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Temporomandibular joint osteoarthritis (TMJ OA) is a disease with a
multifactorial etiology, involving many pathophysiological processes, and
requiring comprehensive assessments to characterize progressive cartilage
degradation, subchondral bone remodeling, and chronic pain. This study
aimed to integrate quantitative biomarkers of bone texture and morphometry
of the articular fossa and joint space to advance the role of imaging
phenotypes for the diagnosis of Temporomandibular Joint Osteoarthritis
(TMJ OA) in early to moderate stages by improving the performance of
machine-learning algorithms to detect TMJ OA status. Ninety-two patients
were prospectively enrolled (184 h-CBCT scans of the right and left
mandibular condyles) and divided into two groups: 46 control and 46 TMJ
OA subjects. No significant difference in the articular fossa radiomic
biomarkers was found between TMJ OA and control patients. The superior
condyle-to-fossa distance (p < 0.05) was significantly smaller in diseased
patients. The interaction effects of the articular fossa radiomic biomarkers
enhanced the performance of machine-learning algorithms to detect TMJ
OA status. The LightGBM model achieved an AUC of 0.842 to diagnose the
TMJ OA status with Headaches and Range of Mouth Opening Without Pain
ranked as top features, and top interactions of VE-cadherin in Serum and
Angiogenin in Saliva, TGF-β1 in Saliva and Headaches, Gender and Muscle
Soreness, PA1 in Saliva and Range of Mouth Opening Without Pain, Lateral
Condyle Grey-Level Non-Uniformity and Lateral Fossa Short Run Emphasis,
TGF-β1 in Serum and Lateral Fossa Trabeculae number, MMP3 in Serum and
VEGF in Serum, Headaches and Lateral Fossa Trabecular spacing, Headaches
and PA1 in Saliva, and Headaches and BDNF in Saliva. Our preliminary results
indicate that condyle imaging features may be more important in regards to
the main effects, but the fossa imaging features may have a larger
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contribution in terms of interaction effects. More studies are needed to optimize and
further enhance machine-learning algorithms to detect early markers of disease,
improve prediction of disease progression and severity to ultimately better serve
clinical decision support systems in the treatment of patients with TMJ OA.

KEYWORDS

articular fossa, imaging biomarkers, hr-CBCT, joint space, temporomandibular osteoarthritis,

artificial intelligence
Introduction

The Diagnostic Criteria (DC) for TemporoMandibular Joint

Disorders (TMD) have recently described the condition of

TemporoMandibular Joint Osteoarthritis (TMJ OA) defined by

Ahmad et al (2009) (1) as Degenerative Joint Disease (2). In

this study, we use the 2009 term, TMJ OA, because this is a

disease with a multifactorial etiology, involving many

pathophysiological processes, and requires comprehensive

assessments to characterize progressive cartilage degradation,

subchondral bone remodeling, and chronic pain (3–5). TMJ

OA – once thought to be a condition involving “wear and

tear” over time – is now classified as a “low inflammatory

arthritic condition” (6) and associated with inflammatory

mediators that lead to proliferative and resorptive

inflammatory response with overall destructive consequences

on the structural components of the TMJ, such as its cartilage,

bone, and synovium (7). The progression of TMJ-OA may be

slow (8), and the initial stages may be subclinical until the

disease process has advanced to chronical stages (9). The TMJ

provides a unique model to study early bone changes in OA,

as only a thin layer of fibrocartilage covers the articular bone

surface in the TMJ condyle (10, 11). Numerous animal studies

indicate that the bone microarchitecture (4, 5, 12) is an

important factor in the OA pathogenesis initiation, preceding

articular cartilage changes (12, 13), and should be investigated

in human studies for early TMJ OA detection. As treatments

to reverse the chronic damage of TMJ OA are for the most

part unavailable and limited (14), it is clear that early diagnosis

may provide the best opportunity to prevent extensive and

permanent joint damage. Current diagnosis standard protocols

recommended in the DC/TMD criteria (1, 2) are based on

pre-existent condylar damage, such as subcortical cysts, surface

erosions, osteophytes, or generalized sclerosis.

