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The recent change in classification of periodontal and peri-implant diseases includes

objective evaluation of intra-oral radiographs and quantification of bone loss for disease

staging and grading. Assessment of the progression of periodontal disease requires

deduction of bone loss longitudinally, and its interpretation as (1) a percentage in relation

to tooth root and (2) as a function of the patient’s age. Similarly, bone loss around dental

implants, after accounting for initial remodeling, is central for determining diagnosis,

severity, and progression of peri-implantitis. Bone gain secondary to periodontal

regeneration can be measured using standardized dental radiographs and compared

to baseline morphology to determine treatment success. Computational image analysis,

including machine learning (ML), has the potential to develop and automate quantitative

measures of tooth, implant, bone volumes, and predict disease progression. The

developed algorithms need to be standardized while considering pre-analytic, analytic,

and post-analytic factors for successful translation to clinic. This review will introduce

image analysis and machine learning in the context of dental radiography, and expand

on the potential for integration of image analysis for assisted diagnosis of periodontitis

and peri-implantitis.

Keywords: dental radiography, systems integration, periodontitis, peri-implantitis, artificial intelligence, machine

learning

COMPUTATIONAL IMAGE ANALYSIS IN BIOMEDICINE AND
HEALTHCARE

Image quantification approaches in biomedicine and healthcare can be broadly categorized into:
classical image analysis (1), applied classical machine learning (ML) (2), and deep learning (DL)
(3). These analyses are becoming increasingly applicable in the field of computer vision due to the
advent of modern imaging technologies and increased volumes of data. In dentistry, acquisition
of intraoral radiographs for screening and as part of problem-focused examinations is standard
of care, thus providing longitudinal data points that are excellent inputs for computer vision
applications and can assist the clinician in both diagnosis and prediction.

Classical image analysis approaches include intensity transformation, binarization,
segmentation, morphological processing, and quantification [see example in (4)]. A pipeline
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resulting from utilization of classical image analysis approaches
can process an input image such as a dental radiograph through
a multi-step process to extract and quantify information of
interest. ML is a branch of artificial intelligence (AI) that
provides systems and programs with the ability to learn and
improve automatically to make better decisions based on the
provided input (2). Classical ML includes methods such as
logistic regression, support vector machines (SVMs), or naïve
Bayesian classification (2). Various classification tasks, including
detection of patterns within an image can be performed withML.

DL methods are based on artificial neural networks (ANN)
that use non-linear transmission of information from an input
image through a series of layers modeled as a network for
conducting a classification task (5). A popular DL method for
image analysis is a convolutional neural network (CNN) (1).
CNNs employ convolution in at least one of the network layers
to filter complex feature information at some spatial location
of the input image (6). For example, a CNN can use lower
layers to identify edge information in an image, while using
the middle layers to identify more complex features, and the
highest layers to learn features that the human visual cortex uses
to identify objects via information mined from an object (7).
Due to DL’s ability to detect features and use them to perform
complex tasks in image analysis, they have become prevalent in
the medical imaging community. In dentistry, image analysis has
been successfully used on cephalometric, panoramic, intraoral,
and CBCT projections for detection of anatomical landmarks
and dental and skeletal pathologies, such as periodontitis, dental
caries, odontogenic cysts and tumors, and osteoporosis (8). The
rapidly evolving landscape around image analysis using ML
models and demonstration of their utilization in assessment
of morphological characteristics on dental radiographs extends
the scope of clinical tools available to a modern-day practicing
dentist. Further, image annotation will help standardize radiology
reporting to clinicians as annotated images can be linked to
radiographic findings in structured radiology reports. Annotated
images and structured radiology reports can also serve as
important communication and education tools for the patient
and present relevant findings with clarity (9, 10).

DENTAL RADIOGRAPHY AND DIAGNOSIS
OF PERIODONTITIS AND
PERI-IMPLANTITIS

Periodontitis and peri-implantitis are clinical-radiographic
diagnosis of inflammatory conditions that result from loss
of supporting tissues around teeth and dental implants,
respectively (11). Inherent to the case definitions for diagnoses
of periodontitis and peri-implantitis is a requirement for
measurement of loss of supporting tissues, and their comparison
to previously obtained measurements for assessment of history
of disease activity, severity, and progression (12). Therefore,
radiographic evaluation of supporting bone around dental
implants and teeth have found a pivotal role in the revised
classification for periodontal and peri-implant diseases and
conditions (11).

