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Stem cells derived from human exfoliated deciduous teeth (SHEDs) are considered

a promising cell population for cell-based or cell-free therapy and tissue engineering

because of their proliferative, multipotency and immunomodulator. Based on recent

studies, we find that SHEDs show the superior ability of nerve regeneration in addition

to the potential of osteogenesis, odontogenesis owing to their derivation from the

neural crest. Besides, much evidence suggests that SHEDs have a paracrine effect and

can function as immunomodulatory regents attributing to their capability of secreting

cytokines and extracellular vesicles. Here, we review the characteristic of SHEDs, their

multipotency to regenerate damaged tissues, specifically concentrating on bones or

nerves, following the paracrine activity or immunomodulatory benefits of their potential

for clinical application in regenerative medicine.

Keywords: stem cells derived from human exfoliated deciduous teeth, multipotency, immunomodulatory,

regenerative medicine, paracrine activity

INTRODUCTION

Stem cells isolated from the pulp in exfoliated deciduous teeth (SHEDs) are one of the dental
mesenchymal cells derived from cranial neural crest cells (NCCs) (1). It is well established that
SHEDs are shown to be a population of highly proliferative, clonogenic cells, compared to other
dental stem cells, such as periodontal ligament stem cells (PDLSCs) (2), dental pulp stem cells
(DPSCs) (3). They maintain characteristic immunophenotypes in vitro or cryopreserved (4). They
express stem cell markers (OCT4, c-Myc andNanog Etc.) and positively express early mesenchymal
stem-cell surface markers, including but not limited to STRO-1, CD146 (MUC18), CD13, CD29,
CD44, CD56, CD73, CD90, CD105, CD166 while negatively express hematopoietic markers, such
as CD14, CD19, CD24, CD31, CD34 and CD45, CD117, CD133 and CD11b/c, andHLA-DR, which
can be used for their identification. However, the positive rate of immune-phenotype may change
with passages (5, 6). It also has been shown that SHEDs culture showed a higher proportion of
epithelioid cells, while DPSCs showed a higher proportion of spindle-shaped fibroblastoid cells
(7). Given that SHEDs are derived from dental pulp tissues of early age groups, higher embryonic
markers are expressed in SHEDs, determining their lineage propensity toward a specific destination
if no particular intervention is performed (8). Furthermore, SHEDs exhibit specific stemness, such
as the capability of multi-differentiation and self-renewal, and can develop into other cell lineages.
It has been reported that SHEDs can be induced toward osteoblasts/odontoblasts, neurocytes,
chondrocytes, adipocytes, neuro-glial cells, smooth muscle cells (9), vessels (10), epitheliocytes
(11), hepatocytes (12), endotheliocytes (11), retinal photoreceptor-like cells (13) and pancreatic
β cell-like cells (14) and so on.
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More and more pieces of evidence indicate that functional
recovery and remodeling in lesions not only rely on their
multipotency but also on their protective and anti-inflammatory
action by the paracrine mechanism of grafted SHEDs.
Immunomodulatory effects of SHEDs are also of good value
in cell therapy or cell-free therapy owing to the capacity to
interact with the local inflammatory microenvironment. The
underlying mechanisms mainly rely on effective cytokines or
extracellular vesicles (EVs) paracrine functions. These paracrine
activities discovered in recent years encompassed remarkable
modulatory effects in various autoimmune and inflammatory
diseases. It has been found that SHEDs showed alleviating effects
on nervous system diseases, including spinal cord injury (15, 16),
Parkinson’s disease (6, 17–20), trigeminal neuralgia (21), cerebral
ischemia (22), Alzheimer’s disease (23), encephalomyelitis (24).
Besides, SHEDs also played a vital role in autoimmune diseases,
such as rheumatoid arthritis (25), diabetes (26). Other system
inflammation like acute kidney injury (27), liver fibrosis/acute
liver failure (28–30), osteoarthritic (31), acute respiratory distress
syndrome (ARDS) (32) could also benefit from SHEDs for the
protective effects underlying immunomodulatory activities.

