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Applications of regenerative
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Management of the growing adult orthodontic patient population must
contend with challenges particular to orthodontic treatment in adults. These
include a limited rate of tooth movement, increased incidence of
periodontal complications, higher risk of iatrogenic root resorption and pulp
devitalisation, resorbed edentulous ridges, and lack of growth potential. The
field of regenerative dentistry has evolved numerous methods of
manipulating cellular and molecular processes to rebuild functional oral and
dental tissues, and research continues to advance our understanding of stem
cells, signalling factors that stimulate repair and extracellular scaffold
interactions for the purposes of tissue engineering. We discuss recent
findings in the literature to synthesise our understanding of current and
prospective approaches based on biological repair that has the potential to
improve orthodontic treatment outcomes in adult patients. Methods such as
mesenchymal stem cell transplantation, biomimetic scaffold manipulation,
and growth factor control may be employed to overcome the challenges
described above, thereby reducing adverse sequelae and improving
orthodontic treatment outcomes in adult patients. The overarching goal of
such research is to eventually translate these regenerative techniques into
clinical practice, and establish a new gold standard of safe, effective,
autologous therapies.
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Introduction

Engagement with orthodontic treatment amongst adults is on the rise, with a

noticeable shift in the orthodontic patient demographic over the past two decades (1,

2). This may be attributed to improved dental awareness amongst the general public,

better accessibility of dental services, and increased social acceptability (2, 3, 4). The

physiological, pathological and behavioural differences between adult orthodontic

patients and their child and adolescent counterparts create unique considerations and

challenges in their treatment (4–6). Almost all current treatments rely on introducing

foreign materials into or onto the dentofacial tissues, whereas the ideal therapy would

utilise our understanding of tissue biology to regenerate natural tissues.

Regenerative dentistry encompasses repair and regeneration of functional dental

tissues by understanding tissue development, growth, underlying mechanisms of

molecular signalling, that drive repair process, and employment of biocompatible

scaffolds. Recent years have seen remarkable progress towards the goal of regenerating
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autologous dental and craniofacial tissues for therapeutic use

(7), and these techniques can be applied to some of the

clinical problems faced in orthodontic treatment of adult

patients.

This review summarises current and cutting-edge research

in the field of regenerative dentistry and presents the

perspective of its translation into therapeutic approaches for

adult orthodontic patients.

We critically discuss six themes relevant to adult orthodontic

challenges which may be tackled with regenerative approaches

(Figure 1). Cell turnover and healing potential are diminished

with age, limiting the speed of orthodontic tooth movements

(4–6). Completion of bony growth in adolescence results in

increased reliance on surgical corrections (4, 6). Adults

experience a higher incidence of periodontal disease which

affects the reaction of the periodontium to orthodontic forces,

and tooth loss leaves edentulous alveolar ridges that resorb and

impair orthodontic tooth movement into the space (4, 5). Root

resorption, a common adverse consequence of orthodontic

treatment, shows greater risk in adult patients (8), as does

tooth devitalisation (9).
FIGURE 1

Schematic representation of the six themes of potential applications of
BioRender.com.
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Accelerating tooth movement

Orthodontic tooth movement (OTM) in the absence of

adverse sequelae becomes limited with aging as periodontal

remodelling potential reduces, but this may be augmented by

manipulation of regenerative techniques. OTM arises from

coordinated remodelling events in the alveolus and

periodontal structures surrounding a tooth root, stimulated by

mechanical force. Its efficiency depends on cellular and

extracellular activity, establishment of local molecular

gradients, periodontal and dental health and stability (10, 11).

The pressure-tension theory states that orthodontic forces

create differential compression and tension on different sides

of the periodontal ligament (PDL), generating local

disruptions in vascularity, a mild inflammatory response, and

an altered biochemical environment which enables movement

of the root (Figure 2) (12). OTM is slower and delayed in

adults compared to children due to age-related physiological

changes: cellular activity and turnover decrease, the PDL

becomes more fibrous and less vascular, and alveolar bone

becomes denser and more calcified (4, 11, 13).
regenerative techniques in adult orthodontics. Figure created with
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FIGURE 2

Mechanism of orthodontic tooth movement due to compression and tension generated from orthodontic loading. MMPs, matrix metalloproteinases;
OPG, osteoprotegrin; M-CSF, macrophage colony-stimulating factor; RANKL, receptor activator of nuclear factor kappa-Β ligand. Figure created with
BioRender.com.
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Modern methods to accelerate OTM include corticotomy,

piezosurgery, microperforations, low-level laser therapy,

photobiomodulation, and vibration-based strategies (14, 15).