In the recent classification of periodontal and peri-implant
diseases and conditions, periodontitis is qualified into stages
and grades. Staging of periodontitis entails determination of
disease severity, complexity, and extent. Likewise, grading of
periodontitis includes determination of disease progression and
specific risk factors (12). Both, determination of disease severity
and progression requires evaluation of intraoral radiographic
data. Specific radiographic criteria for staging and grading are
presented in Table 1.

Introduction of interdental clinical attachment loss (CAL)
at the site of greatest loss is a crucial development in the
recent classification system that allows for incorporation of intra-
oral radiography in periodontal staging (12). Assessment of
interdental bone levels can be achieved reliably and reproducibly
as the radiographic details in intraoral radiographs are not
obfuscated by the radiopacity from underlying root structure.
Furthermore, proximity of interdental bone levels to dental
anatomic structures that are usually not altered by periodontal
disease activity, such as tooth root and cemento-enamel junction
(CEJ) renders calculation of interdental bone loss as a function
of tooth root length. Furthermore, changes in interdental bone
height from levels of CEJs of adjacent teeth serve as an
objective and reproducible measurement of interdental bone loss
in periodontitis.

Like periodontitis, radiographic determinants of peri-
implantitis include objective radiographic criteria. These
radiographic determinants include, (a) progressive bone loss
in relation to peri-implant radiographic bone levels at 1 year
following the delivery of implant-supported prosthesis, and
(b) peri-implant radiographic bone loss ≥3mm coupled
with peri-implant probing depth of ≥6mm and bleeding on
probing (13).

Intra-oral radiographs are particularly suited as input for
development of quantitative diagnostic and predictive machine
learning algorithms as radiographic images are obtained
sequentially during the lifespan of a patient’s dental treatments.
While radiographic images are less susceptible to introduction
of human error when compared to clinical data entries, quality
of an intra-oral radiographic image can vary based on operator
technique at image acquisition. Such errors can be minimized by
introduction of orientation adjuncts for intraoral radiography,
to provide standardized and reproducible radiographs (14).
Standardized intra-oral radiographs and their integration with
image analysis algorithms will allow for objective and automated
measurements of periodontal and peri-implant bone loss and
treatment outcomes such as bone gain secondary to regenerative
periodontal procedures.

MORPHOLOGICAL CHARACTERISTICS
AND ANATOMICAL LANDMARKS ON
INTRAORAL RADIOGRAPHS

Intraoral radiographs are representations of dental anatomic
structures which present with varying degrees of radiopacity and
radiolucency. Additionally, the shape, texture and relationship
between dental anatomic structures provide a rich repertoire
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TABLE 1 | Radiographic parameters for determination of periodontitis stage and grade.

Periodontitis staging

Severity—Radiographic bone loss Stage I Stage II Stages III & IV

Coronal third (<15%) Coronal third (15–33%) Extending to mid-third of root and beyond

Periodontitis grading

Grade A Grade B Grade C

Primary criteria: Direct evidence of progression

Measurement: Longitudinal data quantifying radiographic

bone loss or CAL over 5 years

No loss <2mm ≥2 mm

Primary criteria: Indirect evidence of progression

Measurement: % Bone loss/Age

<0.25 0.25–1.0 >1.0

Grade A, Grade B and Grade C are slow, moderate, and rapid rates of progression, respectively.

of images for downstream computational evaluation. Gross
anatomical landmarks of interest in intraoral radiographs
obtained to evaluate periodontitis and peri-implantitis include
teeth and their root(s), implants, and alveolar bone. Additionally,
bone loss as a function of root/implant length is of interest and
requires determination of anatomic root length (CEJ to root
apex) and implant length (12, 13). Radiographic presentation of
alveolar bone loss is variable but the contextual representation
of bone loss as a function of root/implant length provides a
relatively stable reference length. The levels of CEJs on adjacent
teeth and their consistent relationship to interdental bone levels
along with the outlines of tooth root(s) and dental implants
offers a reproducible frame of reference for our region of
interest, i.e., interdental bone loss in periodontitis and peri-
implantitis (Figures 1A,B). When sequential radiographs are
not available to determine longitudinal loss of interdental bone,
these radiographic landmarks are crucial. Conversely, when CEJs
are obfuscated by dental restorative treatment, pre-treatment
radiographs are important for determination of CEJ position.
For dental implants, an assumption of good clinical practice and
standard of care is inherent when baseline radiographs are not
available. There are two clinical problems that computational
methods in image analysis can potentially address: (a) detection
and quantification of bone loss in periodontitis and peri-
implantitis, and (b) prediction of disease progression. Below, we
will elaborate on the principles of radiographic image analysis
in the context of alveolar bone loss in periodontitis and peri-
implantitis.