This article addresses the multipotency and epigenetic types
of machinery of SHEDs along with their paracrine activity
and immunomodulatory benefits, as evident from the published
literature. We aim to review the multi-lineage differentiation of
SHEDs, their potential to regenerate damaged tissues, and their
potential therapeutic value via immunomodulatory, conducive
to understanding their potential for clinical application in
regenerative medicine.

MULTIPOTENCY

SHEDs are noteworthy for their easy accessibility from teeth
with painless collection procedures, which provide the powerful
potential for regeneration engineering among all dental-
derived stem cells. Since being discovered and identified by
Miura in 2003, SHEDs have been proved to differentiate
into a series of target cells under induction conditions in
vitro and used for tissue regeneration by transplantation in
vivo (33). SHEDs express characteristic markers under both
maintaining medium and conditional medium, and if recruited
in lesions, they may differentiate into target cells and promote
the directional differentiation of local stem/progenitor cells,
achieving regeneration and repair (34). Pulp-dentin complex
regeneration is challenging in dental regeneration medicine. The
application of dental stem cells like SHEDs extends the tooth
longevity in terms of regenerative endodontics and even brings
a brighter future of tooth regeneration (35). Cell-based therapy
of SHEDs may play a remarkable role in treating nerve injury
diseases or neurodegenerative disorders given neurogenesis.

Osteogenesis/Odontogenesis
According to conventional osteo-inducing methods, SHEDs
were induced with an osteogenic cocktail of b-glycerophosphate,
dexamethasone or retinoic acid (36), and ascorbic acid. Early
osteogenic associated genes and proteins [alkaline phosphatase
gene (ALP), runt-related transcription factor 2 (RUNX2),

collagen type I alpha 1 (COL1A1)] and late osteogenic,
odontogenic differentiation marker [osteopontin (OPN),
osteocalcin (OCN), osteoprotegerin (OPG), DSPP and DMP-1]
upregulated. However, the receptor activator of nuclear factor
κB ligand (RANKL) and the OPG/RANKL ratio downregulated
during osteogenesis. It is controversial whether SHEDs have a
better osteogenic and odontogenic potential than other dental
stem cells. For example, Sabbagh’s observations demonstrated
that DPSCs might have a better osteogenic and odontogenic
potential than SHEDs (5). However, in the other two studies,
SHEDs exerted significantly higher osteogenic differentiation
potential than human dental pulp stem cells (hDPSCs) and
bone marrow mesenchymal stem cells (hBMSCs) (37, 38).
Gene expression profiles indicated that bone morphogenetic
protein (BMP-4) was expressed much higher in SHEDs than
in BMMSCs (39). Revealing the regulation mechanism of
SHEDs’ osteopotential can better guide clinical application.
For example, one recent study by Sebastian et al. revealed
that the proinflammatory cytokine-IL-17A promoted the
proliferative and enhanced mineralization activity of SHEDs
(40). Zhai found that human β defensin 4 (HBD4) promoted
osteogenic/odontogenic differentiation of SHEDs stimulated
by proinflammatory cytokines and considered HBD4 a suitable
candidate for vital pulp therapy in future clinic application (41).

Cell sheets derived from stem cells can also give rise to in vitro
calcification and in vivo bone repair. Lee et al. have successfully
verified that SHED cell sheets could survive and develop into
osteogenic tissue to a greater level of maturity after engrafted
inside the cleft palate models (42). Biocompatible scaffolds can
support mesenchymal stem cells to proliferate and differentiate
optimally. Several biocompatible scaffolds up to the present
have been found to accelerate bone remodeling. Prahasanti’s
study showed that SHED-incorporated carbonate apatite scaffold
(CAS) enhances bone remodeling through upregulating bone
morphogenetic 2 and 7 expressions (BMP2 and BMP-7)
and downregulation of matrix metalloproteinase-8 (MMP-8)
(43). Enamel Matrix Derivative (EMD) showed the highest
cell viability and potential for enhanced mineralization (44).
Non-coding RNAs (ncRNAs) have been essential contributors
to cell biology. For example, Hsa-miR-1287 was capable of
downregulating CD105 expression, which could be used to
enhance osteogenesis in SHEDs (45). Mitochondrial biogenesis
might be a therapeutic target for improving the osteogenesis of
SHEDs. Han’s study found mitochondrial dysfunction impaired
bone metabolism and osteoporosis, which could be reversed by
bezafibrate-treated cells (46).It should be noted that there are
few studies on epigenetic regulation, including but not limited
to ncRNAs on osteogenic differentiation of SHEDs.

