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Cellular senescence is an irreversible cell cycle arrest occurring following multiple rounds

of cell division (replicative senescence) or in response to cellular stresses such as

ionizing radiation, signaling imbalances and oxidative damage (stress-induced premature

senescence). Even very small numbers of senescent cells can be deleterious and there is

evidence that senescent cells are instrumental in a number of oral pathologies including

cancer, oral sub mucous fibrosis and the side effects of cancer therapy. In addition,

senescent cells are present and possibly important in periodontal disease and other

chronic inflammatory conditions of the oral cavity. However, senescence is a double-

edged sword because although it operates as a suppressor of malignancy in pre-

malignant epithelia, senescent cells in the neoplastic environment promote tumor growth

and progression. Many of the effects of senescent cells are dependent on the secretion

of an array of diverse therapeutically targetable proteins known as the senescence-

associated secretory phenotype. However, as senescence may have beneficial roles

in wound repair, preventing fibrosis and stem cell activation the clinical exploitation

of senescent cells is not straightforward. Here, we discuss biological mechanisms

of senescence and we review the current approaches to target senescent cells

therapeutically, including senostatics and senolytics which are entering clinical trials.
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INTRODUCTION

There have been several reviews on the subject of senescent cells in human disease (1, 2).
Classical cellular senescence is defined as an irreversible cell cycle arrest that is distinct from
quiescence, terminal differentiation and apoptosis. This form of senescence occurs following
multiple rounds of cell division [replicative senescence (3)] or following a wide range of cellular
stresses such as ionizing radiation, signaling imbalances or oxidative damage [stress-induced
premature senesce or SIPS; (4)]. More recently, the definition of senescence has been broadened
to include developmental senescence, oncogene-induced senescence (OIS) and cancer therapy-
induced senescence where an irreversible cell cycle arrest is either unstable (4) or may not
occur at all (5). OIS does not occur in young healthy cells (6–8) with low levels of p16INK4A

and not all oncogenes induce senescence (9), so cells need to be damaged before OIS operates
and even then, only when expressed at a sufficient level (10). Senescence is a double-edged
sword in that it operates as a suppressor in the early stages of malignancy (11) but also, has
the capacity to promote tumor development (12) and tumor progression (11, 13) once the
tumor has developed via molecules of the senescence-associated secretory phenotype (SASP)
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FIGURE 1 | The role of cellular senescence in oral cancer development and progression. The figure summarizes the role of senescence as a suppressor of

malignancy in keratinocytes and its paradoxical role as a promoter of tumor progression in the developing tumor environment.

such as interleukins, matrix metalloproteinases (MMPs), vascular
endothelial growth factor (13) and certain metabolites (14)
(summarized in Figure 1). Even small numbers of senescent
cells can be deleterious (15) and there is evidence that
senescent cells are instrumental in age-related pathologies (16),
in response to cancer therapy (17) and in chronic inflammatory
conditions (18).

THE SASP AND THE EXTRACELLULAR
SENESCENCE METABOLOME (ESM)

During the establishment of senescence, an array of proteins
(13) and metabolites (19) accumulate in the extracellular milieu
and collectively are referred to as the senescence-associated
secretory phenotype [SASP; (13)] or the extracellular senescence
metabolome [ESM; (19)], respectively.

More specifically, the SASP consists of a large number
of cytokines, chemokines and immunomodulatory molecules,
growth factors, shed surface molecules and survival factors,
together with promoters of angiogenesis, fibrosis and tissue
re-modeling (13). The mechanisms of senescence and the
constituents of the SASP vary between cell types which makes
the SASP cell type- and mechanism-specific. More recent data
indicate that the SASP is highly heterogeneous and varies
temporally even within populations of the same cell type (20).

Some of the cytokines of the SASP increase to detectable levels
in the plasma of older humans and have been proposed to
be biomarkers of age-related conditions such as frailty (21).
This sterile inflammation is known as inflammaging (22) and
is thought to be due to the accumulation of senescent cells
which display inappropriate levels of cytoplasmic chromatin; it is
mediated by the cyclic GMP–AMP synthase (cGAS)–stimulator
of the interferon gene (STING) (cGAS-STING) pathway that
induces inflammatory cytokines (23).