COMPUTATIONAL IMAGE ANALYSIS IN
DENTAL RADIOGRAPHY

We discuss herein a generic pipeline for integration of image
analysis tools and dental radiography in the clinical context
of periodontitis and peri-implantitis. Steps in this pipeline
potentially involve classical image analysis operations,
such as reading raw image data by computer, performing

FIGURE 1 | Intraoral radiographs with periodontitis (A) and peri-implantitis (B).

(A) The area of interest to assess bone loss secondary to periodontitis shows

a yellow line at the level of CEJs (red dots) of adjacent teeth. The green line

depicts the tooth root as a boundary of the region of interest which along with

the blue curved line shows the approximate and representative area of

complete bone loss. (B) Similarly, areas of most severe peri-implant bone loss

are shown by the red boundary.

an intensity transform, binarization, morphological post-
processing, segmentation, and then applying a ML or DL model.
Classical image analysis operations can be used to construct an
independent analytic pipeline without the use of ML or DL.
Conversely, DL or CNN can be applied directly to an input
image. Below, we discuss classical image analysis in relation to
dental radiography and introduce core concepts in this regard.

After reading raw image data by computer, intensity
transformations are applied for image contrast enhancement.
A common intensity transformation operation is conversion of
red-green-blue (RGB) to grayscale color space. This intensity
transformation has been used to distinguish between the
cortical and cancellous bone in dental radiographs (15). The
computational assessment of cancellous bone architecture and
relationship between cortical and cancellous bone may serve
as predictors for treatment success (15, 16). Another form of
intensity transformation called histogram equalization (17) can
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be used to improve low contrast regions and convert uneven
intensity distribution in an image to a uniform distribution
(18). Histogram equalization works well if the entire image has
a similar dynamic range of intensities. However, like in other
medical imaging applications, in intraoral dental radiographs,
the dynamic range of intensity distribution is expected to have
wide and uneven pixel intensities and contrasts resulting from
anatomical landmarks, dental diseases and their treatments.
Therefore, regular histogram equalization may not enhance the
radiograph images adequately and contrast limited adaptive
histogram equalization (CLAHE) is recommended (1). CLAHE
limits over amplification of contrast by limiting the operation on
small regions of the image. Further, different types of filtering
operations can be conducted pre- or post-CLAHE, such as
using Gaussian high pass filter for sharpening the image, noise
adjustment, and edge and ridge detection (19–21).

After applying intensity transformation of choice, next step
involves thresholding the image for preliminary segmentation.
This process results in a binary image, where the grayscale (multi
tone) image is converted to binary image (with pixels as “0” or
“1”) and is aptly called binarization. Pixels in the foreground
can be white or black and the pixels in the background are
opposite of foreground pixels (22). Binarization is popular across
many imaging domains for pertinent processing of image data,
such as augmented reality, photography, and microscopy and
radiographic imaging (23). Thresholding of image intensity
which is used for binarization can be fixed or adaptive. In
fixed value thresholding, the intensity value of each pixel is
compared against a user-defined value for binarization (24).
Adaptive thresholding methods, such as Otsu’s thresholding and
entropy based thresholding, have been used in image analysis of
dental radiographs and involve different histogram thresholding
for both local and global binarization (25–27). These methods
employ the variance of the pixel intensity values to compute the
optimal threshold as opposed to a fixed value (28) and have been
used in computational assessment of bone loss around dental
implants and teeth (25–27).

Binary image obtained from thresholding operations is
subjected to morphological post-processing. While there are
many morphological operations, two foundational operations
are erosion and dilation (29). The erosion operation takes
two inputs: binary or grayscale image and a structural kernel.
The kernel defines the transformation of the binary image
such as reducing the size of the foreground object, increasing
the size of the background and removing selected detail. For
example, erosion can be used to locate the sharp boundary
of the dental anatomical structures (27). Another common
morphometric operation is dilation. Dilation conducts exactly
the opposite operation of erosion. Namely, as the dilation
kernel moves around the image, it increases the size of the
foreground structure, and decreases the size of the background.
This method can be used to identify all regions that contain
teeth in an image (30). Morphological post-processing operations
can be built by combining foundational operations of erosion
and dilation. In morphological closing, erosion follows dilation
and it has been used to detect teeth (31) and close small
holes in the foreground area, such as space between teeth

(24, 32). Conversely, morphological opening consists of erosion
and then dilation which is useful for removing noise from an
image (33).