Neurogenesis
Due to the neurogenesis potential of SHEDs, cell-based therapy
is one of the promising treatments of neurological disorders,
such as spinal cord injury (SCI), Parkinson’s disease (PD), Etc.
Since 2003, it has been shown that SHEDs express several
different neuro-glial cell markers in the growth medium, such
as nestin, glial fibrillary acidic protein (GFAP), neuron-specific
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enolase (NSE), neurofilament medium-chain (NFM), 2’,3’-
cyclic nucleotide-3’-phosphodiesterase (CNPase), βIII-tubulin,
glutamic acid decarboxylase (GAD), and neuron-specific nuclear
protein (NeuN), indicating the embryonic neural crest origin
of SHEDs. After inductive neural culture in neurobasal
media containing B27 supplement, epidermal growth factor
(EGF) and basic fibroblast growth factor (bFGF), expression
levels of neuronal markers including βIII-tubulin, GAD, and
NeuN were increased, which meant that SHEDs differentiated
into neurons (47–49). Meanwhile, SHEDs developed multi-
cytoplasmic processes immunoreactive to MAP2 and Tau
antibodies (1, 50).

SHEDs can also be induced to form neural-like spheres in vitro
and further differentiated into specific dopaminergic neurons
under adherent conditions for long-term serum-free culture with
cytokines including sonic hedgehog, fibroblast growth factor
8, glial cell line-derived neurotrophic factor, and forskolin.
Wang’s study showed that transplantation of neural-like spheres
derived from SHEDs into the striatum of parkinsonian rats
significantly improved the behavioral disorders, the number of
TH-positive (tyrosine hydroxylase) cells and the protective effect
on endogenous dopaminergic neurons, indicating SHED spheres
were of potential therapeutic value (6, 51). In 2018, by way of
two steps’ induction, SHEDs were induced into spiral ganglion
neuron-like cells (SGNs) with highly expressed βIII-tubulin,
GATA binding protein 3 (GATA3) and tropomyosin receptor
kinase B (52).

High proliferation of SHEDs and enhancement of their
differentiation into neuron-like cells could bring about desirable
therapeutic applications. The latest research showed that Rho-
associated kinase inhibitor Y-27632 combined with Noggin
potently promote neuronal differentiation and increase the
proliferation of SHEDs via activation of the caspase signaling
cascades (53).

Many studies suggested that DPSCs have a more tremendous
neuronal differentiation potential than SHEDs. However, some
observations showed the comparable plasticity of neuronal
differentiation (52). Referring toHeng’s review, there are different
protocols for neural induction of SHEDs in vitro (54). It
should be addressed that appropriate neural induction protocols
and differentiation stage of SHEDs are required for various
therapeutic and non-therapeutic applications.

Other Tissue Regeneration
It has been established that vascular endothelial growth factor
(VEGF) can induce endothelial-vasculogenic differentiation of
SHEDs, and SHEDs might be a more satisfactory source of
perivascular cells for in vivo angiogenesis than other stem
cells, such as umbilical vein endothelial cells (55). The latest
study by Zhang et al. revealed that p53/p21 acted as an
inverse regulator of vasculogenic differentiation through Bmi-
1, a significant regulator of stem cell self-renewal (10). In
addition to multipotential of craniofacial tissues, SHEDs also
had cholangiogenic/hepatocytes- differentiated potential under
the stimulation of tumor necrosis factor-alpha (TNF-α) (12, 56)
and could differentiate into endothelial cells via inhibition of
TGF-β-SMAD2/3 signaling (11). It has also been proved that
SHEDs could be induced to insulin-secreting β cell-like cells (14),

functional smooth muscle cells (9), peripheral neurocytes (57)
and retinal photoreceptor-like cells (13). The various cell types
derived from SHEDs are shown in Table 1.

