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Mineralization of the skeleton occurs by several physicochemical and biochemical

processes andmechanisms that facilitate the deposition of hydroxyapatite (HA) in specific

areas of the extracellular matrix (ECM). Two key phosphatases, phosphatase, orphan 1

(PHOSPHO1) and tissue-non-specific alkaline phosphatase (TNAP), play complementary

roles in the mineralization process. The actions of PHOSPHO1 on phosphocholine and

phosphoethanolamine in matrix vesicles (MVs) produce inorganic phosphate (Pi) for the

initiation of HA mineral formation within MVs. TNAP hydrolyzes adenosine triphosphate

(ATP) and the mineralization inhibitor, inorganic pyrophosphate (PPi), to generate Pi that

is incorporated into MVs. Genetic mutations in the ALPL gene-encoding TNAP lead to

hypophosphatasia (HPP), characterized by low circulating TNAP levels (ALP), rickets

in children and/or osteomalacia in adults, and a spectrum of dentoalveolar defects,

the most prevalent being lack of acellular cementum leading to premature tooth loss.

Given that the skeletal manifestations of genetic ablation of the Phospho1 gene in

mice resemble many of the manifestations of HPP, we propose that Phospho1 gene

mutations may underlie some cases of “pseudo-HPP” where ALP may be normal to

subnormal, but ALPL mutation(s) have not been identified. The goal of this perspective

article is to compare and contrast the loss-of-function effects of TNAP and PHOSPHO1

on the dentoalveolar complex to predict the likely dental phenotype in humans that

may result from PHOSPHO1mutations. Potential cases of pseudo-HPP associated with

PHOSPHO1 mutations may resist diagnosis, and the dental manifestations could be a

key criterion for consideration.
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INTRODUCTION

Mineralization of skeleton occurs by several physicochemical and biochemical processes and
mechanisms that facilitate the deposition of hydroxyapatite (HA) in specific areas of the
extracellular matrix (ECM). Experimental evidence has pointed to the presence of HA crystals
inside, and outside, collagen fibrils in the ECM (1, 2), and also within the lumen of matrix vesicles
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(MVs) (3–5). Production of inorganic phosphate (Pi) for the
initiation of HA mineral formation within the lumen of MVs
takes place by the action of phosphatase, orphan 1 (PHOSPHO1)
on phosphocholine and phosphoethanolamine in the inner
leaflet of the MV membrane (6, 7). On the outer surface
of the MV membrane, the glycosylphosphatidylinositol (GPI)-
anchored tissue-non-specific alkaline phosphatase (TNAP)
isozyme hydrolyzes both adenosine triphosphate (ATP) and
mineralization inhibitor inorganic pyrophosphate (PPi) to
generate Pi that is incorporated into MVs by the action
of phosphate transporter 1 (PiT-1) (6, 8). These backup
mechanisms explain whyMVs isolated from chondro-osteogenic
cells deficient in either TNAP or PHOSPHO1 retain the ability to
initiate mineralization, although at reduced levels (9–11).

Genetic mutations in the ALPL gene-encoding TNAP lead to
hypophosphatasia (HPP; OMIM# 241500, 241510, and 146300)
characterized by low circulating alkaline phosphatase (ALP),
rickets in children and/or osteomalacia in adults, and with a very
broad range of severity with several clinical types (from most to
least severe: perinatal lethal, infantile, severe or mild childhood,
adult, and odontohypophosphatasia) (12). Those with the gravest
forms of HPP (perinatal and infantile types) often die in utero or
soon after birth because of severe skeletal hypomineralization,
respiratory failure due to thoracic cage dysplasia and hypoplastic
lungs, and elevated intracranial pressure due to craniosynostosis
(13–16). Dentoalveolar phenotypes (described in detail below),
particularly premature exfoliation of primary teeth, are
commonly observed in patients with mild and severe subtypes
of HPP (17–19). Alpl knockout (Alpl−/−) mice phenocopy
infantile HPP extremely well, including their failure to thrive,
high-pitched cries, rickets and extensive hypomineralization of
their skeleton, and severe seizures that precede death within
a few weeks after birth (though a pyridoxal-enforced diet can
reduce seizures and slightly extend lifespan) (20–22). The term
pseudo-HPP has been used to describe apparent cases of HPP
where ALP levels are within normal range and may also apply
when no genetic variant in ALPL can be identified (23–28).