Corticotomies and other surgical techniques produce a

regional acceleratory phenomenon and stimulate a surge in

bone remodelling, but may lead to lower bone density in that

region (11, 16). There is a lack of high-quality evidence to

rigorously evaluate the efficacy of the other newer techniques,

which are still being keenly studied (14).

To meet the need for alternative, effective, non-invasive

methods, stem cell therapy may draw inspiration from the

periodontium’s natural response to orthodontic forces:

endogenous mesenchymal and haematopoietic stem cells are

activated to differentiate into osteoblasts and osteoclasts,

respectively, within hours of force application (17). Studies

have demonstrated that transplanting adipose-derived stem

cells (ASCs) into the PDL can increase the rate of OTM by

stimulating resident PDL stem cells (PDLSCs) to accelerate

PDL reorganisation and bone remodelling, or by direct effects

of the MSCs on the tissues (18). ASCs have high osteogenic

and periodontal differentiation potential (19) and can be

transplanted into the PDL in a minimally invasive manner via

infiltrative or intraligamentary injections (10). PDLSCs are

also mechanosensitive and contribute to periodontal and

osseous remodelling during OTM (20, 21).

On a molecular level, inflammatory markers such as

interleukin-11 (IL-11) are produced by PDLSCs in response

to mechanical forces, and these molecules regulate the

proliferation and differentiation of osteoclasts and osteoblasts

(22). Thus, influence over the availability and activity of such

molecules may allow more predictable control of alveolar

remodelling associated with OTM. Similarly, in vivo and in

vitro studies have demonstrated relationships between

prostaglandins, particularly Prostaglandin E2, and accelerated
Frontiers in Dental Medicine 03
tooth movement when subjected to forces as in orthodontic

therapy (23). The highly conserved Wnt/β-catenin pathway,

which is ubiquitous in embryonic development and many

self-renewing adult cells, is activated by mechanical

stimulation and maintains bone homeostasis during OTM

(21). With further research, future therapies may be able to

accelerate OTM by transplanting autologous MSCs into the

periodontium, or by controlling resident endogenous MSCs

through pharmacological manipulation of relevant signalling

pathways.
Regenerating periodontal tissues

The periodontium is a complex functional unit consisting of

cementum, alveolar bone, gingivae, and PDL. Periodontitis,

characterised by host inflammatory responses causing

irreversible destruction of periodontal tissues, affects

approximately 20%–50% of the global population (7) and

adults significantly more than adolescents (24). Individuals

undergoing orthodontic treatment are not at higher risk of

developing periodontitis, even with reduced periodontal

attachment, provided active disease is stabilised and plaque is

controlled (4, 25). Periodontitis frequently causes

unfavourable tooth migration which may benefit from

orthodontic repositioning (26, 27). Loss of periodontal

support reduces the PDL surface area bearing the orthodontic

forces, so a certain force will generate larger moments and

more extrusive movements than if applied to a tooth with

physiological periodontal levels (28).

Damaged periodontal tissues may be repaired (whereby the

lost tissues are replaced by a different structure from the

original, for example following non-surgical root scaling) or

regenerated (whereby damaged tissues are restored to their
frontiersin.org
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original form and function). Currently employed regenerative

techniques have had some success in clinical applications for

severe defects (27): guided tissue regeneration (GTR)

obstructs ingress of epithelial and gingival cells into the

defect, tissue grafts may come from autogenous tissues or

animal-derived bone particles, and biologic agents (30)

stimulate regenerative cellular processes. However, the search

for more clinically efficient autologous periodontal

regenerative techniques continues, with keen interest in stem

cell therapy (31).