Radiomics is the conversion of digital medical images into

mineable high-dimensional data (15) – it refers to the extraction

and analysis of advanced quantitative imaging from medical

images to diagnose and/or predict diseases. This process is

motivated by the concept that biomedical images contain

information that reflects underlying pathophysiology and that

these relationships can be revealed via quantitative image

analyses (15). With high-throughput computing, it is now

possible to promptly obtain countless quantitative features from
02
relatively new high-resolution low-radiation CBCT (hr-CBCT)

(16), and new software applications, with a user-friendly

interface, can now easily extract large amounts of quantitative

features from hr-CBCT greyscale images (17, 18). A study

conducted by Bianchi et al. using quantitative bone imaging

biomarkers for the diagnosis of TMJ OA from hr-CBCT scans

of mandibular condyles showed differences in subchondral bone

microstructure between control and TMJ OA groups, and that

they provided an acceptable diagnostic performance for the

diagnosis of TMJ-OA. This opens up the notion that these

biomarkers could be clinically significant in recognizing the early

onset of TMJ OA and enabling early, conservative therapy (19).

This study seeks to investigate whether the inclusion of

articular fossa data improves the performance of machine-

learning algorithms to detect TMJ OA status. Dislocation of

the mandibular condyle from the articular fossa (mimicking

the absence of the condyle) results in the arrested

development of the fossa (20). This suggests that normal fossa

development depends on normal condyle development, and

the fossa bony microstructure may show signs of TMJ OA

comparable to the condyle. Literature on changes related to

the articular fossa in patients with TMJ OA is limited to roof

thickness and joint space narrowing (21–22). The present

study aims specifically to evaluate whether the integration of

condyle-to-fossa distances and quantitative bone texture and

morphometry imaging biomarkers in the articular fossa

improve the performance of machine-learning algorithms for

the diagnosis of TMJ OA in early to moderate stages.
Materials and methods

This study followed the STROBE guidelines for

observational studies. This cross-sectional study was approved

by the Institutional Review Board of the University of

Michigan (HUM00113199). All patients signed an informed

consent and agreed to participate.
Study design and participants

The following inclusion criteria were applied for all patients:

age between 21 and 70 years, no history of systemic diseases, no
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history of TMJ trauma, surgery, or recent TMJ injections, no

