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Sex-specific differences in primary
Sjögren’s disease
Achamaporn Punnanitinont and Jill M. Kramer*

Department of Oral Biology, School of Dental Medicine, The University at Buffalo,
State University of New York, Buffalo, NY, United States

Many autoimmune diseases show a striking female sex predilection, including
primary Sjögren’s disease (pSD). Patients with pSD display exocrine gland
pathology, such as salivary hypofunction and salivary and lacrimal gland
inflammation. Moreover, many serious systemic disease manifestations are
well-documented, including interstitial nephritis, hypergammaglobulinemia and
neuropathies. Of note, women and men with pSD display distinct clinical
phenotypes. While the underlying reasons for these clinical observations were
poorly understood for many years, recent studies provide mechanistic insights
into the specific regulatory landscapes that mediate female susceptibility to
autoimmunity. We will review factors that contribute to the female sex bias, with
an emphasis on those that are most relevant to pSD pathogenesis. Specifically,
we will focus on sex hormones in disease, genetic alterations that likely
contribute to the significant disease prevalence in females, and studies that
provide evidence for the role of the gut microbiota in disease. Lastly, we will
discuss therapeutics that are in clinical trials for pSD that may be particularly
efficacious in targeting signaling networks that mediate inflammation in a
sex-specific manner.
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1. Introduction

Autoimmune diseases consist of more than 70 chronic disorders, which affect

approximately 5% of the US population (1). Many autoimmune diseases preferentially

affect females, and the most striking sex differences are observed in Sjögren’s disease

(pSD), also referred to as Sjögren’s syndrome), systemic lupus erythematosus (SLE),

autoimmune thyroid disease and scleroderma, which represent a spectrum of diseases in

which the patient population is at least 80% women (1). Our understanding of the

molecular basis underlying this sexual dimorphism is becoming increasingly sophisticated,

and this review will discuss the current knowledge with a focus on sex-specific molecular

mechanisms that are particularly relevant to pSD pathogenesis.

SD occurs in 2 forms: primary (pSD) and secondary (sSD). In pSD, SD is the only

autoimmune disease present. In contrast, sSD is observed in conjunction with another

autoimmune connective tissue disease (2). This review will focus on the primary form of

the disease, as pSD shares overlapping features with other autoimmune diseases, and it is

often difficult to determine which disease manifestations are caused solely by SD in sSD

studies (3). The estimated prevalence of pSD is 0.3–1.0 per 1,000 persons (4). Worldwide,

the estimated prevalence of pSD ranges between 0.01 and 0.72% (5). Primary SD exhibits

a striking female predilection. Indeed, a recent clinical study estimated that the age- and

sex-adjusted prevalence of pSD in the US was 16.3 per 10,000 in women and 3.1 per

10,000 in men (6).
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The current classification criteria for pSD were validated jointly

by the American College of Rheumatology and the European

League against Rheumatism (7). These criteria include the

assessment of anti-Ro/SSA autoantibodies, focal lymphocytic

sialadenitis (FLS), and evaluation of salivary and ocular function

(7). Each of these manifestations is scored and the presence of

anti-Ro/SSA antibodies and FLS are weighted most heavily (7).

In addition to these disease manifestations, patients may also

experience interstitial lung disease and nephritis (8). Moreover,

pSD patients display systemic hematopoietic abnormalities

including hypergammaglobulinemia and hypocomplementemia,

and patients are at increased risk of developing B cell lymphoma

(2, 9, 10). Dryness of the mouth and eyes, fatigue and joint pain

are common symptoms found in greater than 80% of patients

with pSD, and these disease manifestations have a debilitating

effect on the patient’s quality of life (8). In addition to the

significant morbidity associated with the disease, pSD patients

also showed increased risk of mortality. A recent meta-analysis

that included 14 studies with 14,584 pSD patients reported a

total of 902 deaths (11). Compared to the general population,

pSD patients had a 1.46-fold increased risk of death (11). Several

factors contributed to the increased risk of mortality, including

male sex, older age, hypocomplementemia, and interstitial lung

disease (11).