Recently, the oral keratinocyte SASP has been examined in

more detail as part of a comprehensive survey of SIPS (24). Many

of the transcripts and proteins of the SASP are consistent between
fibroblasts and mortal pre-neoplastic keratinocytes. However,
senescence-specific exosomes induce the interferon pathway
in neighboring monocytes via the cGAS-STING pathway (25)
and numerous SASP factors (particular prostaglandins) and
metabolites are dependent on the keratinocyte senescence
program (26, 27). Although there is no evidence for senescence
in human pre-malignant lesions in vivo, it has been described
in other human pre-malignant conditions (28) and p16INK4A is
upregulated in high-grade pre-malignant lesions (29). Current
thinking indicates that the SASP may be released in two waves
which are dependent on different pathways and which modulate
the immune system in different ways with the common goal
being the promotion of neoplasia (30).
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The ESM metabolites (citrate, C-mannosyl tryptophan, urate,
and eicosapentaenoate), are amongst the 22 metabolites most
significantly elevated with chronological age and aging traits [loss
of lung function and bone mineral density (31)]; the function
of most of these metabolites in age-related diseases, however,
is unclear. A role for C-mannosyl tryptophan in apoptosis has
been predicted based on bioinformatics and, more recently, a
role for citrate has been suggested in the pathobiology of type 2
diabetes (32), memory (33), heart rate (34), blood pressure (34),
and cancer (35, 36).

ORAL KERATINOCYTE SNESCENCE

Whilst the senescence regulators telomerase, p53 and
pRB/p16INK4A are common to both keratinocytes and fibroblasts,
their exact roles are not quite the same. Mechanistically,
following telomere dysfunction, disabling p53 in both fibroblasts
(37) and keratinocytes (38) extends the proliferative lifespan
of fibroblasts but not keratinocytes, whereas knockdown of
p16INK4A has no effect on its own. However, the combined
knockdown of p53 and p16INK4A extends the proliferative
lifespan of fibroblasts further and induces a phenomenon
resembling crisis in both cell types (37, 38). In serum-free culture
systems, p16INK4A, but not p14ARF, accumulates following
proliferative exhaustion in the absence of telomere attrition
(39). p16INK4A accumulation in keratinocytes is also associated
with the expression of laminin gamma 5 delta 2, a hyper-motile
phenotype seen in both carcinoma-in-situ, and in experimental
wounding in vitro (29). This form of senescence is bypassed by
plating keratinocytes on collagen type 1, disabling p16INK4A or
p53 and is delayed by inhibition of the transforming growth
factor beta (TGF-β) pathway (40). Epidermal keratinocytes do
undergo a phenotype resembling senescence in aging humans
(41) and this appears to be mediated by a paracrine mechanism
associated with senescent melanocytes that induce telomere-
associated DNA damage foci (TAFs) in neighboring suprabasal
keratinocytes. However, there is no evidence of p16INK4A

accumulation in aged keratinocytes in situ and it is not clear
whether TAFs persist in the basal layer of squamous epithelia
because telomerase should gradually resolve the TAFs (4, 42).

SENESCENCE AS A SUPPRESSOR OF
ORAL SQUAMOUS CELL CARCINOMA
DEVELOPMENT

RAS and RAF oncogenes induce senescence when over-expressed
(10). Senescence is observed in pre-malignant lesions of several
cancer types (43, 44) and the elimination of senescent cells
in mice precipitates tumor progression (11). Whilst RAS and
RAF mutations are rare in oral cancer (45, 46), p16INK4A

accumulates in oral carcinoma in situ (29) which is suggestive of
senescence. Both SIPS and classical senescence are mediated by
the pRB/p16INK4A and p14ARF/p53 pathways (1) and upon their
dysfunction in oral cancer, telomere crisis and genetic instability
ensue (38, 47) followed by telomerase deregulation and cellular
immortality (38, 47–49). The dysfunction of p16INK4A, p53, and

telomerase in both human papillomavirus (HPV) positive and
negative head and neck squamous cell carcinomas (HNSCC) is
nearly ubiquitous (50). Further, deregulation of telomerase by
activating mutations of the promoter of the catalytic component
of the enzyme TERT is a common event in HPV negative SCCs
(51), but this is not enough to account for the increase in
telomerase in 90% of HNSCC (52) and further genetic alterations
are required (53).