current pregnancy, and no congenital bone or cartilage

diseases. The control subjects were recruited by advertisements

placed in the University of Michigan School of Dentistry and

at The University of Michigan Dentistry Hospital; potential

participants were first screened by telephone interview. The

TMJ OA patients were recruited at their appointment with

the TMD specialist from the University of Michigan. A total

of 92 patients were selected, for a total 184 h-CBCT scans of

the mandibular condyles. All subjects were clinically evaluated

by the same TMD specialist using the Diagnostic Criteria for

Temporomandibular Disorders (DC/TMD) (1–2). They were

then divided into two groups: a control group (n = 46

patients, 46 condyles) and a TMJ OA group (n = 46 patients,

46 condyles). The inclusion criteria for control subjects were

no history of clinical signs/symptoms of TMD. The inclusion

criteria for the TMJ OA group were the presence of TMJ pain

for less than 10 years, with clinical signs and symptoms

evaluated using the DC/TMD: TMJ noise during movement

or function in the last 30 days and crepitus detected during

mandibular excursive movements. The radiographic CBCT

interpretation was conducted by two oral and maxillofacial

radiologists to confirm the presence of TMJ OA and was

positive for at least one of the following: subchondral cyst,

erosion, generalized sclerosis, and/or osteophytes (1). The

exclusion criteria for the TMJ OA group were subjects with

more than 10 years since the diagnosis of TMJ OA, or

condyles with severe stages of bone destruction, subchondral

cyst, erosion, generalized sclerosis, and/or osteophytes. The

subjects were age and sex matched, with a mean 36 ± 11.4

years for control subjects and 40.2 ± 13.1 years for TMJ OA

patients; with 4 control and 4 TMJ OA male subjects. The

majority of female subjects than male subjects corroborates

the sex distribution reported in the literature (22, 23). This

study data included 3 sources of diagnostic features: clinical,

biomolecular (levels of proteins in serum and saliva), and

imaging features.
Clinical signs and symptoms

The same investigator collected and measured the clinical

signs and symptoms of the participants based on the DC/

TMD criteria (1, 2). The variables measured and selected for

further statistical analysis were: Age, Pain began in years -

TMJ OA group only, Current Facial Pain -TMJ OA group

only, Worst Facial Pain in last 6 months -TMJ OA group

only, Average Pain -TMJ OA group only, Last 6 Months

Distressed by Headaches, Last 6 Months Distressed by Muscle

Soreness, Vertical Range Unassisted Mouth Opening Without

Pain (mm), Vertical Range Unassisted Maximum (mm),

Vertical Range Assisted Maximum (mm).
Frontiers in Dental Medicine 03
Biomolecular data

The participants had 5 ml of venous blood collected by a

trained nurse at the University of Michigan. The blood was

centrifuged for 20 min at 1,000 RPM to separate only the

serum that was then aliquoted in 2 ml Eppendorf tubes and

stored at −8 °C. For the saliva collection, the participants

received a 14 ml sterile test tube with a funnel inserted; they

were instructed to tilt their heads forward and drip the saliva

off into the tube until 2 ml was collected. They were informed

to not spit, talk, or swallow during this process. We evaluated

14 proteins (10) in serum and saliva associated with

nociception, inflammation, angiogenesis and bone resorption:

6ckine, Angiogenin, BDNF, CXCL16, ENA-78, MMP-3,

MMP-7, OPG, PAI-1, TGFb1, TIMP-1, TRANCE, VE-

Cadherin and VEGF. However, the expression of 6ckine was

below the limit of detection in the serum and saliva samples

in this study, and MMP-3 was not expressed in saliva. Those

proteins were selected in a previous study that detected these

markers in the TMJ synovial fluid and saliva of OA patients,

showing correlations with bone surface changes (24). Custom

human quantibody protein microarrays obtained from

RayBiotech, Inc. Norcross, GA, was used to quantitatively

assess the saliva and serum samples for the 14 specific

biomarkers. Each participant had duplicates run for the saliva

and serum samples.
Imaging

All small field of view 0.08 mm isotropic voxel CBCT scans

were acquired using a 3D Accuitomo scanner (J. Morita Mfg.

Corp., Tokyo, Japan). The TMJ acquisition protocol was as

follows: field of view (FOV) of 40 × 40 mm, 90 kVp, 5 mAs

and scanning time of 30.8s. The limitation of the exposure to

the smallest FOV possible is in accordance to the ALARA (as

low as reasonably achievable) principle, and this radiation

reduction to the patient, maintaining or even improving the

level of precision and accuracy in the diagnosis, supports the

concept “as low as diagnostically acceptable” (ALADA) (25).

Imaging features of one condyle per patient were included to

reduce possible bias due to non-specific side data in systemic

biological samples and comorbidities, technical problems in

the hr-CBCT image acquisition, and presence of unilateral

TMJ OA. The detailed image analysis protocol provided

to the articular fossa region is shown in Figure 1 and all

imaging features included have previously been validated for

the mandibular condyle by Bianchi et al. (2021) (19) using

3D Slicer (26) and ITK-SNAP (27) open-source software.