STATISTICAL AND ANALYTICAL
CONSIDERATIONS

Benchmarking techniques to evaluate diagnostic instruments
is a well-studied problem in the statistical community (34).
In our setting, the diagnosis is with respect to periodontal
and peri-implant diseases and the diagnostic instruments may
be machine learning derived classifications from intraoral
radiographs or other imaging modalities. The general techniques
to compare these classifications will depend on the availability
of ground-truth or a gold-standard. Ground-truth here refers to
a classification that is perfect while a gold-standard refers to a
classification that has a “reputation in the field” as a reliable call
(35). A gold-standard may not be a perfect test (as ground-truth)
but merely the best available test that has a standard with known
results. When a gold-standard or ground-truth is available, the
utility of diagnostic instruments can be assessed with a series
of statistical quantities. Initially, point estimates of sensitivity
and specificity together with estimates of their variability (e.g.,
95% confidence intervals) can be obtained using maximum
likelihood theory (34). Sensitivity in this context is the probability
that a subject having the disease (assessed by, say, the gold-
standard) is also classified by the proposed diagnostic instrument
as having the disease. Analogously specificity is the probability
that a subject without the disease is classified by the instrument
as not having the disease. Consequently, an instrument with
low sensitivity will have a high false negative rate, i.e., a high
probability that diseased subjects will (erroneously) test negative
for the disease. Similarly, an instrument with low specificity
will have a high false positive rate, i.e., a high probability
that non-diseased subjects will (erroneously) test positive for
the disease. Chi-squared tests can be performed to compare
competing diagnostic measures for equality of their sensitivity
and specificity values. These measurements of specificity and
sensitivity can be viewed as benchmarking the analytical validity
of the diagnostic instrument (36). That is, the ability of the
instrument to characterize or measure the information in the
images or radiographs.

After analytical validity has been established, the next step
is clinical utility. In clinical utility, we assess the diagnostic
instrument’s ability to detect periodontal disease. The statistical
quantities to address this question are positive predictive value
and negative predictive value. Positive predictive value (PPV) is
the probability of truly having the disease given the subject was
determined (or classified) as having the disease according to the
instrument. Negative predictive value (NPV) is the probability of
truly not having the disease given the subject was classified by
the instrument as being disease free. PPV, NPV, and, ultimately,
overall accuracy are closely related to sensitivity and specificity
but also consider the prevalence of the disease. The well-known
Bayes’ theorem connects PPV, NPV, sensitivity, specificity, and
prevalence. Prevalence of the disease refers to the frequency
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of, say, periodontal disease in the population under study. For
example, if we estimate 10% of the population with dental
implants has peri-implantitis, then a diagnostic instrument with
90% sensitivity and 90% specificity has a positive predictive
value of 50%. If the maintenance of treated peri-implantitis
cases is, say, quarterly rather than biannual dental visits, a
PPV of 50% suggests that the prescribed quarterly dental visits
was unnecessary for one out of every two subjects diagnosed
with peri-implantitis.

Reverse engineering the progression of analytical to clinical
validity may be a reasonable approach when calibrating or
designing a future diagnostic instrument. That is, with an
estimate of prevalence and an appreciation for the cost involved
in a faulty diagnosis, researchers can often set desirable or
acceptable PPV and NPV values and then work backwards to
calculate the target sensitivity and specificity for their instrument
to obtain the desired PPV and NPV values.

The previous paradigm for benchmarking a diagnostic
instrument is reasonable in the presence of ground truth or a
gold standard. However, with some periodontal diseases such
as those associated with systemic diseases and certain genetic
mechanisms, these quantities may not exist. In that context,
there may be several potential diagnostic instruments but no
clear gold standard or ground truth. In this case, researchers
are often forced to abandon the accuracy question and must
settle for merely comparing the frequency of (dis)agreements
on the diagnostic instruments obtained from an identical set of
data. Statistical tools designed for these analyses fall under the
umbrella of inter-rater reliability which assesses the degree of
agreement among different (independent) instruments designed
to classify periodontal diseases. While there is a large number
of statistics designed to address inter-rater reliability (37), in
the context of diagnosis a well-used statistic is Cohen’s kappa
coefficient (38). Cohen’s kappa coefficient is designed as a
robust measure of agreement percentage that also considers the
agreement occurring by chance. If the diagnostic instruments
are in complete agreement, then kappa equals 1, if there is no
agreement other than what would be expected by chance kappa
equals 0 and if the agreement is worse than random then kappa
is negative. Akin to estimating the variability of sensitivity and
specificity estimates, similar techniques also exist to estimate the
variability (e.g., confidence intervals) for kappa estimates.