Experiments in animal models have shown that

implantation of MSCs from various sources into periodontal

defects can contribute to periodontal tissue regeneration,

including from the dental pulp, the apical papilla, and

Hertwig’s epithelial root sheath (7, 29). However, most

interest lies in unlocking the potential of MSCs and

progenitor cells in the PDL to regenerate the periodontium, as

the local resident stem cells. Human PDLSCs can differentiate

into osteoblast-, fibroblast- and cementoblast-like cells and

synthesise bone and collagen fibres when transplanted into

periodontal defects, indicating a potential to regenerate the

whole bone-PDL-cementum complex (32–34). Engineered cell

sheets aid transplantation by preventing unwanted cell

diffusion away from the defect (7, 35–37); but 3-dimensional

(3D) scaffolds (such as hydroxyapatite-tricalcium phosphate

or collagen scaffolds) (27, 38, 39) are superior in

reconstituting the complex architecture of the periodontium;

they allow cell mobility and interaction with the scaffold

biomaterial and release growth and differentiation factors (7).

Natural extracellular matrix (ECM) scaffolds may be obtained

non-invasively, from MSCs isolated from human urine:

PDLSCs cultured on this ECM show superior proliferation,

osteogenesis and angiogenesis compared to controls (40).

Indeed, MSC-derived ECM is more effective than other kinds

of ECM at improving desirable stem cell characteristics, whilst

maintaining stemness and even rejuvenating aged stem cells

(40). This is valuable since PDLSCs are known to lose

proliferation and differentiation capacity and increase

apoptotic tendencies with age (41).

Additional techniques can enhance stem cells’ natural

capabilities, for example, PDLSCs treated in a conditioned

medium from developing apical tooth germs showed

increased capacity to generate cementum and periodontal-like

structures, in contrast to untreated PDLSCs which generated

more connective tissue (42). Furthermore, epigenetics may

also play a role: increased deoxyribonucleic acid (DNA)

methylation (for example in uncontrolled diabetes) was shown

to affect the osteogenic differentiation capacity of PDLSCs,

which was rescued in vitro by applying a DNA

methyltransferase inhibitor (43). Such techniques gender

optimism that a clinically useful strategy will be available to

regenerate periodontal defects in the near future.
Frontiers in Dental Medicine 04
Regenerating resorbed roots

Orthodontically-induced inflammatory root resorption

(OIIRR) is the most common sequela of orthodontic treatment

(44, 45). The occurrence of OIIRR depends on biological host

factors, genetic predisposition, and mechanical force factors

(46, 47). Adults are at higher risk of OIIRR than their

adolescent counterparts due to the adult PDL being mostly

quiescent (8). Excessive forces damage and expose the root

surfaces which are resorbed by osteoclast attachment and

activity in a pro-inflammatory environment (48, 49).

Physiologically, locally resident stem cells are integral in the

normal maintenance and repair of dentine and cementum in

the root. Stem and precursor cells in the PDL are capable of

differentiating into the cementoblastic cells needed to repair

resorption lacunae and are crucial for periodontal homeostasis

and maintaining the cementum-PDL interface (20, 38).

Future therapies may seek to promote PDLSC activity to

counteract and repair root resorption during OTM. So far,

experiments in animal models have demonstrated beneficial

effects of transferring ASCs into the PDL of teeth subjected to

orthodontic forces: a significant protective effect against OIIRR

was found in rats (49), suggesting that the transferred MSCs

not only differentiated into osteoblasts or cementoblasts

themselves, but also activated endogenous PDLSCs to

contribute to repair. A variety of MSC types [including from

bone marrow, PDL, dental follicles (DFCs) and dental pulp]

have been successfully differentiated into cementoblast-like cells

and increased cementum formation (50). Odontoblasts have

been successfully derived from a range of dental-derived MSCs

(51, 52); DFCs show superior dentine regeneration capacity to

PDLSCs, producing more complete dentine tissues and capable

of growing root and periodontal tissue in pre-clinical in vitro

and in vivo studies (53, 54). Stem cells from human exfoliated

deciduous teeth (SHEDs) have been shown to possess similar

odontogenic differentiation capacity to DFCs in in vivo

experiments, with the additional advantage of simple harvesting

methods; consequently, much research interest is focused on

exploring SHEDs’ potential for bio-root regeneration (55, 56).