PARACRINE ACTIVITY AND
IMMUNOMODULATORY

Apart from proliferative and regenerative potential, SHEDs
and other oral mesenchymal stems/progenitor cells (MSCs)
can interact with the local inflammatory microenvironment
through multiple impressive paracrine functions. Many studies
have clarified that serum-free conditioned media of SHEDs
(SHED-CM) or extracellular vesicles (EVs) had a modulatory
function on other cells or tissues, indicating that cell-free based
therapy is an effective strategy in regenerative medicine. For
example, in a recent study on treating an osteoarthritis (OA)
model, the results showed that SHED-CM could increase matrix
proteins and suppress MMP-13 expression by downregulation
of NF-kB, which gives protective action for chondrocytes
(31). Li et al. study showed that SHEDs-CM has therapeutic
effects on Retinitis pigmentosa (RP) by antiapoptotic activity
(58). In Hiraki et al. study, SHED-CM contributed to more
bone regeneration and faster bone maturation in the mouse
calvarial bone defect model compared with transplanting SHEDs
alone. They found that SHED-CM contains abundant bone
metabolism-related markers (OPG, OPN, BMP-2 and BMP-
4) and angiogenesis-related markers (M-CSF, MCP-1, ANG,
bFGF, VEGF-C and VEGF-A). In addition, neurotrophic family
(BDNF, beta-NGF, GDNF and NT-3) angiogenesis-related genes
were also included, thus creating a more desirable extracellular
microenvironment for peripheral nerve regeneration (59, 60).
Yamada et al. also examined high-expressed cytokines secreted
from SHEDs, such as growth factors (hepatocyte growth factor
(HGF), chemokines (stromal cell-derived factor 1, SDF-1) and
matrix metalloproteinases-3 (MMP-3) (61). These cytokines
might be closely related to proliferation, differentiation and anti-
inflammatory by paracrine effect (62). Fujii, NARBUTE, Chen
et al. proved the therapeutic efficacy via intranasal administration
of SHED-EVs in a rat model of Parkinson’s disease (PD), with
significant improvement in behavioral level and histological level
(17, 18, 63).

It has been shown that decellularized matrix (DECM)
from SHEDs also exerted a profound effect on the adhesion,
proliferation and osteogenic differentiation capacity of DPSCs
(64), which may be attributed to microenvironment remodeling
and recruitment of stem/progenitor cells (65). Xiao et al. treated
SHEDs with H2O2 to induce oxidative stress-tolerant SHEDs
and co-cultivated them with organotypic brain slice cultures,
suggesting that they were significantly superior to regular SHEDs
in inhibiting inflammation protecting brain tissues (66).

EVs, known as nanosized membrane structures released
by cells, can participate in organ homeostasis by transferring
RNA, microRNA, and proteins to modulate the inflammatory
environment. For example, BM-MSC-derived exosomes
promoted the regeneration/repair of the periodontal ligament
and temporomandibular joint and suppressed the inflammatory
response by activating AKT, ERK, and AMPK signaling
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TABLE 1 | Multi-lineage differentiation of SHEDs.

Cell types

differentiated

from SHEDs

Outcomes Differentiation or regeneration

mechanism

Route/exp

type

Refs.

Osteoblasts/Odontoblasts Interleukin-17A promotes osteogenic

differentiation of SHEDs.

Upregulation of OPG/RANKL ratio in vitro (40)

Human β defensin 4 (HBD4) could

promote osteogenic/odontogenic

differentiation of LPS-stimulated

SHEDs.

Downregulation of IL-1α, IL-1β, IL-6,

TNF-α/decrease of activation of

MAPK pathway

in vitro (41)

SHED cell sheets could survive and

develop into osteogenic tissue after

engrafted inside the cleft palate

models

Strong expression of osteogenic

markers

in vitro and in

vivo

(42)

SHED-incorporated Carbonate

Apatite Scaffold (CAS) can enhance

alveolar bone remodeling in

Wistar rats.