Standardization of dental radiographs before implementing
image analysis and ML algorithms is important to avoid noise-in
noise-out situations. Largely, pre-analytic factors to consider for
standardization in dental radiography originate from inherent
image characteristics and variation during image acquisition.
Inherent image characteristics would include variables such
as brightness, contrast, resolution, and pixel size. Brightness
and contrast enhancements can impact diagnostic accuracy of
the evaluator (39). While there is no consensus on optimal
image characteristics and exposure conditions required for
detection of pathologies in image analysis models, recent studies
have demonstrated methods to standardize dental radiographs
in accordance with international guidelines (40, 41). These
studies evaluated the effect of beam quality and pixel size
using modulation transfer function (MTF) and normalized

noise power spectrum (NNPS) in accordance with International
Electrotechnical Commission (IEC) standards. Further, image
analysis models that systematically detect image acquisition
errors in intraoral radiography (42) can improve quality control.
Some of these errors result from operator technique and patient
positioning (43). These errors can result in distortion of anatomic
landmarks but are well-known and easily recognized. However,
minor variations in anatomical landmarks that can have an
impact on quantitation and prediction of disease progression
should either be systematically eliminated by using radiograph
positioning adjuncts (14) or anchoring dental radiographs to
their respective geometric ground truth.

Further, dental radiographic image analysis performance
relies on analytic factors pertaining to processing, such
as the model, model parameters as well as initialization
used for model optimization. Often different models, or
models implemented using different libraries (tensorflow,
pytorch, etc.) offer different results, requiring further
standardization of models and developing ontology for
sharing and benchmarking computational models and
downstream provenance. Post-analytic factors include
the derived features or results after image analysis is
conducted. Standardization of the resulting metrics will
allow seamless comparison of the results generated via
different computational models or based on datasets from
different institutions or modalities. Two recent works on
quantitative image ontology can be consulted for further
discussion on pre-analytic, post-analytic, and analytic factors
pertaining to medical image analysis and standardization
(44, 45).

EVIDENCE AND CURRENT LITERATURE

Above, we introduced classic image analysis methods and their
application in dental radiography. We discuss below recent and
relevant literature that studies application of image analysis to
dental radiographs with periodontitis and peri-implantitis. A
summary of this literature is tabulated in Table 2.

Classical CNNs have been used to detect interproximal regions
for the presence of periodontal bone destruction in periapical
radiographs and have demonstrated testing accuracy of 0.74
(ResNet model) and 0.82 (Inception model), respectively. While
intra-oral radiography is standard of care for detection and
treatment planning for periodontitis and peri-implantitis, some
authors have explored panoramic dental radiographs for this
purpose and achieved promising results with ML techniques
(17). Krois et al. (46) implemented a custom CNN to detect
periodontitis on panoramic dental radiographs. While the
resulting CNN did not offer statistically superior performance
when compared to experts, authors concluded that their method
can still be used to ease clinician’s burden. Using this work
as a basis, a custom deep CNN was implemented to detect
periodontal bone loss in panoramic dental radiographs (47). In
this study, the authors employed a deeper CNN on an over
100 times larger dataset of panoramic radiographs, and expected
better performance than that achieved by Krois et al. (46). By
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TABLE 2 | Summary of recent literature that employed computational image analysis methods on dental radiographs for periodontitis and peri-implantitis.

References Objective Type of method Performance of method

Zhang et al. (15) Prediction of marginal bone loss (MBL) in the

mandible for peri-implantitis

ML An SVM predicted MBL with an accuracy of 0.97, while an artificial

neural network (ANN) predicted MBL with an accuracy of 0.93. The

Logistic Regression and Random Forest models predicted MBL with

an AUC of 0.91 and 0.84, respectively.

Cunha et al. (25) Dental implants and crestal bone segmentation Classical image

analysis

Method had a mean overestimation of 0.05 ± 0.33mm of bone loss

proximal to the implant.

Vigil and Bharathi

(27)

Classification of panoramic images as either

periodontitis or normal by periodontal pocket

depth

Classical image

analysis

The rule-based algorithm was able to predict periodontitis with an

accuracy of 92.8% on normal image and an accuracy of 96% on

images with periodontitis.

