal cortex, and other areas of the brain that are susceptible to 
AD pathology, 5-HT2A receptors are highly present (Bryson et al., 2017). Psychedelic drugs, 
including d-lysergic acid diethylamide (LSD), psilocybin, 5-methoxy-N,N-dimethyltryptamine 
(5-MeO-DMT), and DMT are potent serotonergic agonists with affinity to 5-hydroxytryptamine 
receptors (5-HTRs) (Nichols, 2016). Recent advances in psychedelic research underscore the 
numerous connections between these compounds and cognitive/affective alterations observed 
in older adults (Aday et al., 2020), making them appealing therapeutic candidates for AD.

Studies in rodents suggest that psychedelics support neurogenesis, neuroplasticity, and 
neuronal maturation by enhancing the development of neurites, dendritic spines, and synapses in 
neural progenitor cells, particularly where 5-HT2A receptors are highly expressed (Lima da Cruz 

OPEN ACCESS

EDITED BY

Charbel Moussa,  
Georgetown University, United States

REVIEWED BY

Ioannis N. Charalampopoulos,  
University of Crete, Greece

*CORRESPONDENCE

Vasiliki Mahairaki  
 vmachai1@jhmi.edu

RECEIVED 02 April 2025
ACCEPTED 01 July 2025
PUBLISHED 04 August 2025

CITATION

Androni X, Boyd RJ, Rosenberg PB and 
Mahairaki V (2025) Psychedelics meet human 
brain organoids: insights into proteomics and 
potential for Alzheimer’s disease treatment.
Front. Dement. 4:1605051.
doi: 10.3389/frdem.2025.1605051

COPYRIGHT

© 2025 Androni, Boyd, Rosenberg and 
Mahairaki. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE Mini Review
PUBLISHED 04 August 2025
DOI 10.3389/frdem.2025.1605051

https://www.frontiersin.org/journals/Dementia
https://www.frontiersin.org/journals/Dementia
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/frdem.2025.1605051&domain=pdf&date_stamp=2025-08-04
https://www.frontiersin.org/articles/10.3389/frdem.2025.1605051/full
https://www.frontiersin.org/articles/10.3389/frdem.2025.1605051/full
https://www.frontiersin.org/articles/10.3389/frdem.2025.1605051/full
https://www.frontiersin.org/articles/10.3389/frdem.2025.1605051/full
mailto:vmachai1@jhmi.edu
https://doi.org/10.3389/frdem.2025.1605051
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/Dementia#editorial-board
https://www.frontiersin.org/journals/Dementia#editorial-board
https://doi.org/10.3389/frdem.2025.1605051


Androni et al. 10.3389/frdem.2025.1605051

Frontiers in Dementia 02 frontiersin.org

et al., 2018; Morales-Garcia et al., 2020; Ly et al., 2018). These studies have 
revealed many cellular and molecular mechanisms of these drugs; 
however, expanding these findings to a human-relevant model is critical 
for evaluating the therapeutic potential of psychedelics.

Given the many differences between human and rodent brains 
(Xu et  al., 2022), it has been challenging to model human brain 
physiology (particularly that of the hippocampus) in the laboratory. 
Laboratory-synthesized, human-derived 3D brain organoids represent 
an in  vitro system that effectively models many aspects of the 
molecular architecture of the human brain (Chen et  al., 2019; 
Porci’uncula et al., 2021). In this mini review we will briefly summarize 
the existing literature using cerebral organoids to study the molecular 
and metabolic alterations caused by various psychedelic compounds, 
focusing on their potential therapeutic applications for AD.

2 5-MeO-DMT effects

5-MeO-DMT is a short-acting psychedelic tryptamine that acts as 
a serotonin receptor agonist with affinity for other receptors, as well 
as serotonin and norepinephrine transporters (Ermakova et al., 2022).