Upregulation of BMP-2 and BMP-7

expression /downregulation of

MMP-8 expression

in vivo (43)

Enamel Matrix Derivative (EMD)

encouraged proliferation and

functional differentiation of SHEDs.

Improvement of cell viability

mineralization

in vitro (44)

Hsa-miR-1287 enhanced

osteogenesis in SHEDs.

Downregulation of CD105 expression in vitro (45)

Bezafibrate improved osteogenesis in

patients with Leigh syndrome.

Induction of mitochondrial biogenesis in vitro (46)

Neurocytes SHEDs differentiated into neural cells

under growth factor mediated

induction, with nestin,β-III tubulin, and

mature neural markers (PSA-NCAM,

NeuN, Tau, TH, or GFAP) increased.

Neurobasal medium containing 1%

ITS and cytokines including 100 ng/ml

basic fibroblast growth factor (bFGF),

10 ng/ml FGF8 and 100 ng/ml sonic

hedgehog

in vitro (48)

Y-27632 promoted the proliferation of

SHEDs, and Y-27632 and Noggin in

combination promoted differentiation

of SHEDs into neuron-like cells.

Upregulation of NSE, Nestin, and

GFAP levels

in vitro (53)

Transplantation of induced SHEDs

promotes Functional recovery of rat

spinal cord contusion injury model.

Upregulation of oligodendrocyte

markers/downregulation of astrocyte

marker

in vitro and in

vivo

(50)

Transplantation of SHEDs spheres

neural-like spheres into the striatum

of parkinsonian rats partially improved

the apomorphine-evoked rotation of

behavioral disorders.

Pre-differentiation into DAergic

neurons in vitro

In vitro and in

vivo

(51)

SHEDs can differentiate into spiral

ganglion neuron-like cells.

Release of intracellular calcium

dynamics/upregulation of β-III tubulin,

GATA3 and tropomyosin receptor

kinase B

in vitro (52)

SHEDs seeded on the sciatic nerve

gap promoted axonal regeneration.

SHEDs survival and axonal

regeneration

in vivo (57)

Vessels Transplantation of SHEDs and

HUVECs together resulted in the

formation of extensive vessel-like

structures.

Higher expression of VEGF, SDF-1a

and PDGFRβ in SHEDs/higher

expression of VEGF receptors,

CXCR4, and PDGF-BB in HUVECs

in vivo (55)

Hepatocytes Infused SHED-Heps (hepatic

differentiated SHEDs in vitro) showed

cholangiogenic ability.

Expression of biliary canaliculi

ATP-binding cassette

transporters/Recruitment of

donor-derived

cholangiocytes/Regenerating the

intrahepatic bile duct system

in vitro and in

vivo

(56)

Endotheliocytes Suppressing transforming growth

factor-beta (TGF-β) signaling

enhanced the differentiation efficiency

of SHEDs into endotheliocytes.

Enhancement of VEGF-A-VEGFR2

signaling/concomitant inhibition of

TGF-β-SMAD2/3 signaling

in vitro and

in vivo

(11)
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pathways (67). Many studies clarified that SHED-EVs enhanced
tissue remodeling and regeneration in an inflammatory
microenvironment, such as bones, cartilage, nerves and so on
(68). In Wei’s study, SHED-derived exosomes (SHED-Exo)
promoted BMSCs osteogenesis, reduced apoptosis and inhibited
the inflammatory cytokines IL-6 and TNF-α in the periodontitis
mouse model (69). Wang’s studies revealed that SHED-Exos
promoted PDLSCs osteogenic differentiation by activating
BMP/Smad signaling and Wnt/β-catenin. The vital molecules-
Wnt3a and BMP2 were detected in SHED-Exos andmediated the
osteogenic differentiation of PDLSCs (70). In periodontal defect
rat models, Wu et al. discovered that SHED-Exos contribute to
periodontal bone regeneration by promoting neovascularization
and new bone formation through activating the AMPK signaling
pathway (71). Luo et al. found that SHED-Exos acted as an anti-
inflammatory agent in temporomandibular joint chondrocytes
via miR-100-5p/mTOR axis (72). One of the latest researches
showed that systemic transplantation of SHEDs-EVs treated
systemic lupus erythematosus (SLE)-like disorders in MRL/LPR
mice by rescuing Tert mRNA-associated telomerase activity,
hematopoietic niche formation, and immunoregulation, but
with an impaired effect by using RNA-depleted SHED-EVs (73).
The underlying mechanism of these factors and EVs of SHEDs
remains further studied.