Mice with a Phospho1 gene ablation (Phospho1−/−) live to
adulthood but develop scoliosis starting from birth, osteomalacia,
greenstick fractures, accompanied by the elevation in plasma
PPi and a decrease in plasma TNAP activity (11, 29).
Less pronounced and distinct dentoalveolar abnormalities
(described in detail below) accompany PHOSPHO1 loss-
of-function (29). Importantly, the simultaneous ablation of
both the Alpl and Phospho1 genes leads to embryonic
lethality with a complete absence of skeletal and dental
mineralization (11).

To our knowledge, no pathogenic, loss-of-function mutations
in PHOSPHO1 have been reported in humans. Given that
the symptomatology of Phospho1−/− mice (osteomalacia,
spontaneous fractures, scoliosis) resembles many of the
manifestations of HPP, we propose that a subset of individuals
with HPP-like manifestations that resist diagnosis (i.e., some
in the pseudo-HPP group) could potentially carry unreported
pathogenic PHOSPHO1 variants. The goal of this perspective
article is to compare and contrast the loss-of-function effects
of key mineralization-associated phosphatases, TNAP and

PHOSPHO1, on the dentoalveolar complex to predict the
dental phenotype in humans that may result from PHOSPHO1
mutations. Potential cases of pseudo-HPP associated with
PHOSPHO1 mutations may resist diagnosis, and dental
manifestations could be a key criterion for consideration.

DENTAL MINERALIZATION DEFECTS
ASSOCIATED WITH HYPOPHOSPHATASIA

An array of dental manifestations can accompany HPP, including
enamel defects, thin and/or hypomineralized dentin, wide
pulp chambers, root size and shape abnormalities, acellular
cementum hypoplasia, alveolar bone loss, periodontal disease,
tooth mobility, and malocclusion (17, 18, 30–32). Dental defects
are variable across clinical HPP subtypes, though the premature
loss of primary teeth is a hallmark of all types of HPP and can be a
key diagnostic criterion, as teeth are exfoliated “fully rooted” (i.e.,
lacking substantial root resorption that normally marks primary
tooth loss) spontaneously or resulting from minor traumas.
Tooth loss is the result of acellular cementum hypoplasia
and loss of periodontal attachment. As with other clinical
manifestations of HPP, genotype –phenotype correlations are not
well-understood for dental aspects of the disease. The mildest
clinical form of HPP referred to as odontohypophosphatasia
(odonto-HPP), features primarily tooth loss and other dental
disorders in combination with low ALP but in the absence of
other clinically evident signs.

Alpl−/− mice phenocopy severe infantile HPP with <1% of
circulating ALP activity compared to control mice, reflecting the
range of severe dental defects observed in individuals with HPP,
and serving as an important model to study disease mechanisms
(20, 21, 31, 33). Compared to wild-type (WT) controls, Alpl−/−