Despite the significant morbidity and mortality associated with

pSD, the underlying disease mechanisms that govern pSD remain

poorly understood and the signaling networks that control sex-

specific disease manifestations are not fully elucidated. This

review will provide an overview of etiologic factors that likely

contribute to the female sex bias in pSD. Herein, we will briefly

summarize clinical data from pSD patients that highlight

differences in disease presentation between males and females.

Next, we will investigate evidence showing the role of sex

hormones in pSD and examine findings detailing sex-specific

genetic alterations that may contribute to pSD. We will then

discuss how microbiota may mediate pSD. Lastly, we will discuss

emerging therapeutics that may be tailored to pSD patients in a

sex-dependent manner. This topic carries important clinical

relevance, as it is crucial to decipher the networks that mediate

pSD to identify treatment strategies that are relevant to patient sex.
2. Male and female pSD patients
display distinct disease manifestations

For reasons that remain incompletely understood, males and

females with pSD tend to display distinct disease manifestations

(12). In a recent clinical study that identified comorbidities of

pSD patients according to age and sex, female pSD patients had

an increased risk of developing numerous conditions, such as

fibromyalgia, migraines, hypermobile syndromes, Ehlers-Danlos

syndrome and CREST syndrome, while men with pSD were at

an increased risk of developing cerebrovascular accidents and

cardiac pathologies such as myocardial infarction, atherosclerosis,

and congestive heart failure (12). It is important to note that this

study did not compare pSD patient data to that from healthy
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control subjects, and thus it is unclear whether these

comorbidities are associated solely with patient sex, or whether

they are related specifically to pSD. Further studies to determine

whether these comorbidities are increased in pSD patients in a

sex-specific manner will be insightful.

Although men tend to develop autoimmune diseases less

commonly than women, men often exhibit more severe disease

outcomes. In a separate study that included 967 patients with

pSD (899 females and 68 males), men with pSD were more

frequently diagnosed with interstitial lung disease,

lymphadenopathy and lymphoma, while hypothyroidism was

more common among females with pSD (13). Similarly, a

corroborative study in which medical records of 353 female and

33 male pSD patients were reviewed retrospectively found that

pulmonary complications and lymphoma were seen more

frequently in males, while females had a higher prevalence of

autoimmune thyroid diseases (14).

While sex-specific clinical manifestations tend to be consistent

between studies, disparate serological findings are reported. Indeed,

while one study reported higher anti-Ro/SSA antibodies in female

pSD patients (13), another revealed that males displayed positivity

for anti-Ro/SSA, anti-La/SSB and anti-nuclear autoantibodies

(ANAs) more frequently than women (14). Such disparities may

be explained by the low male prevalence in patient cohorts or

by the different methods used to detect serum autoantibodies, as

one group used double immunodiffusion while the other

employed ELISAs (15). A comprehensive review of the clinical

differences between males and females with pSD was recently

published and provides an excellent overview of the topic (12).
3. Estrogen mediates a protective
effect in exocrine tissue in pSD

Since women are primarily affected by pSD, there has been

considerable interest in understanding the role of estrogen and

estrogen precursors in disease and several studies have been

performed in mouse models to establish a role for sex hormones

in pSD. Indeed, healthy ovariectomized C57BL/6 mice exhibited

an exocrinopathy with autoimmune characteristics resembling

pSD, including lymphocytic infiltration of salivary and lacrimal

glands, and anti-Ro/SSA, anti-La/SSB, and anti-α-fodrin

autoantibodies (16). Additional elegant work revealed that

estrogen deficiency in mice induced the expression of the

retinoblastoma-associated protein 48 (RbAp48) in exocrine

glands (17). Transgenic (Tg) expression of RbAp48 in the

exocrine glands caused estrogen-dependent apoptosis (17).

Specifically, overexpression of RbAp48 induced p53-mediated

apoptosis in both salivary and lacrimal tissue of mice lacking

estrogen, while inhibition of RbAp48 expression inhibited this

apoptosis (17).