Several experiments have expounded modulatory functions
of SHEDs-CM or SHED-EVs to immunocyte, including
microglia/macrophage, astrocyte, dendritic cell (DCs) and T
cell (74). It is well known that microglia play a fundamental
role in the initiation and support of chronic neuroinflammation
(75), such as spinal cord injury, cerebral injury (76), trigeminal
neuralgia (21) and so on. Microglia will polarize into M1 and
M2 states along with the inflammatory microenvironment. In
2016, 2017, and 2019, it has been shown that both SHEDs-CM
and SHED-EVs could act as a potent immunomodulator of
human microglial cells. The regulation mechanism was mainly
decided by a shift in the microglia/macrophage phenotype from
M1 to CD206+ M2, reduced inflammatory cell infiltration and
proinflammatory cytokine expression (24, 77, 78). In 2018,
Tsuruta et al. demonstrated the therapeutic effect of SHEDs-
CM on the injured superior laryngeal nerve. The functional
mechanism convertedmacrophages to the anti-inflammatoryM2
phenotype and new blood vessel formation at the injury site (79).
Nicola et al. shed light on the fact that SHEDs transplantation
contributed to tissue and motor neuron preservation by reducing
the early neuronal apoptosis and interfering with the balance
between anti-and pro-apoptotic factors. Besides, SHEDs could
act as a neuroprotector agent, promoting the tissue plasticity
and modulating early astrocyte response and reducing neuronal
excitability. However, the paracrine signaling mechanism was
unclear (80). In 2018 and 2021, Asadi-Golshan et al. study
showed that intraspinal administration of SHED-CM loaded
in collagen hydrogel was more advantageous in SCI rats, with
remarkable functional recovery (15, 16).

Silva and his colleagues co-cultured DCs with SHEDs,
observing that immune phenotype in DCs was regulated,
with a decrease in expression of BDCA-1, CD11c, CD40,
CD80, CD83 and CD86. In addition, co-culturing peripheral
blood lymphocytes with these co-cultured DCs inhibited

proliferation of CD4+/CD8+ T cells, reducing the pro-
inflammatory cytokines (IL-2, TNF-α and IFN-γ), and increasing
the anti-inflammatory molecule IL-10. The results showed that
SHEDs directly or indirectly acted as an immune modulator
for both DCs and lymphocytes (81). SHEDs exhibited more
potent immunomodulatory characteristics via suppressing the
proliferation of stimulated T, inhibiting Th17 cell differentiation,
and increasing the ratio of regulatory T cells (Tregs) in vivo
(74, 82).

Paracrine activity and immunomodulatory effects of SHEDs
are not limited to mentioned above. More and more shreds of
evidence indicated that application of SHEDs-CM or SHEDs-
EVs is positive in quite a lot of systemic diseases such as
Alzheimer’s disease (23), rheumatoid arthritis (25), acute liver
failure (29, 83), liver fibrosis (28, 30), acute kidney injury (27),
skin rejuvenation (84), heatstroke (85), diabetic nephropathy
(86), Etc. Table 2 shows the therapeutic potential of SHEDs via
paracrine activity and immunomodulatory.