mice show severe enamel and dentin hypoplasia and reduced
alveolar bone volume and mineral density (Figures 1A–E) (30,
35–39). Some local defects in Alpl−/− dentin and alveolar bone
are so severe that whole regions of these tissues fall below the
threshold for the detection by micro-CT, appearing invisible in
3D and 2D renderings (yellow arrows and stars in Figure 1D),
and contributing to reduced volumes in affected tissues (35).
Alveolar bone levels are already decreased in Alpl−/− mice by
24 days postnatal (dpn), shortly after first molar eruption (yellow
dotted lines showing alveolar crest height in Figures 1A vs. 1C).
All mineralizing dentoalveolar cells express TNAP, including
ameloblasts, odontoblasts, cementoblasts, and osteoblasts (30, 37,
40). Studies analyzing mechanisms for enamel defects indicate
disruptions in ameloblast organization and enamel ultrastructure
(37), while dentin defects arise from inhibition of mineralization
outside of MVs in the dentin matrix (30). These dentin defects
initiate in the outer mantle dentin layer where MVs are critical
for the initiation of mineralization, and in more severe cases,
dentin hypomineralization also spreads to circumpulpal dentin,
as indicated in mouse, sheep, and human studies of HPP
(30, 35, 41).

Alpl−/− mice have lethality within the first few weeks after
birth, precluding their use in longer-term studies on pathology
and treatment effects. A mouse that harbored a floxed Alpl allele
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FIGURE 1 | Dentoalveolar defects in mouse models of hypophosphatasia. (A–D) 3D and 2D micro-CT renderings of first molars (M1) reveal severe dentin (DE) defects

(yellow arrows) and alveolar bone (AB) defects (yellow *) in Alpl−/− vs. wild-type (WT) mice at 24 days postnatal (dpn). AB levels (yellow dotted lines in A and C) are

already reduced in Alpl−/− vs. WT mice. (E) Compared to WT, Alpl−/− have reduced enamel (EN) volume, DE volume, and AB volume and density. (F–I) 3D and 2D

(Continued)
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FIGURE 1 | micro-CT renderings of M1 reveal thin DE (yellow arrow) and AB loss (yellow *) in Alpl cKO vs. WT mice. AB levels (yellow dotted lines in F and H) have

declined significantly in Alpl cKO vs. WT mice by 6 months (mo). (J) Compared to WT, Alpl cKO has reduced DE and AB volumes. (K–N) Histology confirms that both

Alpl−/− and Alpl cKO mouse models lack acellular cementum (AC), resulting in periodontal ligament (PDL) detachment (red #). Alpl−/− mice feature large areas of

alveolar bone osteoid (red stars in panel L). Detailed analytical methods are included in the original publications, and as described in Chavez et al., JBMR Plus 5(3):

e10474, 2021. Briefly, micro-CT generated DICOM images were analyzed with AnalyzePro 1.0 (AnalyzeDirect, Overland Park, KS), calibrated to five known densities

of HA (mg/cm3 HA), and density thresholds were defined as >1,600 mg/cm3 HA for enamel and 450–1,600 mg/cm3 HA for dentin and bone. Statistical analyses

included independent samples t-tests where graphs show means ± SD and results are indicated by: *p< 0.05; **p < 0.01; ***p < 0.001; ****P < 0.0001. (A–E) are

republished with permission from Kramer et al., Bone 143:115732, 2021. The remaining images are from expanded, previously unpublished analyses from data

presented in Foster et al. (34) and presented with permission.

was designed to produce tissue-specific conditional deletion of
Alpl when crossed with Cre recombinase-expressing mouse lines,
allowing more refined deletion and less severe and/or later onset
of disease. Col1a1-Cre-mediated deletion of Alpl in conditional
knockout (cKO) mice affected reduced circulating ALP levels by
about 75% and mice lived to the termination of the study at 6
months (34). These cKO mice resembled childhood-onset HPP,
with axial and appendicular skeletal defects, long bone fractures,
and defects in dentin and alveolar bone that became apparent
prior to adulthood (Figures 1F–J).

While enamel and dentin defects in mouse models of HPP
are well-represented in reports on developmental phenotypes,
the longer lifespan of cKO vs. Alpl−/− mice allowed assessment
of tissues later in life, leading to the first observation of severe
periodontal bone loss in a mouse HPPmodel (yellow dotted lines
showing alveolar crest height in Figures 1F vs. 1H). Histology
reveals that both Alpl−/− and cKO mouse models of HPP
have prominent acellular cementum hypoplasia, resulting in
the poor periodontal attachment (Figures 1K–N). This defect is
considered the primary driver of primary and secondary tooth
loss in individuals with HPP and contributes to periodontal
disease, mobility, and malocclusion.