In a corroborative study, Tg mice overexpressing RbAp48

under the control of exocrine-specific parotid secretory protein

promoter exhibited SD-like exocrinopathy characterized by an

increase in apoptosis. In addition, lacrimal and salivary gland

epithelial cells produced heightened IFNγ and IL-18 in this
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model (18, 19). Furthermore, salivary gland epithelial cells (SGECs)

derived from RbAp48-Tg mice expressed elevated levels of MHC

class II and the costimulatory molecules CD86, CD80, and

ICAM-1 (18). Importantly, studies in human salivary cells found

that both estrogen receptor α (ERα) and ERβ were expressed and

functional (20). Accordingly, treatment of SGECs with estrogen

resulted in decreased IFNγ-inducible expression of ICAM-1 (20).

These data demonstrate that estrogen protects against exocrine

gland apoptosis, and diminished estrogen promotes a

pro-inflammatory phenotype in salivary tissue.

Corroborative work in the aromatase knockout (ArKO) mouse

model also supports a protective role for estrogen in exocrine

tissue. Aromatase is an enzyme that converts androgens to

estrogens, and thus ArKO mice are deficient in estrogen (21).

ArKO mice developed a lymphoproliferative autoimmune disease

resembling SD (21, 22), as histological analyses showed

inflammatory infiltrates in the lacrimal and salivary glands of

ArKO mice that increased with age (21). Administration of an

aromatase inhibitor resulted in enhanced lymphocytic infiltration

in both salivary and lacrimal tissue derived from the NFS/sld

mouse model of SD (21). These data provide further evidence for

the protective role of estrogen in the attenuation of immune

activation in exocrine tissue.

The role of estrogen in pSD has also been assessed in female

patients. A recent case-control study of 1,320 pSD patients and

1,360 sicca controls examined estrogen exposure and disease risk

(23). In contrast to murine findings, this study found that greater

lifetime estrogen exposure is not necessarily protective against

disease. Indeed, composite estrogen scores of pSD patients, which

was a score assigned based on estimated lifetime estrogen

exposure, did not correlate with unstimulated whole saliva

production, Schirmer’s test scores, or salivary focus scores (23).

The authors also analyzed cumulative menstrual cycling (CMC)

as a separate surrogate marker of estrogen exposure, which

was calculated as years menstruating minus time pregnant. A

higher CMC score was associated with greater unstimulated

whole salivary production, although ocular staining score,

hypergammaglobulinemia, and salivary focus score were inversely

associated with CMC score in pSD patients (23). Thus, the data

remain somewhat inconclusive as to whether estrogen exposure is

protective or pathogenic in pSD patients, and additional

longitudinal studies are needed to demonstrate this conclusively.
4. Altered expression of
X-chromosome genes likely
contributes to pSD

Although the underlying mechanisms that mediate the female

sex predilection in autoimmunity are not completely understood, it

is clear that altered expression of X chromosome alleles has a

significant impact on disease susceptibility (24). Indeed, males

with increased X chromosome copy number are more susceptible

to autoimmune disease, as male patients with Klinefelter’s

syndrome (47, XXY) have a 38-fold increase in the incidence of

pSD as compared to healthy men (25). Further evidence of the
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role of the X chromosome in autoimmunity is provided by one

study reporting a 16-year-old Japanese patient with trisomy X

(47, XXX) who developed mixed connective tissue disease and

SD (26). In addition, a separate study found trisomy X women

have a 2.9-fold higher risk of developing pSD as compared to

females lacking the trisomy phenotype (46, XX) (27). These

studies demonstrate the pathogenic potential of overexpression of

X chromosome-related genes in pSD.

Of direct relevance to these observations, X chromosome

inactivation (XCI) is the primary regulatory mechanism of

X-linked gene dosage compensation between males and females.

In XCI, one of the X chromosomes in female cells is

transcriptionally silenced by epigenetic mechanisms in a

stochastic manner, leading to allele-specific enrichment of

epigenetic modifications on the inactive X (Xi). XCI ensures that

X-linked genes are expressed at similar levels between females

and males (28). In theory, this dosage compensation is stably

maintained with each cell division in all female somatic cells

(29). It is important to note that many genes associated with

immunity are expressed on the X chromosome, including TLR7,

TLR8, BTK, and CD40 ligand (CD40LG).