Stem cells can be delivered to root defects via transplantation

on scaffolds, in cellular pellets, or directly injected. Materials such

as calcium aluminate can be used to enrich porous scaffolds,

increasing mineral matrix deposition and enhancing the

odontogenic potential of seeded stem cells (57). Additionally,

research may exploit cytokines and other signalling molecules to

improve tissue formation: mechanical force activates IL-11 to

stimulate osteoblastic and cementoblast-specific markers in

MSCs, indicating their role in inducing MSC differentiation into

osteoblasts or cementoblasts during tooth movement (49).

Further elucidation of naturally occurring intercellular and inter-

tissue communication will allow finer control of the dental tissue

repair and regeneration.
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Regenerating vital dental pulp

Orthodontic forces produce cellular changes not only in the

periodontal structures but also in the dental pulp: prolonged

force application may result in vascular stasis and eventually

necrosis (58, 59). Data on the prevalence of orthodontic-

related pulp damage is limited, but reports estimate that a

range of 1%–14% of teeth in the adolescent patient

population devitalise (60). Adults are likely to be at higher

risk of devitalisation due to having more mature roots and

narrower apical foramina (9, 59). Current endodontic therapy

entails removal of all necrotic pulp tissue and replacement

with a synthetic material; this is commonly done with good

outcomes, however, endodontically treated teeth become

weakened and more brittle (60), and subsequent cuspal

coverage restorations necessitate removal of more coronal

tooth tissue. The ability to restore the dental pulp to its

original vitality, form and function could avoid these

problems and revolutionise endodontics.

Regeneration of vital dental pulp is an area of great research

interest, and progress in this field of regenerative endodontics is

encouraging. As discussed in earlier sections of this review,

several types of MSCs derived from teeth and other organs can

differentiate into odontoblasts and produce dentine-like

material (7). This capacity can be enhanced by modulating the

biochemical environment; for example, porous 3D scaffolds

which mimic the tubular structure of dentine induce

differentiation of human dental pulp stem cells (DPSCs) and

bone marrow MSCs (BMMSCs) into odontoblasts (61).

Injectable scaffolds are advantageous over hard polymer

scaffolds because they can be inserted into the pulp chamber of

an intact tooth through a conservative access point. SHEDs

have been seeded onto such injectable scaffolds of self-assembly

peptides or collagen and injected into root canals, successfully

forming pulp-like tissue and functional odontoblast-like cells

(62). Some self-assembly peptide hydrogels are capable of

forming nano-fibre meshes which are conducive to the growth

and differentiation of DPSCs, and relatively economical (58).

Re-vascularisation is essential in providing a functional dental

pulp tissue capable of limited dentine repair, since most progenitor

cells are recruited from the blood (63). The pulp chamber, encased

in a rigid structure, presents a unique challenge since blood supply

is provided solely through the narrow apical foramen. Various

techniques have been explored, including impregnating scaffolds

with pro-angiogenic factors such as vascular endothelial growth

factor (VEGF) (58, 64). Endothelial cells can be transplanted in

scaffolds to induce vascular differentiation of stem cells due to

their intrinsic vasculogenic potential; however, this has had

limited success due to their low proliferative capacity (65, 66).

Alternatively, DPSCs can induce angiogenesis in other cell types,

as well as differentiate into vascular endothelial cells themselves

(67). Extracellular vesicles produced by PDLSCs were recently
Frontiers in Dental Medicine 05
co-cultured with endothelial cells and DPSCs in injectable fibrin

hydrogels, and they promoted angiogenesis, cell growth and cell

migration, thus demonstrating potential for pulp regeneration (68).
Regenerating alveolar ridges

The incidence of tooth loss increases with age, and

subsequent bone remodelling results in reduction in height

and width of the alveolar ridge (69). As the ridge resorbs, the

bone envelope into which teeth can be moved orthodontically

is reduced (70). Adults are at no higher risk of orthodontic-

induced bone loss than younger patients, contingent on the

absence of plaque and application of appropriate orthodontic

forces (71). However, restoring the dimensions of alveolar

ridges with pre-existing resorption is particularly helpful in

adults in order to allow tooth movement into that edentulous

space.