5-MeO-DMT has been shown to induce anti-inflammatory 
pathways and other proteomic alterations in 45-day old human 
embryonic stem cell-derived cerebral organoids. Following exposure 
to 5-MeO-DMT for 24-h, shot-gun mass spectrometry (MS) revealed 
widespread changes in protein expression within toll-like receptor- 
and Gq-coupled receptor-mediated signaling cascades, ultimately 
leading to downregulation of transcriptional regulators of 
inflammatory cytokines, NFAT and NF-κβ (Dakic et al., 2017). Other 
downregulated proteins included srGAP, which is critical for the 
processes underpinning synaptic plasticity and higher cognitive 
functions (Dakic et al., 2017; Nguyen Thi Thanh et al., 2018), and 
mGluR5, which contributes to the rewarding effects of various drugs 
of abuse; thus, supporting the hypothesis that psychedelics carry a low 
risk of addiction (Johnson et al., 2018).

5-MeO-DMT treatment upregulated the expression of NMDAR, 
CaMK2, and CREB—signaling molecules involved in long-term 
potentiation, learning, and memory (Dakic et  al., 2017; Caya-
Bissonnette and B’eique, 2024). 5-MeO-DMT significantly increased 
EFNB2, EPHB, intersectin, ELMO1, CDC42, RAC1, and integrins, 
which promote dendritic spine development. Finally, 5-MeO-DMT 
was shown to suppress cell death-related pathways upon activation of 
σ1-RS, which induces neuroprotection by modulating intracellular 
calcium levels and inhibiting the expression of pro-apoptotic genes 
(Figure 1) (Mueller et al., 2013).

3 LSD effects

LSD is another psychedelic that predominantly exerts its effects 
through 5-HT2A receptor antagonism, but also binds to dopaminergic, 
adrenergic, and other serotonergic receptors (De Gregorio et al., 2021). 
Furthermore, LSD allosterically binds tropomyosin receptor kinase B 
(TrkB), promoting its interaction with brain-derived neurotrophic factor 
(BDNF); a key molecule that mediates plastic changes underlying learning 
and memory (Figure 1) (Moliner et al., 2023).

The impact of LSD on neural plasticity-related pathways has been 
evaluated using 45-day-old human-induced pluripotent stem cell 
(hiPSC)-derived cerebral organoids (Ornelas et  al., 2022). After 

treatment with 10 nM LSD for 24-h, liquid-chromatography (LC)-MS 
revealed proteomic alterations involved in common cellular processes 
including DNA replication, mTOR signaling cascades, and dopamine 
neurotransmitter release cycle. Specifically, mTOR was significantly 
upregulated, which may promote psychedelic-induced structural 
plasticity in the prefrontal cortex (Ly et  al., 2018). Other affected 
pathways reflect neuroplasticity and synaptic reorganization processes, 
particularly axon guidance, synaptic vesicle cycle, and long-term 
depression (Ornelas et  al., 2022). In fact, there is evidence that 
neuronal plasticity is stimulated by LSD through both 5-HT2A and 
mTOR signaling (Ly et al., 2018).

In a subsequent study (Costa et al., 2024), hiPSC-derived 45-day 
old human cortical organoids were then exposed to 100 nM LSD for 
24 h. LC/MS-MS-based shotgun proteomic analysis revealed a 
significant shift in the abundance of multiple proteins that modify 
processes involved in proteostasis, energy metabolism, and 
neuroplasticity. Most proteostasis proteins were downregulated, 
possibly prolonging the lifespan of synaptic proteins by slowing 
turnover rates, although it is unclear whether LSD regulates 
proteostasis directly or through indirect homeostatic effects. In 
addition, LSD altered the abundance of proteins associated with 
glycolysis, the TCA cycle and oxidative phosphorylation, and also 
increased lactate production, implying that psychedelics could trigger 
metabolic alterations to meet the high demands of neuroplasticity 
(Watts et al., 2018). LSD exposure led to upregulation of synaptic 
vesicle fusion proteins, suggesting an effect on neuroplasticity and 
neurotransmitter release.