While this mechanism is generally effective at maintaining

equivalent expression of X chromosome genes between the sexes,

it is estimated that approximately 20% of X-linked human genes

escape XCI (30). This inefficiency results in leaky expression of

some X-linked genes from the Xi known as XCI escape, and this

has important implications for autoimmune diseases, particularly

those that display a female predilection. XCI is mediated by the

long non-coding RNA termed XIST. It was initially thought that

XIST established XCI early in development and then was no

longer required to regulate gene expression in the female cells.

Recent elegant work, however, established that XIST is crucial in

maintaining XCI continually for specific X-linked genes in

human B cells, including TLR7 (31).

This has important implications for autoimmunity, as XCI

maintenance is altered in both B and T cells of SLE patients and

mice, and X-linked genes are upregulated in adaptive immune

cells from SLE patients as compared to healthy controls (28, 32).

While XCI escape has not been identified in pSD patients thus

far to our knowledge, these studies suggest that altered

expression of particular X-linked genes could contribute to

increased disease prevalence observed in females with pSD.

Indeed, numerous genes that reside on the X chromosome are

implicated in pSD, and differential expression and methylation of

genes associated with immune activation are reported both in

salivary tissue and peripheral blood cells in pSD patients (33).

An overview of studies related to the expression and function of

these genes is provided below:

TLR7: TLR7 is an endosomal TLR that is encoded on the

X chromosome. An extensive body of literature demonstrates that

TLR7 activation is pathogenic in the context of lupus (34–36),

and emerging studies indicate that TLR7 may also mediate

pathology in pSD. TLR7 is increased and functional in salivary

tissue and in peripheral blood cells of pSD patients (37–41) and

data suggest B cells and monocytes are hyper-responsive to TLR7

agonism in pSD (42–45). Indeed, TLR7 stimulation of B cells
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from pSD patients resulted in enhanced plasma cell differentiation

and elevated IFNα secretion (42, 44).

Data from mouse models also provide corroborating evidence

that TLR7 agonism mediates organ-specific disease (46–48).

Studies in TLR8−/− animals revealed that these mice develop

lupus and SD concomitantly, as sialadenitis, autoantibody

production, glomerulonephritis, and lung inflammation were

observed (46, 49). These disease manifestations were dependent

on TLR7, as disease was abrogated in mice lacking both TLR7

and TLR8 (46, 49). Further work in the NOD/ShiLtJ model

revealed that TLR7 is required for lacrimal gland inflammation

that is characteristic of SD (47). Finally, corroborative work by

our group revealed that TLR7 agonism accelerates both local and

systemic disease in a mouse model of pSD and drives the

expansion of a subset of B cells that are pathogenic in the

context of lupus, termed age-associated B cells or ABCs (50).

Alterations in TLR7 expression and function are observed even in

healthy 46, XX women (51). Indeed, TLR7 escapes XCI and is

overexpressed in plasmacytoid DCs (pDCs), monocytes and B cells

from women and biallelic expression of TLR7 was observed in the

majority of donors tested (51). Moreover, B cells that showed

biallelic expression of TLR7 showed a 2-fold greater likelihood of

undergoing class switching as compared to monoallelic B cells (51).

Thus, expression of TLR7 from both alleles could result in enhanced

plasma cell differentiation. These findings are relevant to pSD, as B

cells derived from pSD patients are hyper-responsive to TLR7

ligation and pSD patients often display hypergammaglobulinemia

and high autoantibody titers (9, 10, 42, 44). Additionally, TLR7
TABLE 1 Evidence for TLR7 dysregulation in SD mouse models and patients.