FIBROBLAST SENESCENCE IN THE ORAL
CANCER ENVIRONMENT

The tumor microenvironment consists of neoplastic epithelial
cells and non-neoplastic stromal cells. The predominant stromal
cell-type are fibroblasts and when these cells become “activated,”
the term cancer associated fibroblast (CAF) is used. Fibroblast
activation occurs de novo by reactive oxygen species (ROS)
derived from the epithelial cancer cells (Figure 1) and by
constituents of the SASP [IL-1β, IL-6, osteopontin (54)]. CAFs
are heterogeneous and express a variety of different proteins, the
significance of which is unclear. Current thinking indicates that
fibroblast activation is context-dependent, plastic and likely to
fall along a continuum rather than into discrete subsets (55).
These observations may account for recent observations where
CAFs with pro-tumorigenic and anti-tumorigenic phenotypes
have been described. Stromal features are predictive of mortality
(56) and ECM deposition and organization correlate with poor
prognosis (57) in oral squamous cell carcinoma (OSCC).

There is a plethora of data showing that CAFs possess the
ability to influence the hallmarks of cancer (54). In OSCC, for
example, CAFs promote invasion and epithelial dis-cohesion,
induce epithelial-mesenchymal transition and cause resistance to
apoptosis (30, 58, 59). CAFs regulate fibroblast activation in an
autocrinemanner, remodel the ECM in a paracrine fashion which
leads to a pro-fibrogenic phenotype and also, maintain persistent
chronic inflammation. Further, CAFs show up-regulation of
glycolysis and down-regulation of oxidative phosphorylation
[reverse Warburg effect (60)] which creates a favorable hypoxic
environment for epithelial tumor development and progression.

CAFs undergo senescence through secondary senescence
induction from other senescent cells although at present, it is
unclear whether this leads to functional heterogeneity. Whilst
senescent fibroblasts are likely to contribute to the tumor-
promoting environment, they probably do so in concert with
non-senescent CAFs in a complementary manner. It is unknown
whether stromal cells help keratinocytes to escape cellular
senescence and this warrants further investigation.

The role of senescence in fibrosis is complex. In the short
term, senescent cells can promote wound repair (61) and can also
ameliorate fibrosis of the skin in vivo (62). Further, senescent cells
are targeted by both the innate and the adaptive immune systems
(11) and disabling either senescence or the immune system
promotes fibrosis (63). Paradoxically, persistent inflammation,
a property of many oral diseases, can induce senescence (64)
and if senescent cells evade the immune system and persist, they
can increase fibrosis. Damaged senescent cells avoid immune
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recognition through matrix metalloproteinase-dependent
shedding of NKG2D ligands reinforced via paracrine suppression
of NKG2D receptor-mediated immunosurveillance (65).

SENESCENCE IN CANCER THERAPY AND
THE POOR HEALTH OF CANCER
SURVIVORS

Senescent cells accumulate in mouse tissues following DNA
damage (66) and chemotherapy (17) and their removal by genetic
or pharmacological deletion ameliorates the side effects of such
therapies in mice, including hypo salivation (67), fibrosis (68),
and ulceration (69). Further, the tissues of cancer survivors have
short telomeres and increased numbers of senescent cells (70–73)
and oral mucositis, a major side effect of cancer therapy, has been
linked to keratinocyte senescence (74).