Anterolateral and articular eminence volume of interest (VOI)

articular fossa regions in the FOV (Figure 2A) were selected

and extracted using the “crop-volume” module in 3D Slicer
frontiersin.org
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FIGURE 1

Image processing workflow adapted from bianchi et al. (2021) using 3D Slicer and ITK-SNAP open source software. (A) hr-CBCT files were
anonymized and compressed. (B) The condyle and articular fossa were segmented. (C) 3D Slicer was used to convert the segmented articular
fossa volume to a 3D surface. (D) Using the “transform” module, a standardized spatial orientation for each 3D TMJ bones model was made. Left
TMJ scans were mirrored to the right side. (E) The spatial orientation matrix created in the last step was applied to the TMJ scan. (F) Using the
“crop-volume” tool, two regions of the articular fossa (anterolateral, and articular eminence) were selected. (G) Using the “BoneTexture” module,
all of the radiomic variables were computed.

FIGURE 2

TMJ imaging protocol. (A) Small FOV hr-CBCT scans for TMJ imaging features analysis. Note that marked bone destruction is seen in the condyle and
the articular fossa also shows erosion. (B) Volumes of interest (VOIs) in the lateral portion of the articular fossa and in the articular eminence regions.
(C) Superior condylar-to-fossa distance as indicated by the blue axis line seen in the coronal and sagittal views.

Mackie et al. 10.3389/fdmed.2022.1007011
(Figure 2B) with 30 × 30 × 30 slices. The posterior regions of

the articular fossa were not included due to the presence of

air cells in the temporal bone samples and difficulty

distinguishing from trabecular bone. A total of 23 surrogate

imaging biomarkers were evaluated (19, 28–30), as described

in Table 1. The BoneTexture module in 3D Slicer was used

to compute the bone imaging biomarkers and obtain the

subchondral bone microstructure values. The software

computation parameters were chosen based on the pilot

calibration studies from Bianchi et al. (2021). The following

computational software parameters were selected: (1) for

GLCM: mask “inside” value = 1; number of bins = 10; voxel

intensity range min =−1,000, max = 2,500; neighborhood
Frontiers in Dental Medicine 04
radius = 4; (2) for GLRLM: mask “inside” value = 1; number

of bins = 10; voxel intensity range min =−1,000, max = 2,500;

distance range min = 0, max = 1; neighborhood radius = 4. For

bone morphometry (BM), the software parameters were

threshold = 250 and neighborhood radius = 4. Five

measurements of joint space (Figure 2C) were measured as

condylar-to-fossa distances (anterior, anterolateral, medial,

superior and posterior). The statistical analysis of the imaging

protocol was performed using IBM SPSS Statistics version

27.0 (IBM Corp., Armonk, NY). With an interval of 2 weeks

between repeated measures, intra-class correlation coefficients

(ICC) were used to assess the study error of the method in

the selection of VOIs and computation of radiomic and bone
frontiersin.org
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TABLE 1 Description of the variables for radiomic and bone
morphometry features.

Features Variables Definitions

Grey-Level Co-
occurrence Matrix
(GLCM)

Energy Uniformity of the grey-level
textural organization.

Entropy Randomization of the grey-
level distribution.

Correlation Grey-level linear dependence
among the pixels.

Inverse Difference
Moment

Local homogeneity of the grey-
level distribution.

Inertia Contrast between a pixel and its
neighbor.

Cluster Shade Skewness and uniformity of the
grey-level distribution.

Cluster Prominence Skewness and asymmetry of the
grey-level distribution.

Haralick Correlation Linear dependence between the
pixels.

Grey-Level Run
Length Matrix
(GLRLM)

Short Run Emphasis Distribution of short run
lengths.

Long Run Emphasis Distribution of long run
lengths.

Grey-Level Non
Uniformity

Variability of the grey-level
intensity.

Run Length Non
Uniformity

Similarity of run lengths in the
image.

Low Grey-Level Run
Emphasis

Distribution of the lower grey-
level values.

High Grey-Level Run
Emphasis

Distribution of the higher grey-
level values.

Short Run Low
Grey-Level Run
Emphasis

Joint distribution of shorter run
lengths with lower grey-level
values.