Most current strategies for alveolar augmentation involve bone

grafting, with no definitive conclusion as to which graft material is

superior or most suitable for which clinical situation. Various

materials have been used including autogenous grafts, xenografts,

and synthetic or alloplastic bone substitutes (72). These may be

performed alone or in conjunction with GTR or corticotomy

(73, 74). The gold standard is an autogenous bone graft, but

limitations include pain and morbidity of the donor site, variable

quality and quantity of the grafted bone, and limitation in shape

and size of the graft (63).

Tissue engineering in the context of ridge augmentation

bypasses these concerns by providing a minimally invasive

method of replacing lost bone: it endeavours to utilise and

optimise the properties of autologous osteogenic cells,

osteoconductive scaffolds, and osteoinductive molecular

signals. Studies employing ex vivo expanded stem or

progenitor cells and whole-tissue fractions have not yet

concluded the most superior method (69), but each offers

advantages over current practice. Many different types of

MSCs have been evaluated for their osteogenic potential in

animal models and some human studies, including BMMSCs,

ASCs and dental-derived MSCs. Each demonstrates positive

osteogenic capacity, but with variable efficacy and potency (63).

BMMSCs have been extensively studied in repairing

craniofacial bony defects in animal models and more recently

in human trials, which showed clinical and histological

success in regenerating resorbed mandibular ridges via a less

invasive method than conventional bone grafting (75–78).

Perivascular stem cells (PSCs), which are easily acquired from

well-vascularised tissues and can be rapidly isolated and

purified (79), were also shown to induce bone formation in

mouse calvarial defects (80, 81). Of the dental-derived MSCs,

PDLSCs and gingivae-derived MSCs were tested in preclinical

studies and successfully regenerated calvarial defects (82, 83),
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although the PDLSC osteogenic capacity is less than that of

BMMSCs (84). DPSCs are also able to regenerate orofacial

bony defects in animals and humans (85, 86) and in fact

compares favourably to BMMSCs and PSCs with regards to

osteogenic potential (87). SHEDs are also capable of inducing

angiogenesis and growing mature bone in mice (88) and have

superior proliferative and osteogenic ability to DPSCs and

BMMSCs (89, 90).

As the ECM is critical in directing osteogenic lineage

specification in utero, scaffolds aim to mimic the natural bone

ECM. Regeneration of bone defects by MSCs is greatly enhanced

when combined with scaffolds (72), and extensive research

continues to discover the optimal conditions for osteogenesis. A

wide variety of biomaterials have been tried and tested, including

β-tricalcium phosphate, hydroxyapatite-tricalcium phosphate,

collagen, bovine freeze-dried tooth-derived protein, and

decellularized dental pulp matrix (85, 86, 91, 92). Advances in

3D technology have enabled creation of electrospun nanofibrous

scaffolds which improve osteogenic differentiation of BMMSCs

(93), and 3D-printed titanium alloy scaffolds for MSC seeding

and bone formation (94). Supplementary factors which enrich

the osteogenic extracellular and cellular environment include

aspirin, which modulates gene expression and inflammation to

increase the proliferative and osteogenic potential of PDLSCs

(95, 96). Pulsed ultrasound stimulation can also upregulate

osteogenic differentiation of PDLSCs (97), as can encapsulation

in gelatin methacrylate hydrogels (98), and treatment with gold

nanoparticles (99).
Improving dentofacial orthopaedic
surgical outcomes

Dentofacial orthopaedics aims to guide the growth and

balance the final positions of the facial bones and jaws. A key

difference between adults and children or adolescents is their

growth potential; on average, the maxilla and mandible

achieve maturity at approximately 16–17 years of age.

Although subtle allometric changes continue throughout

adulthood, the growth rate is far less than in adolescence

(100). The teenage growth spurt is often exploited by

orthodontists via functional appliances and dentofacial

orthopaedics; although the true long-term skeletal impact of

functional appliances is debated (101), it is accepted that they

are not clinically effective once growth is diminished in

adulthood. Therefore, adults presenting with such skeletal

discrepancies have the sole option of surgery.

Conventional orthognathic surgeries entail osteotomy and

repositioning of the maxilla, mandible, or both. These

surgeries have a long and largely successful history but are

not without risks: patients may experience severe

haemorrhage, neurological damage, and non-union of the

separated bone segments, and clinical limits must be imposed
Frontiers in Dental Medicine 06
on the distance that the jaws can be displaced (102, 103).