4 Discussion

Preliminary research has highlighted the antidepressant, 
anxiolytic, and anti-addictive features of classic psychedelics (Watts 
et al., 2018). Furthermore, preclinical and neuroimaging studies point 
to a variety of biological mechanisms of action of psychedelics, 
including structural and functional enhancement of neuroplasticity 
(Lima da Cruz et  al., 2018; Ly et  al., 2018), anti-inflammatory 
properties (Flanagan and Nichols, 2018), shifts in critical signaling 
pathways (i.e., BDNF) (Ly et  al., 2018; Hutten et  al., 2020), and 
modifications of functional neural connectivity (Carhart-Harris et al., 
2017; Barrett et  al., 2020; Preller et  al., 2020). The key 
pathophysiological processes of AD include decreased functional 
brain activity and connectivity (Dennis and Thompson, 2014), 
reduced serotonergic neurotransmission (Smith et al., 2017; Mecca, 
2019) associated with neuropsychiatric symptoms (Butzlaff and 
Ponimaskin, 2016; Chakraborty et  al., 2019), neuroinflammation, 
(Kinney et al., 2018) and alteration of key signaling pathways (i.e., 
BDNF) (Peng et al., 2005; Tanila, 2017). Therefore, for many patients 
with AD, classic psychedelics may offer therapeutic advantages that 
merit further investigation.

Although two-dimensional (2D) iPSC-derived neuronal 
cultures are valuable tools to simulate cellular responses, only one 
study has focused on the neuroprotective impact of the 
endogenous hallucinogen N,N-dimethyltryptamine (DMT) on 
human cortical neurons derived from iPSCs, monocyte-derived 
macrophages, and dendritic cells (Szabo et  al., 2016). Studies 
investigating the effects of psychedelics in iPSC-derived neurons 
are exceedingly rare and, to our knowledge, have not yet been 
conducted in AD patient-derived models. Furthermore, we are not 
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aware of any data that exist from post-mortem AD brain tissue 
studies. In light of these gaps, iPSC-derived organoids offer a 
valuable, sophisticated system that closely mimics the spatial 
architecture of the human brain and incorporates complex cell-to-
cell interactions, which may influence drug responses (Salerno and 
Rehen, 2024).

Human brain organoids provide a unique in vitro imitation of 
physiologically relevant complex functions and processes of the 
human brain (Logan et  al., 2019; Whiteley et  al., 2022), and thus 
provide valuable data connecting preclinical and clinical studies. 
Importantly, organoids can be grown using patient-derived iPSCs to 
serve as tools for precision medicine approaches. Given the highly 
psychoactive properties of psychedelic substances and the 
heterogeneous neurobehavioral reactions they evoke (Moujaes et al., 
2023), patient-derived organoids can be used to evaluate personalized 
treatment strategies that achieve optimal efficacy with minimal 
adverse effects (Park and Mook-Jung, 2022).

Considering that serotonergic degeneration is observed early in 
the course of AD (Smith et al., 2023) and that psychedelic compounds 
mediate their effects primarily through the 5-HT2A receptor, 

hindbrain serotonergic organoids could offer a unique platform to 
investigate how psychedelics influence serotonergic pathways in the 
context of AD pathology (Valiulahi et al., 2021; Zivko et al., 2024). The 
methodological framework developed for studying the response of 
serotonergic hindbrain organoids to escitalopram (Zivko et al., 2024), 
a selective serotonin reuptake inhibitor (SSRI), suggests that this 
platform can be  used to explore the potential of psychedelics to 
treat AD.