Short Run High
Grey-Level Run
Emphasis

Joint distribution of shorter run
lengths with higher grey-level
values.

Long Run Low Grey-
Level Run Emphasis

Joint distribution of long run
lengths with lower grey-level
values.

Long Run High
Grey-Level Run
Emphasis

Joint distribution of long run
lengths with higher grey-level
values.

Bone Morphometry BV/TV Ratio between bone volume
and total volume.

Tb.Th Trabecular thickness.
Tb.Sp Trabecular separation.
Tb.N Trabecular number.
BS/BV Ratio between bone surface and

bone volume.
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morphometry features, as well as repeatability and interobserver

reproducibility of joint space measures. The t-test for

independent samples was used to compare the TMJ OA and

Control groups with Levene’s Test for Equality of Variances

to determine the assumption for homogeneity of variance.
Diagnostic performance of the markers
in machine-learning algorithms

The data from this study was incorporated into two artificial

intelligence-based tools – TMJOAI (TMJ Osteoarthritis
Frontiers in Dental Medicine 05
Artificial Intelligence) tool (31) that integrates biological,

clinical and imaging data; and the TMJPI (TMJ Privileged

Information) tool (32). The Learning Using Privileged

Information (LUPI) implemented in the TMJPI tool uses

biological data to train the machine-learning model but

classifies new patients based on clinical and imaging data

only, which is the current standard of care. These tools are

available in an open-source web system DSCI (Data Storage

for Computation and Integration) used for data management

with storage and integration of patient information from

multiple sources (33).

The TMJOAI tool approach included feature normalization,

selection, and model evaluation. We normalized all features to

have zero mean and one standard deviation. Next, we

calculated the AUC (Area Under the Curve), p-value and q-

value from a two-sample Mann-Whitney U test to evaluate the

significance of each feature. Then, we performed cross-

validation (CV) to avoid overfitting – 100 times five-fold CV –

resulting in 500 models in total. Each subject was predicted by

the ensemble (averaging) of 100 models whose training set did

not include that subject. Top main effect features and

interactions, filtered with AUC > 0.7 and AUC > 0.65,

respectively, calculated from the training subjects were then

fed into models to make diagnostic predictions. We trained

Extreme Gradient Boosting (XGBoost) (34) and Light Gradient

Boosting Machine (LightGBM) (35) machine-learning models.

For both XGBoost and LightGBM models, we fixed the depth

D = 1, and tuned the iteration steps by further splitting the

training subjects into training and validation subjects. The

following metrics were calculated to evaluate the performances

of the model: accuracy, precision, recall, F1-score, and AUC,

where AUC was chosen as the evaluation criterion to measure

the test’s discriminative ability, i.e., how good is the test in a

given clinical situation, with an AUC > 0.7–0.8 as fair, 0.81–0.9

as good and 0.91–1 as very good (36).

The TMJPI tool approach tested the performance of RVFL

and KRVFL+ models using biological data as privileged

information (32). Considering that biological data is not

routinely acquired for TMJ OA patients, we performed five-

fold cross-validation and hyper-parameter tuning using a

grid-search approach, utilized feature selection approaches

such as normalized mutual information feature selection

(NMIFS), MRMR (maximum relevancy minimum

redundancy) and calculated Shapley Additive explanations

values to rank features by their importance (37). We tested

the performance of the TMJPI model using AUC, F1-score,

sensitivity, specificity, precision, and accuracy.
Results

In the articular eminence and anterolateral VOIs, 22 of the

23 proposed markers had an ICC value greater than 0.8,
frontiersin.org
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indicating good repeatability of these values. In the articular

eminence, the ICC value for Cluster Shade was 0.549, and in

the anterolateral region, the ICC value for Correlation was

0.539, and these values were excluded from the machine-

learning models. The ICC values for all five distances in the

3D measurement were greater than 0.8, indicating good

repeatability and reproducibility. Statistical significance was

detected between patients exhibiting early to moderate stages

of TMJ OA and control patients in the 3D measurement of

the superior condyle-to-fossa distance (p = 0.013) with

diseased patients exhibiting a smaller superior condyle-to-

fossa distance.