Huang et al. (30) Detection of alveolar bone-loss areas in

radiographs with periodontitis

ML and classical

image analysis

ABL-IfBm (Alveolar bone loss with Intensity and fractional Brownian

motions) model with both texture and intensity analysis outperforms the

models that use only intensity and texture with a true positive value of

0.98, and a false positive rate of 0.2.

Moran et al. (17) Detection of regions of periodontal damage

regardless of severity

Classical Image

analysis and DL

The ResNet model had an accuracy of 0.74 and the Inception model

had an accuracy of 0.82.

Krois et al. (46) Detection of periodontal bone loss on image

segments of panoramic radiographs

DL A custom CNN had a mean accuracy of 0.81 ± 0.02 while the

examiners had an accuracy of 0.76 ± 0.06. The CNN was not

statistically significantly superior to the examiners.

Kim et al. (47) Detection of periodontal bone loss on the

whole panoramic radiographs

DL CNN was able to achieve a greater accuracy (0.74) than the average

accuracy for clinicians of 0.69.

Chang et al. (48) Detection and quantification of the radiographic

bone loss in the jaws

DL The overall mean absolute difference between the automated system

and the radiologists was found to be 0.25. The stages classified by the

system were not significantly different from the radiologists. The overall

Pearson’s correlation coefficient was found to be 0.73 between

systems and radiologists. There was also high intraclass correlation

between experienced radiologist and the system.

Kabir et al. (49) Segmentation of bone and tooth regions from

the radiograph to detect and stage

periodontitis in radiographs

DL Segmentation performance for bone achieved a Dice Coefficient,

Jaccard Index, and Pixel Accuracy of 0.96, 0.93, and 0.96,

respectively. For segmenting teeth these measures were 0.95, 0.91,

and 0.89, respectively, and for segmenting CEJ, these measures were

0.92, 0.88, and 1. The model also had an accuracy of 0.96 for the

classification of periodontal bone loss. When the models staging was

compared against an experienced examiner, Cohen’s Kappa statistic

for agreement measure was found to be 0.7.

Cha et al. (50) Localization of implants, detection of anatomic

landmarks around implants, and finding

marginal bone loss ratio for classification of

bone loss in peri-implantitis

DL The average precision and recall of mandibular implant detection was

0.66 and 0.73, respectively. These values were 0.63 and 0.68 for the

maxillary implants. The keypoint detection or the important points for

segmentation showed no significant difference between the dentist and

the model with the dentist having a mean object keypoint similarity of

0.9 and the model having one of 0.89.

using transfer learning and prior clinical knowledge, this deeper
CNN was able to detect periodontal bone loss. The accuracy
in detecting periodontal bone loss was found to be 0.75 on
the test set while the average accuracy of the clinicians was
0.69 (47), demonstrating performance improvement that CNNs
can offer for detection of periodontal bone loss in panoramic
dental radiographs.

Information obtained from image analysis of dental
radiographs can contribute to improved computer aided
diagnosis (CAD). Chang et al. (48) developed a DL hybrid
method to automatically detect periodontal bone loss and stage
periodontitis. A CNN model was used to detect periodontal
bone loss on an individual tooth basis in a dental panoramic
radiograph and the CAD portion of the pipeline was used
to classify the amount of periodontal bone loss and stage it
according to the criteria developed in 2017 World Workshop
on the Classification of Periodontal and Peri-Implant Diseases