Murine model
TLR7−/−, TLR8−/− on C57BL/6
background

Systemic ablation of Tlr7 in a mouse model of lu

TLR7−/− NOD/ShiLtJ Systemic ablation of Tlr7 diminished lacrimal gla

NOD.B10Sn-H2b Treatment of female pSD mice accelerated local a

B6J.NOD/ShiLtJ-Aec1Aec2 TLR7 signaling was implicated in defective effero

Human tissue
Minor salivary glands SD female patients (n = 40) had elevated TLR7 ex

Salivary ducts, B cells, plasma cells and pDCs exp

TLR7 was expressed in lymphocytic infiltrates in

Parotid glands TLR7 was expressed in salivary ducts and infiltrat
salivary ducts in healthy control (HC) tissue (n =

PBMCs TLR7 signaling pathways were dysregulated in fem

Cultured PBMCs from female pSD patients secre

TLR7 expression was increased in PBMCs from pS

PBMCs from pSD patients (n = 18 female/2 male

B cells Treatment of naïve B cells from female pSS patien
cell differentiation as compared to HCs (n = 18)

TLR7 agonism increased IFNα secretion in B cell

TLR7 was increased in CD19+ B cells from Ro-po
matched HCs (n = 20)

pDCs TLR7 was upregulated in IFN-positive pDCs from
HCs (n = 7)

CD14+ monocytes TLR7 was upregulated in IFN-positive monocytes
and HCs (n = 41)

Monocytic DCs Monocytic DCs from pSD patients (n = 8) mature
those derived from HCs (n = 8)
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expression was increased in CD19+ peripheral B cells derived from

pSD female patients as compared to sex-matched healthy controls

(52). Altogether, these studies suggest TLR7 likely contributes to the

female disease predilection observed, although further studies are

needed to establish whether high expression of TLR7 in immune

cells mediates disease in the context of pSD.

In a corroborative study, XIST was found to be dysregulated in

female patients with SLE, and this led to the XCI escape of TLR7

(31). Additionally, TLR7 agonism resulted in the inactivation of

XIST and promoted the expansion of ABCs (31). Of note, B cells

with features of ABCs are documented in pSD patients as well,

although XIST inactivation of the TLR7 locus has not been

reported in pSD patients or models to date (53, 54). Altogether,

these data suggest that TLR7 dysregulation mediates pSD

pathogenesis, and this may account, at least in part, for the striking

female disease predilection observed. Table 1 provides a summary

of studies that indicate altered expression and/or function of TLR7

in pSD mouse models and patients (37, 39–42, 44–48, 50, 52, 55).

CXorf21: Chromosome X open reading frame 21 (CXorf21)

(also called TASL) is a risk allele for both SLE and pSD (56).

CXorf21 is expressed by pDCs, B cells, and CD14+ and CD16+

monocytes (57, 58). CXorf21 serves as a cytosolic adapter

molecule for TLR7, and its activation culminates in the

production of IFNα (56). To test the function of CXorf21 in

female and male immune cells, knockdown of CXorf21 was

performed in primary human heathy monocytes. TLR7

stimulation of female monocytes induced CXorf21 expression,

and knockdown of CXorf21 abrogated this increase (58). In
Summary of results Ref

pus ameliorated SD-like disease manifestations in females (46)

nd inflammation in males (47)

nd systemic disease and promoted the expansion of ABCs (50)

cytosis in bone marrow-derived macrophages derived from pSD mice (48)

pression as compared to non-SD controls (n = 11) (46)

ressed TLR7 in female pSD patients (n = 10) (41)

pSD patient biopsies (40)

ing lymphocytes in pSD tissue (n = 17 female/3 male). TLR7 was expressed in
8 female/ 2 male)

(37)

ale pSD patients (n = 25) as compared to HCs (n = 25) (45)

ted IFNα in response to IFNβ treatment (n = 6) (41)

D patients (n = 36 female/ 1 male) as compared to HCs (n = 23 female/ 1 male) (37)

) had elevated TLR7 expression as compared to female HCs (n = 20) (39)

ts (n = 14) with a TLR7 agonist results in increased class switching and plasma (44)

s derived from female pSD patients (n = 21) as compared to HCs (n = 18) (42)

sitive female pSD patients (n = 12) as compared to sex-, age-, and ethnicity- (52)

pSD patients (n = 9) as compared to IFN-negative pSD patients (n = 7) and (40)

from pSD patients (n = 50) as compared to IFN-negative pSD patients (n = 50) (40)

d for 48 h with TLR7/8 ligand CL097 expressed significantly less Stat1 than (55)
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contrast, expression of CXorf21 in male monocytes was negligible,

and there was no change in relative expression of CXorf21

following knockdown and subsequent TLR7 stimulation (58).