There is growing evidence that late-life depressive symptoms are 
associated with an increased risk of incident dementia, a concept that 
has been codified into the construct of ‘mild behavioral impairment’ 
(Creese and Ismail, 2022). In the data set of the National Alzheimer’s 
Coordinating Center, the majority of participants who progressed 
from normal to impaired cognition presented behavioral symptoms 
prior to cognitive changes (Wise et al., 2019). Thus, the mechanisms 
underlying late-life depression may also be  the basis for 
neurodegenerative disease. Many of the mechanisms identified by the 
aforementioned organoid studies are common to depression and AD, 
including decreased serotonergic innervation, neuroinflammation, 
and disruptions in crucial signaling pathways, including BDNF 

FIGURE 1

An overview of the state of the current literature evaluating the effects of psychedelic compounds in human cell-derived 3D brain organoids. Presently, 
only proteomics studies evaluating the effects of d-lysergic acid diethylamide (LSD) and 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) have been 
applied to cerebral organoid models.
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(Mendes-Silva et  al., 2016; Linnemann and Lang, 2020; Bajaj and 
Mahesh, 2024). Clinical trials have shown that a single dose of a 
psychedelic can induce lasting physiological changes across multiple 
neural pathways without the need for sustained or repeated exposure 
to maintain these effects (Knudsen, 2023). This is analogous to the 
observation that a single dose of psilocybin was effective in treating 
major depression both in the short term (3 weeks) (Goodwin et al., 
2022) and in a long-term open-label follow-up over 52 weeks 
(Goodwin et al., 2025), suggesting that a single psychedelic dose can 
induce long-term alterations in the human brain.

Psilocybin is another psychedelic that is being evaluated as a 
treatment for several neurological disorders (Carhart-Harris et al., 
2021; Schindler et al., 2021; Daws et al., 2022). Although its application 
as a medical intervention for AD has been understudied, it has been 
recognized as a breakthrough therapy for major depressive disorder 
(Raison et al., 2023; Zheng et al., 2024). Considering the potential of 
psilocybin to induce neurogenesis, synaptogenesis, and synaptic 
plasticity (Jefsen et al., 2020; Shao et al., 2021; Raval et al., 2021), it 
may represent a strong candidate for trials in human brain organoids, 
with the aim of exploring its potential therapeutic benefit for 
AD. Furthermore, depression and anxiety are prominent symptoms 
of AD and can accelerate the progression of the disease (Ma, 2020; 
Agüera-Ortiz et al., 2021). Therefore, psilocybin may alleviate affective 
symptoms and even delay the course of the disease.

Despite a growing body of evidence supporting the therapeutic 
potential of psychedelics across various medical conditions, their use 
remains controversial due to lingering stigma around historical 
misuse. Notably, several perceived risks, such as addiction and 
neurotoxicity, have been refuted by recent research (Schlag et  al., 
2022). However, other potential risks, such as the exacerbation of 
delusions or hallucinations following high-dose psychedelic 
administration, remain a concern, particularly in individuals with 
advanced AD (Scarmeas et al., 2005). As a result, research into the 
therapeutic potential of psychedelics is increasingly focused on the 
earliest stages of the disease (Garcia-Romeu et  al., 2022). In this 
context, a rational approach may involve eliminating the 
hallucinogenic effects of these compounds while preserving their 
therapeutic benefits, potentially minimizing adverse side effects (Yin 
and Gao, 2023). Moreover, to support this effort, advanced model 
systems such as organoids could offer the potential to understand the 
mechanisms underlying the heterogeneity of the clinical response, 
guiding the development of more targeted therapeutic strategies 
(Zhou et al., 2023; Giorgi et al., 2024; Smirnova and Hartung, 2024).

Altogether, strong evidence suggests that psychedelic drugs mediate 
plastogenic and anti-inflammatory processes in brain regions involved in 
AD pathology, which makes them promising cognitive enhancers and 
prospective therapeutic candidates. Given the high value of human 
cerebral organoids as tools for conducting preclinical research in a 
human-relevant environment, more studies in this direction are required 
to gain a comprehensive understanding of the mechanisms behind the 
neurorestorative impact of these compounds on the human brain.
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