and Conditions (51). CADs could be particularly helpful when
there is a moderate level of inter-examiner consistency (52).
Chang et al. (48) showed that their CNN model was able
to detect periodontal bone levels in panoramic radiographs
with performance metrics of 0.92 (Jaccard Index), 0.93 (pixel
accuracy), and 0.88 (dice coefficient values). CEJ levels, and teeth
and implant structures were also detected with high accuracy.
Further, the difference between periodontal staging between the
experts (senior radiologist, fellow, resident) and the CNN was
measured using a mean absolute difference (MAD) calculation,
and the overall MAD between radiologists and the automated
pipeline was 0.25. While this study compared performance
between an experienced oral radiologist, oral radiology trainees,
and a CNN model, it should be noted that these differences may
be different in a clinical practice where dentists who are not
trained in oral radiology, but experts in their respective fields will
evaluate dental radiographs for diagnosis and treatment needs
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(52). Chang et al. (48) also found that the automatic method
was not significantly different from the radiologist’s diagnosis of
periodontitis in the maxilla and mandible, nor was it different
when taking the whole jaw into account. The correlation of
diagnosis between the automated method and experienced
radiologist was highest with a value of 0.76 (Pearson correlation)
and 0.86 (Intraclass correlation). This study showed a strong
correlation between human evaluators and the automated
method with an overall Pearson correlation of 0.73 and an
overall intraclass correlation of 0.91. The highest intraclass
correlation of 0.86 was noted between the automated method
and most experienced human evaluator. In summary, this study
demonstrated dental radiographic image analysis for detection
of periodontitis can be achieved at the level of an experienced
professional, and this information can be successfully integrated
in a CAD workflow. Similarly, Kabir et al. (49) have shown
that end-to-end CNNs (53) are able to classify the amount
of bone destruction in a periodontitis periapical radiograph
with a classification accuracy of 0.96. Studies mentioned above
demonstrate the potential of integrating ML models and image
analysis to detection and diagnosis of periodontitis.

Like periodontitis, use of DL and image analysis for detection
and diagnosis of peri-implantitis is developing. Recently, a CNN
model was used for detection and segmentation of bone, implant,
and teeth in periapical radiographs with peri-implantitis (50).
In this study, a deep CNN model was able to measure bone
resorption severity and bone loss percentage around dental
implants and the assessments provided by this CNN model
and clinicians were not found to be statistically significantly
different. Zhang et al. (15) used support vector machines, logistic
regression, artificial neural networks, and random forest models
to predict marginal bone loss more accurately than conventional
statistical methods that describe the trabecular bone structure
such as the structural model index or the trabecular bone pattern.
Using the quantifying metrics from the processed images, this
work correlates marginal bone loss as well as percent bone
volumes with smoking status, to understand the impact of other
covariates on severe bone loss as well as if the quantified image
metrics can predict marginal bone loss. Future studies will benefit
from contextualizing the image analysis operations with clinical
information and correlating digital and clinical markers for
risk prediction.

SUMMARY AND CONCLUSIONS

Modern advent in medical imaging and parallel progress in
computer hardware and progress in machine learning model
optimization have empowered us to use AI/ML in solving
important healthcare problems. Application of AI/ML in the
context of quantification of dental radiography and, ultimately,
the development of diagnostic tools for clinicians are emerging
problems in the literature.

Computationally assisted diagnosis and prognosis will become
part of standard dental practice in the near future. In this
review, we discussed the impact of computational image

analysis on one clinical problem in dentistry. With further and
rapid development in computational image analysis for dental
radiography, it is important to benchmark the performance of
the developed methods under a common framework. Thorough
benchmarking of image analysis algorithms will help these
methods to be eventually used in the clinic. The major barriers
in this regard are image data variability from one institute to
another, bias in training set, often varying conventions or types
of computational models used for development and sharing
results without following specific standards. All these aspects are
further amplified by varying levels of agreement in diagnostic
criteria by one clinician to another, and variation in ground-truth
annotations or labels. This gap in the literature is also applicable
to dental radiography, and requires careful standardization of
data, computational model, and results disbursed from the
computational models.

Further, toward the goal of potential clinical translation, once
the community is well-equipped with standardization methods
for summarizing data as well as computational models, it will
be important to benchmark the performance of newly developed
models under a set of standards. This direction requires
availability of a large, standardized database of dental radiographs
with appropriate quality control and quality assurance in place as
well as ground-truth of pertinent structures annotated by senior
experts. Developing such a database will standardize dental
radiography image data analysis for the benefit of our patients
and clinicians alike.

To conclude, dental radiography image analysis using AI/ML
tools is an emerging area. This review sheds light along this
direction using periodontitis and peri-implantitis as vehicles.
The review discusses challenges involved in morphometric
assessment while discussing associated morphometry for clinical
assessment and addressing the use of classical image analysis tools
to tackle the associated radiographic images. Lastly the review
provides a discussion of the methods to evaluate the statistical
performance of resulting algorithms and an overview of the
current literature utilizing AI/ML tools in dental radiography
image analysis. We further discuss the need of data and model
standardization as well as availability of large, standardized
database for downstream provenance and benchmarking of the
developed tools for eventual clinical translation.
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GLOSSARY