ORAL SUB MUCOUS FIBROSIS (OSMF)

OSMF is a debilitating and pre-cancerous condition caused
by the chewing of “paan” which contains areca nut and
sometimes tobacco (10, 16). In early OSMF, there is epithelial
atrophy, juxta-epithelial inflammation and the sub epithelial
connective tissues become avascular and thickened which leads
to collagen accumulation. In advanced disease, the fibrosis
extends into the deeper tissues and is associated with an
increased inflammatory infiltrate (17). In OSMF, biologically
active alkaloids and flavonoids in areca nut stimulate fibroblasts
to increase collagen synthesis (18, 19); concurrently, there is
reduced collagen degradation due to increased stability of the
collagen structure (20, 21) and reduced collagenase activity (22).
These events are mediated by changes in the regulation of
several SASP factors such as TGF-β1, plasminogen activator-
1 and matrix metalloproteinases (MMPs) and their inhibitors.
The result is progressive hyalinization and fibrosis of the
oral submucosa.

The role of senescence in OSMF has been comprehensively
reviewed recently (75). It has been attributed to areca nut
alkaloids (76, 77) and occurs in keratinocytes, fibroblasts and
endothelial cells; in fibroblasts, the mechanism is associated
with ROS, irreparable DNA damage and an increase in
mitochondrial mass and membrane potential (76). Depleting
the fibroblast population of senescent cells in OSMF drastically
reduces the levels of MMP-1 and MMP-2 in conditioned
medium suggesting that, as with CAFs, there are both non-
fibrogenic and pro-fibrogenic fibroblasts (76). Senescence
in keratinocytes, however, leads to epithelial atrophy and
down-regulation of basal stemness, whilst senescence in
endothelial cells accounts for a decrease in vascularity
which leads to the development of a hypoxic state. The
consequence of cellular senescence is the generation of a SASP,
ROS generation and the induction of DNA double strand
breaks in keratinocytes (78). Only when the keratinocytes
escape from senescence does malignant transformation
ensue but the myofibroblasts persist because they evade
immune clearance.

THE ROLE OF SENESCENCE IN OTHER
ORAL DISEASES

The oral cavity is the site of trauma, is susceptible to
toxin and drug exposure, responds to the impact of systemic
disease and aging and is exposed to microbial infection.
Whilst senescence has been implicated in the pathobiology of
odontogenesis (79–81), changes in the supporting structures
of the teeth (82, 83), the pathology of salivary glands (84)
and disruption of homeostasis in the oral mucosa, it is
thought to play a fundamental role in the most prevalent
human disorder, namely periodontal disease (82). It has been
proposed that Gram-negative bacterial infection leads to a
DNA damage response in both gingival keratinocytes and
fibroblasts, chronic inflammation results in ROS-mediated
oxidative DNA damage and keratinocyte senescence leads to
breakdown of the cervical epithelial barrier (62). Further,
bacterial toxins induce local immunosuppression resulting in a
failure to remove the senescent cells and the perpetuation of
the disorder.

TARGETING SENESCENT CELLS IN
DISEASE

Inhibiting SASP Production/Function
(Senostatics)
From an early stage, proteins of the SASP have been considered
as therapeutic targets in the treatment of cancer (Figure 2).
Recent data, however, has shown that the SASP is cell-type
specific, thus making this approach less practical. A recent review
has highlighted some potential drug targets, particularly those
associated with inhibition of the inflammasome and plasminogen
activator inhibitor-1 (85). Such targets include p38 mitogen-
activated kinase (MAPK14; (86), p38 MAPKAPK2/3 (87), Janus-
activated kinase 1 (JAK1; (88) and steroids (89); these drugs have
been shown to ameliorate the effects of frailty (88) and type
2 diabetes in mice (90). The MAPK14 inhibitors and steroids
have been reported to inhibit the secretion of a diverse array
of SASP proteins (86, 89), but JAK1 inhibitors have only been
reported to target a subset of the inflammasome (88). Regulators
of alternative splicing such as PTPB1 have been shown to inhibit
the SASP and may also be attractive targets for therapy (91).
In addition, rapamycin, a promoter of autophagy has been
shown to ameliorate the effects of oral mucositis linked to
senescence (74) in mice, but not as yet in humans. A major
problem with senostatics, however, is that they are likely to
require continuous administration, thereby increasing the cost
per patient (92).