FUTURE PROSPECTS

Multipotency of SHEDs holds countless applications in
regenerative medicine and tissue engineering, with the most
important clinical function in osteogenesis/odontogenesis and
neurogenesis, while thoroughly understanding the specific
regulatory and regenerative molecular mechanism is waiting for
intensive study before their wide application in the clinic, such as
in epigenetic regulation of ncRNAs, DNA modification, histone
modification and chromatin remodeling. Because of the relative
newer stem cell population and conventional wisdom of waste,
SHEDs are less studied than DPSCs, which may have more
researchable space. The abundance of pulp tissue from exfoliated
deciduous teeth does not affect the number of SHEDs obtained.
We can harvest a large number of SHEDs in a shorter time due
to their high proliferative capacity and stemness maintenance,
indicating they are the ideal tool for studying the regeneration of
maxillofacial tissue (87). Based on the gene expression profile of
DPSCs and SHEDs, higher expression in SHEDs were observed
for genes that participate in pathways related to cell proliferation
and extracellular matrix (88). On account of its advantages
of abundant cell supply with minimal invasion and a higher
proliferation capability, SHEDs could be a desirable option as
a cell source for potential therapeutic applications. Another
viewpoint some researchers lean-to is that SHEDs can promote
osteoclastogenesis as a result of physiological root resorption
of deciduous teeth in mixed dentition (89), which also inspire
us to explore the mechanism of the balance of osteogenesis
and osteoclastogenesis.

Besides, developing unified induction protocols for target cells
is urgent on the basis of the characteristic of SHEDs. SHEDs-
CM or SHEDs-EVs can functionally mirror the parent cell
and contribute to the regeneration and repair of the damaged
tissues. Many pieces of evidence show the benefits of SHEDs
on pathological microglia/macrophage, astrocyte, dendritic cell
(DCs) and T cell by regulating proliferation, shifting cell
phenotype and modulating cytokine production of immune
cells. Hence, they can also be considered as an ideal tool for
immunomodulation in clinical applications. Subtype screening
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TABLE 2 | Therapeutic potential of SHEDs via paracrine activity and immunomodulatory.

Damaged

tissues/deseases/animal

models

SHEDs/SHEDs-

CM/SHEDs-

Evs/SHEDs-

Exos

Outcomes and mechanism Route/exp

type

Refs.

Bone defect SHEDs-Exos SHEDs-Exos contributed to periodontal bone regeneration by

promoting neovascularization and new bone formation by

activating the AMPK signaling pathway.

in vitro

and in

vivo

(71)

SHEDs-CM SHEDs-CM enhanced bone regeneration via angiogenesis and

osteogenesis.

in vivo (59)

Conditioned culture SHEDs-Exos SHEDs-Exos enhanced PDLSCs osteogenic differentiation by

upregulating osteogenic markers and activating Wnt3a and BMP2

signaling.

in vitro (70)

Conditioned

culture/periodontitis

SHEDs-Exos Low doses SHEDs-Exos promoted BMSCs osteogenesis,

differentiation, and bone formation and inhibited the expression of

the inflammatory cytokines.

in vitro

and in

vivo

(69)

Conditioned culture SHEDs-Exos SHEDs-Exos suppressed inflammation in TMJ chondrocytes via

miR-100-5p/mTOR axis.

in vitro (72)

Spinal cord injury (SCI) SHEDs SHEDs acted as a neuroprotector agent after transplantation,

increasing astrocytic proteins such as S100B and Kir4.1 and glial

scar reductio in the spinal cord.

in vivo (80)

Superior laryngeal nerve

(SLN) injury

SHEDs-CM Systemic administration of SHEDs-CM promoted functional

recovery and axonal regeneration by shifting macrophages to the

anti-inflammatory M2 phenotype and enhanced new blood vessel

formation at the injury site.

in vivo (79)

Co-culture system/sciatic

nerve gap

SHEDs-CM SHEDs-CM promoted proliferation and migration of Schwann cells

stimulated neuritogenesis of dorsal root ganglia. Similarly,

enhanced tube formation.

in vitro

and in

vivo

(60)

Co-culture system/traumatic

brain injury (TBI)

SHEDs-Exos SHEDs-Exo contributed a therapeutic benefit to TBI in rats by

shifting microglia polarization to reduce neuroinflammation.