Bone grafting can improve ossification in the osteotomy site

but is hindered by the limitations of harvesting autogenous

bone and developing predictable, effective biomaterials (104).

Distraction osteogenesis (DO) is another surgical approach

which lengthens bone by separation of the fragments to

promote gradual new bone formation: tension exerted on the

bone fragments induces recruitment of MSCs and osteogenic

progenitors, which then form a neocallus in the distraction

gap (105). Patients must wear external fixators for an average

of 12 months, risking infection and osteomyelitis of the jaws

(106); thus, efforts to reduce treatment time are valuable.

Surgical outcomes may be improved by facilitating wound

healing, both from a histological and clinical perspective. Stem

cell therapy can be extremely useful in this context, as MSCs

are effective in stimulating angiogenesis, healing and tissue

repair (107, 108). Skin wounds showed significantly faster

closure, re-epithelialisation and angiogenesis when engrafted

with BMMSCs (109). As discussed earlier, the osteogenic

ability of various types of MSCs and the potential to add

scaffolds and growth factors would be instrumental in

enhancing ossification at the orthognathic surgical site, and

therefore accelerating patient recovery (110).

New bone formation in DO can also be facilitated by stem

cell application (Figure 3) (111). Several animal studies show

that BMMSCs upregulate osteogenesis and neocallus

consolidation, therefore not only shortening treatment time

but also improving the quality of the bone formed (112–114).

Other sources of MSCs have also been successfully used to aid

DO, including ASCs and SHEDs (115). As well as

differentiating into osteoblastic cells themselves, MSCs release

important pro-osteogenic factors which signal to and affect

activity of adjacent cells. Adding BMMSC-conditioned media

to mice undergoing rapid DO was shown to accelerate healing

by promoting recruitment of bone marrow stromal cells and

endothelial cells, inducing osteoblastic differentiation and

angiogenesis, and inhibiting inflammation and apoptosis

(106). Neoangiogenesis is essential as ischaemia usually limits

healing and treatment time. Endothelial progenitor cells from

blood vessels contribute to increased blood flow in the

mandible during DO, and therefore protect from ischaemia

(116). MSCs can also differentiate into neuronal and vascular

endothelial progenitors, but the challenge is expanding the

appropriate populations and simultaneously coordinating

control of osteoblastic, neuronal and vascular tissue lineage

specification.
Discussion

There are several clinical challenges in adult orthodontics

that may be improved by harnessing regenerative approaches

and techniques. Limited cell turnover and rate of OTM, loss
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FIGURE 3

Schematic representation of the process of isolation and programming of iPSCs for bone regeneration in dentofacial orthopaedic surgery.
Figure created with BioRender.com.
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of periodontal support, OIIRR, iatrogenic pulp devitalisation,

alveolar ridge resorption, and surgical orthodontic treatment

outcomes have potential to benefit from applications of

current and future approaches based on biological repair and

regeneration.

In particular, directing research efforts down the route of

improving efficacy, efficiency, and safety of MSC acquisition

and differentiation could give valuable results for clinical

therapies. Broadening and deepening our understanding of

the underlying mechanisms that drive the process of repair

will enable more predictable ways of stimulating biological

repair and regeneration. However, barriers to translation of

regenerative approaches and stem cell-based therapies are

high due to practical and ethical issues, and these must be

addressed before considering clinical use. Synthetic

biomaterials used to generate biomimetic scaffolds are more

straightforward in their translation, but their application may

be limited, and cellular factors and conditions should first be

optimised.

Most regenerative techniques are still being developed in

pre-clinical stages, and it is important to note the differences

in dental anatomy, cellular behaviour, and progression of

diseases in the animals used when modelling human

processes. There is a need to establish protocols for reliable

stem cell expansion and differentiation, ascertain compatibility

with appropriate biomaterials, and assess the quality of the

tissues produced when tissue engineering techniques are being
Frontiers in Dental Medicine 07
translated into therapeutic solutions. These important steps

must be taken before such techniques can be translated into

clinical applications for adult orthodontic patients and the

practice of regenerative therapies becomes reality.
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