Using the TMJOAI tool, we found that articular fossa

radiomics, bone morphometry and joint space data improved

the performance of machine-learning models in detecting
TABLE 2 Comparison metrics for the final model in TMJOAI and TMJPI. M
Precision1 and Recall1 for OA and Precision0 and Recall0 for control grou
macro average of the two classes’ F-1 scores (38, 39).

TMJOAI Models AUC Accuracy Precision1

XGBoost 0.829 0.772 0.778

LightGBM 0.842 0.804 0.804

XGBoost + LightGBM 0.837 0.783 0.783

TMJPI Model AUC Accuracy Precision

KRVFL+ 0.809 0.709 0.774

FIGURE 3

General association analysis of risk factors for 79 features (A) and 66 top inter
the p-values, and the inner circle shows the q-values for each single feature

Frontiers in Dental Medicine 06
TMJ OA status mainly through interaction effects among the

integrated features. The best performing machine-learning

model was LightGBM model, even better than XGBoost +

LightGBM combined, with the highest AUCs and F1-scores.

Our results in Table 2 show that the LightGBM model now

implemented in the TMJOAI with these features and

interactions achieves the accuracy of 0.804, AUC 0.842, and

F1-score 0.804 to diagnose the TMJ OA status with 3,081

feature interactions.

The values for the AUC, p-value, and q-value for all features

are shown in Figures 3A, 4A. Figure 3A shows the AUC (upper

plot), p-value (middle plot) and q-value (lower plot) for each

category of variables (biological, clinical, condylar radiomics,

articular fossa radiomics, and joint space). Figure 5 shows the

12 features with >90% top contributions sum: Headaches, VE-
ulti-class precision and recall for the TMJOAI models are shown as
ps, respectively, and the final F1-score was calculated by taking the

Precision0 Recall1 Recall0 F1-Score

0.766 0.761 0.783 0.772

0.804 0.804 0.804 0.804

0.783 0.783 0.783 0.783

Sensitivity Specificity F1 score

0.627 0.791 0.661

actions (B). (A,B) The outer circle shows the AUC, middle circle shows
.
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FIGURE 4

Graphic displays of 79 features (A) and 3,081 interactions (B). (A,B) The upper graphic shows the AUC, the middle graph shows the p-values, and the
lower category shows the q-values for each category of features.

FIGURE 5

ROC curves of diagnostic sensitivity and specificity for individual
features with top mean importance and the mean prediction of
XGBoost and LightGBM.
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cadherin in Serum and Angiogenin in Saliva, TGF-β1 in Saliva

and Headaches, Gender and Muscle Soreness, PA1 in Saliva and

Range of mouth opening without pain, Lateral Condyle Grey-

Level Non-Uniformity and Lateral Fossa Short Run Emphasis,
Frontiers in Dental Medicine 07
Range of mouth opening without pain, TGF-β1 in Serum and

Lateral Fossa Trabeculae number, MMP3 in Serum and VEGF

in Serum, Headaches and Lateral Fossa Trabecular spacing,

Headaches and PA1 in Saliva, and Headaches and BDNF in

Saliva. Most of the features with significant AUC values are

clinical or condylar radiomics; no fossa radiomic or joint

space features are detected with AUC > 0.65 (Figure 3A). The

highest AUC value for a main effect fossa radiomic or joint

space features was the superior joint space distance

(Figure 3A); the interaction of Headaches and Lateral Fossa

Trabecular spacing, Lateral Condyle Grey-Level Non-

Uniformity and Lateral Fossa Short Run Emphasis, and TGF-

β1 in Serum and Lateral Fossa Trabeculae number were found

to significantly contribute to the prediction of TMJ OA status

(Figures 3B, 4B, 6A).