in vitro

and in

vivo

(78)

Chronic cerebral ischemia

(CCI)

SHEDs Transplantation of SHEDs ameliorated cognitive impairment of CCI

rats by rescuing the number of neurons and decreasing the

apoptosis of neuronal cells through downregulation of cleaved

caspase-3.

in vivo (76)

Parkinson’s disease (PD) SHEDs-EVs Intranasal administration of SHEDs-Evs improved tested gait

parameters and motor function in PD rats, with normalization of

tyrosine hydroxylase expression.

in vivo (63)

Heatstroke SHEDs Intravenous administration of SHEDs exhibited therapeutic benefits

for heatstroke in mice, related to a decreased inflammatory

response, decreased oxidative stress, and an increased

hypothalamic–pituitary–adrenocortical (HPA) axis activity.

in vivo (85)

Organotypic brain slice

cultures (OBSCs)/Co-culture

system

SHEDs Oxidative stress-tolerant (OST) SHEDs prevented oxidative

stress-induced brain damage.

in vitro

and in

vivo

(66)

Skin injury SHEDs/SHEDs-

CM

SHEDs and SHEDs-CM contributed to enhanced wound-healing

potential of human dermal fibroblast (HDF) via secreted growth

factors or extracellular matrix proteins.

in vivo (84)

Acute respiratory distress

syndrome (ARDS)

SHEDs-CM SHED-CM promoted the in vitro differentiation of bone

marrow-derived macrophages into M2-like cells, attenuated lung

injury and weight loss in BLM-treated mice, and improved survival

rate.

in vitro

and in

vivo

(32)

Co-culture system SHEDs-CM SHEDs induced an immune regulatory phenotype in

monocyte-derived-DCs(moDCs) cells by inhibiting lymphocyte

stimulation and its ability to expand CD4+Foxp3+ T cells,

showing a reduction in the pro-inflammatory cytokines and an

increase in the anti-inflammatory molecule.

in vitro (81)

Systemic lupus

erythematosus (SLE)

SHEDs-EVs The systemic SHEDs-EVs infusion shifted the SLE-like phenotypes

in MRL/LPR mice and improved the functions of recipient

BMMSCs by rescuing Tert mRNA-associated telomerase activity,

hematopoietic niche formation, and immunoregulation.

in vitro

and in

vivo

(73)

(Continued)

Frontiers in Dental Medicine | www.frontiersin.org 6 February 2022 | Volume 3 | Article 805875

https://www.frontiersin.org/journals/dental-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/dental-medicine#articles


Guo and Yu Multipotency and Immunomodulatory Benefits of SHEDs

TABLE 2 | Continued

Damaged

tissues/deseases/animal

models

SHEDs/SHEDs-

CM/SHEDs-

Evs/SHEDs-

Exos

Outcomes and mechanism Route/exp

type

Refs.

Diabetic nephropathy(DN) SHEDs/SHEDs-

CM

Cocultured SHEDs inhibited advanced glycation end

(AGE)-induced epithelial-mesenchymal transition (EMT) in HK-2

cells, engraftment of SHEDs attenuated renal injury.

in vitro

and in

vivo

(86)

Acute liver failure (ALF) SHEDs-CM Intravenous administration of SHEDs-CM improved the condition

of the injured liver and the animals’ survival rate by the induction of

anti-inflammatory M2-like hepatic macrophages.

in vivo (83)

Retinitis pigmentosa (RP) SHEDs/SHEDs-

CM

SHEDs and SHEDs-CM improved retinal visual function and

delayed the degeneration of photoreceptors by antiapoptotic

activity.

in vivo (58)

or epigenetic modification of SHEDs might have more potential
for cell-based or cell-free therapy. Soluble growth factors and
exosomes derived from SHEDs requires advancing investigation.
It should also be noted thatmore clinical trials are required before
SHEDs’ practical and safe application in the clinic. In addition,
based on the long-term considerations, the banking of SHEDs
and cytokines or exosomes derived from SHEDs might be an
ideal therapeutic strategy.
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