Senolytics
The above approaches are likely to be specific for certain
senescence-derived molecules and whilst this will reduce the
likelihood of side effects, an alternative approach is to use drugs
which selectively target senescent cells. Senolytics (Figure 2)
include BCL-XL inhibitors, finestin, ouabain, quecertin and
dasatinib (92). In addition, FOXO4 can bind with the p53 protein
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FIGURE 2 | Targeting senescent cells therapeutically. The figure summarizes the instrumental role of senescent cells in human pathologies and the potential role of

antioxidant, senostatic, and senolytic therapies.

to induce cellular senescence and a peptide competing with
FOXO4 can act as a senolytic by excluding p53 from the nucleus
(93). These drugs ameliorate the effects of many age-related
diseases in mice and clinical trials have begun to test their effects
in human disease. Whilst senolytics can only be administered for
a short time due to known side effects (e.g., thrombocytopenia),
there is some evidence that they can ameliorate idiopathic
pulmonary fibrosis (94) and can transiently clear senescent
cells in the adipose and skin tissue of diabetic kidney disease
patients (95). Another approach is to use chimeric antigen
receptor (CAR) T cells to target senescent cells (96). Senescent
cells become hyper-inflammatory, in response to pathogens and

repress anti-viral gene expression in non-senescent cells by a

paracrine mechanism (97); senolytics improve the survival of
old mice infected with pathogens such as SARS-CoV-2. Apart

from the known side effects of senolytics (98), it is cautionary

to note that they do not always work (92) suggesting some

level of cell-type/mechanism specificity. New drugs, therefore,
will need to be identified. Further, SIPS is mediated in part by

p16INK4A (see above) which is silenced in subsets of mammary

cells in middle-aged females and is thought to be a precursor
of breast cancer (85). Therefore, although removal of p16INK4A-

positive cells in mice might improve age-related pathologies

without a concomitant cancer risk, this might not be the case

in humans.

PREVENTING THE ACCUMULATION OF
SENESCENT CELLS

The two approaches described above are currently being heavily
pursued but suffer from the fact that both require long term
administration if employed alone and approaches that reduce
the production of senescent cells will need to be considered in
parallel. Such approaches might include stimulating the immune
system, antioxidants such as mitochondrial catalase inhibitors
(99–101), activators of DNA repair (102) and inducers of
telomerase activity (103, 104) all of which would delay senescence
in different ways (Figure 2).

TARGETING SENESCENT CELLS IN ORAL
DISEASES

As yet, no clinical trials have been published that target senescent
cells in oral disease. However, there are many mouse models
which show that senolytics might be effective in ameliorating
OSMF; steroids block many components of the SASP (89) and
are one of the treatments known to be beneficial in OSMF (105).
Inhibitors of senescence have not been used in the treatment of
OSMF, but it has been proposed that they may be of value for
the alleviation of both radiation-induced fibrosis (106) and ulcers
(83), and for the treatment of pre-cancerous lesions (107).
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DETECTING SENESCENT CELLS

Several clinical trials have now assessed the potential of senolytics
in human disease (108) but one of the problems is providing
evidence that they are actually working. Even in severely ill
patients, senescent cells are infrequent and SASP factors are
either undetectable (94) or require the screening of several factors
to verify senescence (95, 109); even when a few SASP factors are
detectable, they are not consistent from patient to patient (95).

Several metabolites do accumulate in the extracellular milieu
of senescent fibroblasts in vitro (19) and, indeed, a metabolite
(15-deoxy-delta-12,14-prostaglandin J2) indicative of senolytic
activity has been identified (110). However, no metabolite has
been tested for its utility in senolytic- or senescence-related
therapies in humans.

DISCUSSION

Whilst it is clear that senescent cells are instrumental in a wide
variety of age-related pathologies in mouse models, translating
these findings to humans remains a significant challenge.
Senescent cells occur at very low frequencies in diseased tissues
and most of the SASP factors overlap considerably with other

processes, most notably oxidative damage and inflammation.
Deleting senescent cells in humans may also have an associated
cancer risk. The levels of SASP factors in the plasma/sera
in published studies to date are very low and inconsistent,
thereby making proof-of principle of many approaches very
difficult. Senolytic therapies hold some promise, but safer and
cell type-specific versions are likely to be required. It is clear
that much further research will be required to identify and
eliminate senescent cells in human disease including those of the
oral cavity.
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