For articular fossa markers, prediction models show that

the interaction between Lateral Condyle Grey-Level Non-

Uniformity and Lateral Fossa Short Run Emphasis, TGF-β1

in Serum and Lateral Fossa Trabeculae number, and

Headaches and Lateral Fossa Trabecular spacing is found to

be the top feature for the accurate diagnosis of early stages

of this clinical condition (Figure 6A). After the selection of

the best features and interactions (Figure 6A), Figure 6B

displays the boxplots for comparison between OA and

control groups with corresponding AUCs, further

demonstrating performance in the diagnosis of TMJ OA

status. Figure 5B shows the ROC curves of diagnostic

sensitivity and specificity for individual features with top

mean importance and the mean prediction of XGBoost,
frontiersin.org
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FIGURE 6

Top 12 features in the LightGBM prediction model. (A) Mean contribution (according to feature importance) greater than 90% for 100 times 5-fold
CV. (B) Boxplots of normalized features to diagnose disease status.
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LightGBM and their ensemble with LightGBM demonstrating

the largest ROC curve and highest discriminative ability of the

models and features (Table 2).

Using TMJPI, when combining clinical, radiomic (condyle

and fossa), and 3D joint space features, LUPI-based models

with additional biological features significantly enhanced the

model performance on clinical, joint space measurement, and

condyle datasets. The best clinical performance was obtained

with the KRVFL+ model, keeping all clinical criteria and

applying feature selection on the condyle and joint space

features (Evaluation metrics shown in Table 2). The Shapley

ranking of features based on their importance indicated 12

top features: 3 Clinical (Headaches, Muscle Soreness, Vertical

Range Unassisted Mouth Opening Without Pain), 7 condylar

radiomics and morphometry (Trabecular thickness,

ShortRunHighGreyLevelEmphasis, Cluster Prominence,

Entropy, Correlation, InverseDifferenceMoment and Energy)

and 2 joint space features (Superior and Medial).
Discussion

This study demonstrates the diagnostic performance of joint

space distances and radiomic biomarkers of the subchondral

bone in hr-CBCT scans of TMJ OA patients in the articular

fossa region. Surrogate articular fossa bone morphometry and

textural features were not significantly different between TMJ

OA patients and controls, whereas the superior joint space was
Frontiers in Dental Medicine 08
significantly smaller in TMJ OA patients. This may suggest

that joint space narrowing in the superior region may serve as

an early sign of TMJ OA as found in previous studies (22).

The inclusion of quantitative articular fossa radiomics and

joint space to machine-learning algorithms proved to be

useful in enhancing the performance of TMJ OA classifiers.

While articular fossa imaging biomarkers alone may not be

diagnostic of early disease stages, through interactions with

condylar, clinical and biological changes, fossa features may

serve to strengthen the performance of machine-learning

algorithms. Headaches and Range of mouth opening without

pain and interactions of VE-cadherin in Serum and

Angiogenin in Saliva, TGF-β1 in Saliva and Headaches,

Gender and Muscle Soreness; PA1 in Saliva and Range of

mouth opening without pain, Lateral Condyle Grey-Level

Non-Uniformity and Lateral Fossa Short Run Emphasis, TGF-

β1 in Serum and Lateral Fossa Trabeculae number, MMP3 in

Serum and VEGF in Serum, Headaches and Lateral Fossa

Trabecular spacing, Headaches and PA1 in Saliva, and

Headaches and BDNF in Saliva were the top features/

interactions to accurately diagnose early stages of this clinical

condition. Three of these interactions include fossa

components showing that the assessment of fossa markers

proves useful in diagnosis, as shown in our results with

TMJOAI interaction effects. Therefore, while the articular

fossa markers alone are not ranked among the features with

highest AUC (Figures 3A, 4A), many articular fossa feature

interactions present higher AUC (Figures 3B, 4B). The
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prediction model shows that the interaction between Lateral

Condyle Grey-Level Non-Uniformity and Lateral Fossa Short

Run Emphasis, TGF-β1 in Serum and Lateral Fossa

Trabeculae number, Headaches and Lateral Fossa Trabecular

spacing are found to be top contributing features for the

accurate diagnosis of early stages of this clinical condition

(Figure 6). This finding is similar to that of Bianchi et al.