1. Computer aided diagnosis (CAD): A computer system
that helps doctors to make quick decisions when analyzing
medical images; 2. Grayscale: Converts a RGB channel into
a single channel; 3. Classical Image Analysis: Processing an
image through different intensity transformations, filters, and
morphological operations; 4. Convolution: Operation between
two functions that produces another third function that
demonstrates how one function affects the other; 5. Filtering:
An image processing technique to modify or enhance an
image; 6. Gaussian High Pass Filter: A filtering method that
blurs image and removes details and noise below a cut-
off threshold; 7. Adaptive Histogram Equalization: An image
processing technique that improves contrast in an image by
splitting the image into multiple sections for development
of a histogram for each section resulting in control of the
local contrast for each section; 8. Contrast Limited Adaptive
Histogram Equalization: An image processing technique that is a
variant of adaptive histogram equalization. This technique limits
the contrast amplification so that the noise would also be reduced;
9. Image Contrast Enhancement: Process to make portions of
the image stand out more by adjusting the colors in the display;
10. Intensity Transformation: Mapping each pixel value of an
input into an output value using a mathematical transformation;
11. Entropy: A measurement of the randomness in an image
that could be used to define texture; 12. Binarization: Converting
pixels of an image into either the foreground or background using
some form of thresholding; 13. Morphological Processing: Broad
set of image processing techniques that process images based
on shapes; 14. Erosion: A morphological operation to remove
pixels around an object boundary; 15. Dilation: A morphological
operation to add pixels around an object boundary; 16. Closing:
A combination of dilation and then erosion to close small holes
in the foreground of the image; 17. Opening: A combination
of erosion and dilation to remove noise from an image;
18. Segmentation: Separation of an image into multiple sections;
19. Thresholding: A Foundational segmentation method where
each pixel value is compared against a value to determine if
that pixel is in the foreground or background; 20. Histogram
Thresholding: A simple thresholding technique to optimize
classification of the histogram with a goal to segment an image
in foreground and background; 21. Otsu Thresholding: Develops
a thresholding value to separate the pixels into two classes by
minimizing the intra-class variance; 22. Machine Learning (ML):
A branch of AI which focuses on developing methods that can
learn through experience and data to improve performance,

without explicit direction; Support Vector Machines (SVM):
Supervised learning models designed for data analysis by
classification and regression. SVM constructs hyperplane(s) that
causes most separation between classes, i.e., a hyperplane with
largest distance to the nearest training data point in that class;
23. Naive Bayes (NB): AML algorithm for classification problems
by assuming that each feature is conditionally independent of
one another; 24. Random Forest (RF): An ML algorithm that
uses multiple decision trees for classification and regression.
The final classification is done using majority voting, while in
regression it averages all the decision trees together; 25. Artificial
Neural Network (ANN): Systems consisting of many connected
units called nodes, and each connection transmits information
after some nonlinear transformation to another node; 26. Deep
Learning (DL): Part of the Machine Learning family that uses
multiple layers to extract and learn features from data. In some
cases, it can exceed human performance; 27. Convolutional
Neural Network (CNN): Class of Deep Learning models most
used to analyze images; 28. Inception: A neural network that was
introduced during the ImageNet Recognition Challenge ResNet:
An ANN whose architecture allows it to skip over some layers
to reduce training error; 29. End-to-End CNN: A single unified
CNN architecture that takes an input and produces an output;
30. Transfer Learning: Applying the knowledge gained from
solving one problem and applying to a related problem; 31. Dice
Coefficient: A statistic used to determine how similar two samples
are to each other; 32. Pixel Accuracy: The percent of pixels that
are classified as the correct class; 33. F1 score: The harmonic
mean between the precision and recall; 34. Jaccard Index: A
statistic that measures the similarity between sample data sets;
35. Intraclass Correlation: A statistic that determines how objects
in a group are related to one another; 36. Pearson’s Correlation
Coefficient: The linear correlation between two different datasets;
37. Mean absolute difference (MAD): A measure of the dataset
spread which is equal to the absolute difference between
two independent values; 38. Analysis of variance (ANOVA):
A collection of statistical models and estimation procedures
to determine the difference between different group means;
39. Cohen’s kappa: A statistic that is used to measure agreement
between observers for categorical values; 40. Logistic Regression
(LR): An ML model used to model the probability of a certain
event occurring, either yes/no; 41. p-value: The probability that
an event will occur under the default hypothesis; 42. Chi-squared
test: A test applied to contingency tables to assess statistical
significance between row and column variables; 43. aximum
likelihood estimation: A method to obtain parameter estimates
based on maximizing the likelihood function.
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