In summary, while effects of HPP are highly variable, they
can potentially impact all dentoalveolar mineralized tissues, in
part because TNAP is highly expressed by all mineralizing
cells during dental development and tissue mineralization. A
mouse model that harbored a knock-in Alpl A116T substitution
mutation associated with odonto-HPP (42) showed about 50%
decreased circulating ALP levels and mild effects on acellular
cementum and alveolar bone, possibly the two most sensitive
tissues (33).

DENTAL EFFECTS OF PHOSPHO1
LOSS-OF-FUNCTION IN MICE

Dental development in Phospho1−/− mice has been previously
described (29, 43); however, in this study, we reanalyzed
samples using high-resolution micro-CT in combination
with previous histological observations to provide additional
insights into the consequences of Phospho1 deletion on
dental development. Analyses were performed to parallel
those reported for HPP mouse models described above
(34, 35), to allow more direct comparisons. Overall, deletion
of Phospho1 leads to milder mineralization defects than global
or conditional deletion of Alpl (Figures 2A–D). Compared

to WT controls, Phospho1−/− mice show enamel hypoplasia
(Figure 2E), and a previous report indicated disturbed enamel
ultrastructure and reduced mineralization in continuously
erupting mouse incisors (44). Dentin volume increases in
Phospho1−/− vs. WT mice by 3 months, although a small
but significant reduction in dentin mineral density is evident.
Alveolar bone density is also negatively affected by the loss
of PHOSPHO1.

Histology provides further insights into how the absence
of PHOSPHO1 affects dentoalveolar tissues, and we focus on
periodontal tissues to contrast important differences arising
from loss-of-function of TNAP vs. PHOSPHO1. Unlike
in HPP models, an apparently normal acellular cementum
layer is present in Phospho1−/− mice and PDL attachment
remains intact (Figures 2F–I), corresponding to normal
alveolar crest height (yellow dotted lines in Figures 2A vs. 2C).
The outer dentin layer of Phospho1−/− vs. WT mice shows
altered collagen organization, indicative of the mineralization
defect that is limited to mantle dentin (Figures 2G–J).
Alveolar bone in Phospho1−/− shows “patchy” osteomalacia
(Figures 2H,K) that has been described for bone in other
skeletal locations (45). Intriguingly, cellular cementum volume
nearly doubles in Phospho1−/− vs. WT mice by 3 months
(Figures 2L–N).

The pattern of defects with loss-of-function of PHOSPHO1
closely match the developmental expression, as explored by
mRNA in situ hybridization, and protein immunohistochemistry,
immunogold labeling, and western blot (29, 43, 44). Expression
was noted in ameloblasts, odontoblasts, alveolar bone osteoblasts,
and cementoblasts associated with cellular cementum. MVs,
wherein PHOSPHO1 functions, have been associated with
mineralization by all these cells (46, 47). Strikingly, PHOSPHO1
expression was not identified in cementoblasts during acellular
cementum formation, no acellular cementum defect was noted
in mice lacking PHOSPHO1, and MVs have not been associated
with acellular cementum (29, 46).