(2020) (10) prediction models that showed that the

interaction between VE-cadherin in Serum and Angiogenin in

Saliva, Headaches and PA1 in Saliva, TGF-β1 in Saliva and

Headaches, VE-cad_Sal*Headaches (AUC= 0.698), TGF-β1 in

Saliva and Headaches, and PA1 in Saliva and Range of mouth

opening without pain are top features with mean >80%

contribution to the information gain in the XGBoost and

LightGBM predictive models. Therefore, our preliminary

results suggest that while the condyle imaging features may be

more important in regard to the main effect (Figure 3A), the

fossa features may have a larger contributing factor in terms

of interaction effects (Figure 3B) – though future studies with

larger sample sizes are needed.

In TMJPI, the machine-learning models only tested the

original features and the main effect of each feature in overall

TMJ OA status, whereas in TMJOAI, the machine models

also tested interactions between features. This could explain

why model performance decreased in TMJPI with the

inclusion of all radiomic features, as TMJOAI models showed

that the radiomic contribution is predominantly through

interaction effects. Currently, the TMJPI tool is limited in

computational approaches for testing feature interactions due

to the fact that it is supercomputing intensive and it takes a

long time to train the model with interactions built in. As our

baseline sample recruitment continues, larger sample sizes will

allow further training of non-LUPI and LUPI-based

algorithms on the TMJ OA datasets using grid search and 5-

fold cross-validation (CV) on the training set to determine

the optimal hyperparameters and features for each algorithm.

A limitation of the study similar to that of Bianchi et al.

(2021) (10) was the use of the DC/TMD (1, 2) imaging

criteria to confirm the diagnosis of the TMJ OA; however, the

hr-CBCT used has a voxel size of 0.08 mm3, showing higher

resolution and details than described in the DC/TMD imaging

data, which uses CT scans with 0.7–1 mm slice thickness.

Even with the addition of radiographic criteria to the DC/

TMD – the standardized and widely used protocols for TMJ

OA assessment – there is still a reliance on subjective

radiological interpretation of pre-existing bone changes and

clinical symptoms (1, 2). Furthermore, the cross-sectional

study design does not allow assessment of the disease

progression and how different disease stages affect the

proposed biomarkers. This study was conducted only at

baseline – providing another classification of disease vs.

control that is already available with imaging and clinical

symptoms. However, the ultimate goal of this work is the
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longitudinal assessments that will follow that test the potential

of these baseline predictor values to also be predictive of risk

of disease progression. This is valuable in determining which

subjects are at greater risk of worsening over time, or which

subjects would respond better to conservative approaches such

as a mouthguard or splint therapy. Therefore, these initial

markers detected in this study can serve as surrogate markers

to be tested in future studies of risk of disease progression.

Future studies using the proposed machine-learning models

and longitudinal data will provide better information on the

feature’s behavior and disease progression. However, a

drawback currently is that feature extraction from Cone-Beam

Computed Tomography (CBCT) images remains time

consuming before this integrative model can be applied in

larger-scale studies. Automatization of image-processing steps

and further refinements in machine-learning algorithms to

detect early markers of disease have the potential to improve

prediction of disease progression and severity to ultimately

better serve and treat patients with TMJ OA.
Conclusion

Our results indicate that the condyle imaging features may

be more important in regard to the main effect; whereas, for

interaction effect, the fossa features may play a crucial role in

the diagnosis of TMJ OA. Narrowing of the superior joint

space was observed in TMJ OA patients. We developed a

methodology for the extraction of articular fossa radiomics

and joint space distances utilizing machine learning for a

comprehensive integration and management of data from

various sources to improve articular joint health and predict

patient-specific TMJ OA status.
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