PREDICTING DENTAL MANIFESTATIONS
IN PATIENTS WITH PSEUDO-HPP FROM
PHOSPHO1 MUTATIONS

The nomenclature of pseudo-HPP has sometimes been used to
describe apparent cases of HPP wherein clinical presentation
overlaps with manifestations of HPP, but where ALP levels are
within the normal range (23, 24, 26, 27, 48–50). Many studies
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FIGURE 2 | Dentoalveolar defects in Phospho1−/− mice. (A–D) 3D and 2D renderings of first molars (M1) from WT and Phospho1−/− mice at 3 months (mo),

including enamel (EN), dentin (DE), and alveolar bone (AB). AB levels (yellow dotted lines in A and C) are similar in Phospho1−/− vs. WT mice at 3 mo. (E) Compared

to wild-type (WT), Phospho1−/− mice have mild enamel hypoplasia and reduced DE and AB mineral densities at 3 mo. (F, I) H&E stain of WT and Phospho1−/−

dentoalveolar tissues at 3 mo showing intact acellular cementum (AC) layer and periodontal ligament (PDL) attachment. (G, J) Picrosirius red stain viewed under

polarized light shows abnormally expanded mantle dentin (MD) layer (note length of the white bar) in Phospho1−/− vs. WT mice, where DE mineralization defects are

(Continued)
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FIGURE 2 | focused. (H, K) von Kossa stain shows patchy osteomalacia (yellow arrows) characteristic of Phospho1−/− mouse AB defects. (L, M) 2D micro-CT

renderings with cellular cementum (CC) segmented (shown in yellow) reveal increased CC in Phospho1−/− vs. WT mice by 3 mo. (N) Quantitative analysis confirms

increased CC volume and similar mineral density in Phospho1−/− vs. WT mice. Detailed analytical methods are included in the original publication. Micro-CT analysis

was performed as described in Figure 1, and as described in Chavez et al., JBMR Plus 5(3): e10474, 2021, with the segmentation of cellular cementum from dentin

accomplished using a median filter. Statistical analyses included independent samples t-tests where graphs show means ± SD and results are indicated by:

*p < 0.05; **p < 0.01. (F, H, I, and K) are republished with permission from Zweifler et al. (29). The remaining images are expanded, previously unpublished analyses

of samples presented in the above publication.

also report cases where clinical signs of HPP are present and
ALP is low or normal, and no genetic variant in ALPL can be
identified (51–55). By Sanger sequencing, up to 5% of suspected
HPP cases resist the identification of a genetic factor (54–57).
These cases are sometimes attributed to ALPL variants that are
difficult to locate by sequencing (e.g., in regulatory regions of the
gene). It should also be noted that a comprehensive differential
diagnosis for low ALP will include other genetic conditions
(e.g., osteogenesis imperfecta, forms of hypophosphatemic
rickets, cleidocranial dysplasia, and Wilson’s disease), altered
nutritional states (e.g., vitamin C, magnesium, or zinc deficiency,
Celiac disease, malnutrition, or starvation), endocrine and
mineral metabolism disorders (e.g., hypothyroidism, Cushing’s
syndrome, and milk-alkali syndrome), and potential effects of
medications (e.g., bisphosphonates, other antiresorptive drugs,
and chronic corticosteroid treatment) (31, 58). Additionally,
we propose that a subset of these individuals with low
ALP that resist diagnosis could potentially carry unreported
PHOSPHO1 variants.

In a patient with suspected HPP that had no detectable ALPL
variants, Taillandier et al. mapped an inherited heterozygous c.
95_97CCT deletion in PHOSPHO1, in addition to a heterozygous
COL1A2 mutation in a newborn with severe mineralization
defects (57). In vitro functional tests using COS-1 fibroblast-like
cells that transfected with a pCMV expression vector carrying the
PHOSPHO1 deletion did not indicate enzymatic loss-of-function
using a modified PEA substrate. However, these tests may not
recapitulate in vivo function (particularly with this complex
genetic background), and long-term clinical manifestations in
this patient carrying PHOSPHO1 and COL1A2 variants were
not reported. Little work has been done defining the effects
of mutation on PHOSPHO1 using functional assays, though
mutation of key active site residues resulted in the loss of
enzymatic activity (59). It is also possible that PHOSPHO1
loss-of-function could be compensated by additional regulators,
including TNAP. Compensation and competition between
mineralization regulators are complex, sometimes with age-
dependent changes in compensatorymechanisms (11, 43, 60–63),
and we propose that this is an aspect for further study in HPP
and pseudo-HPP.

Skeletal manifestations resulting from loss-of-function of
TNAP vs. PHOSPHO1 share significant overlap based on the
mouse models (6, 11, 43). Consideration of the dentoalveolar
effects from loss-of-function of TNAP vs. PHOSPHO1 provides
a valuable opportunity to not only contrast the physiological
functions of these phosphatases but may also provide clinical
utility. While enamel, (mantle) dentin, and alveolar bone are

affected similarly by loss-of-function of these phosphatases, there
is one key difference that stands out from the accumulated
preclinical data. PHOSPHO1 deficiency does not appear to
negatively affect acellular cementum or periodontal function.
This observation can guide a prediction of the dentoalveolar
phenotype to be expected in individuals who may carry
pathogenic PHOSPHO1 variants. First, relatively mild enamel
and dentin defects may exist in such an individual and could
manifest as enamel hypoplasia and dentin abnormalities focused
in the mantle dentin (e.g., altered appearance by histology,
such as interglobular patterns). Both types of alterations might
be subclinical in that they may be so mild as to not cause
detectable pathology. Second, and most importantly, periodontal
attachment would likely not be impaired by PHOSPHO1
mutations. Acellular cementum appeared undiminished (even
increased in thickness) in mice lacking Phospho1, PDL
attachment was intact, and alveolar bone levels were unaltered
(29). This paints a picture in contrast to HPP, where premature
tooth loss from cementum and periodontal attachment defects
represents the most consistent and common dental effect.

Such a hypothetical individual presenting mild enamel and/or
dentin defects and normal periodontal function could potentially
be diagnosed from the dental presentation with amelogenesis
imperfecta (AI; OMIM# 301200, 204650, 104500, 612529,
204700, and many more), dentinogenesis imperfecta (DI) type II
or III (OMIM# 125490, 125500), dentin dysplasia type II (DD;
OMIM# 125420), while potential skeletal effects of a PHOSPHO1
mutation (e.g., scoliosis, fractures, and osteomalacia)may suggest
one of the many forms of osteogenesis imperfecta (OMIM#
166200, 166210, and several others). HPP would also be in the
differential diagnosis, and normal or low ALP in combination
with lack of detectable ALPL mutation(s) could be labeled as
an unusual manifestation of HPP or pseudo-HPP. Based on
the accumulated evidence presented in this perspective article,
we encourage clinicians to consider PHOSPHO1 as a genetic
sequencing target in cases of suspected HPP where mutations in
ALPL cannot be identified and include it in genetic testing panels
for endocrine and mineral metabolism disorders, an approach
increasingly gaining in popularity (57, 64, 65).

A dissenting opinion may be that PHOSPHO1 loss-of-
function variants have not been identified in humans because
they are not compatible with life. For example, the types of
mineralization defects that are tolerable in Phospho1−/− mice
may be more severe and embryonic lethal in humans, though
harmless when heterozygous (an unusual scenario). PHOSPHO1
expression in testes may affect fertility and thus the heritability of
mutations. This is an area deserving further study.
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CONCLUSION

In this perspective article, we compared and contrasted
the loss-of-function effects of mineralization-associated
phosphatases, TNAP and PHOSPHO1, on the dentoalveolar
complex, based on preclinical and case report studies. To
date and to our knowledge, PHOSPHO1 loss-of-function
variants have not been reported in humans. Based on the
accumulated evidence, we propose that there may be a subset
of cases of pseudo-HPP associated with PHOSPHO1 mutations.
These would be expected to have skeletal effects such as
osteomalacia, and fractures, consistent with HPP, but featuring
dental phenotypes with mild enamel and dentin effects and
intact cementum, periodontal attachment, and no premature
tooth loss. Further research is clearly needed to identify such
individuals if they remain undiagnosed or misdiagnosed under
current medical paradigms.
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