Moreover, in healthy female monocytes in which knockdown of

CXorf21 was carried out, TLR7 stimulation resulted in a 7-fold

decrease in IFNA1 compared with sham-treated control cells

(58). Finally, studies in lymphoblastoid cell lines (LCLs) derived

from SLE patients revealed expression of CXorf21 was increased

in 47,XXX/46,XX women and 47,XXY/46,XY men compared to

LCLs derived from healthy males (58).

Additional studies by the same group revealed that CXorf21

escapes XCI and is therefore expressed at higher levels in healthy

human female cells as compared to those derived from males,

and female monocytes had a more acidic lysosomal pH as

compared to males (56). This is significant because TLR7 is

cleaved to its active form by a mechanism that is initiated by a

low endosomal pH (59). This decreased pH may be of clinical

significance because this alteration could contribute to the hyper-

responsive endolysosomal-dependent immune response that is

seen in females as compared to males (56), and this could

contribute to the heightened TLR7 and IFN responses that are

observed in women, although further studies are needed to

establish whether this mechanism contributes to enhanced

immune activation in female pSD patients.

BTK: BTK is expressed on the X chromosome and is also

implicated in pSD, although no studies, to our knowledge, have

demonstrated that BTK escapes XCI. BTK is activated upon

B cell receptor stimulation and thus plays a crucial role in B cell

activation and development (60). BTK expression was increased

in circulating B cells from pSD patients with high serum

autoantibodies and this correlated with T cell infiltration in

parotid tissue (61). Overexpression of BTK in B cells specifically

drives disease that is reminiscent of both SLE and pSD in mice

(62, 63). Finally, BTK was identified as a key driver gene in

salivary tissue from pSD patients (64).

CXCR3: CXCR3 is a chemokine receptor that binds CXCL9 and

CXCL10. CXCR3 is expressed by activated CD4+ and CD8+ T cells,

and functions to promote recruitment of Th1 cells in an immune

response (65). CXCR3 exhibits XCI, as T cells derived from female

SLE patients show elevated expression of CXCR3 as compared to

those from males (66). In pSD patients, elevated levels of CXCL9

and CXCL10 are observed in salivary tissue, and infiltrating

CXCR3+ T cells correlate with levels of these chemokines (67).

Moreover, CXCR3 is expressed constitutively by salivary epithelial

cells derived from both pSD patients and non-SD controls,

although it is functionally impaired in tissue derived from pSD

patients (68). CXCR3 expression was also increased in the

conjunctiva of patients with pSD as compared to controls (69).

CD40LG: CD40LG encodes CD40L, an activation marker that

is expressed by T cells. CD40L engages CD40 on B cells and

other antigen-presenting cells, and this interaction is required for

germinal center formation (70). There is considerable evidence

that CD40-CD40L interactions are enhanced in pSD. Recent

transcriptome analyses of salivary gland tissue derived from

patients with pSD revealed a CD40 signaling gene signature that

was enriched in B cells (71). Moreover, CD40L expression was
Frontiers in Dental Medicine 05
increased on activated CD4+ T cells in patients with pSD and

sera derived from pSD patients exhibited elevated levels of

soluble CD40L as compared to that from healthy controls (72,

73). Of relevance to pSD, CD40LG was demethylated in T cells

derived from female SLE patients, and this correlated with

enhanced CD40LG expression in T cells derived from females

with lupus as compared to males with the disease (74). While

this heightened expression of CD40LG likely contributes to

immune activation in SLE and pSD, the functional consequences

of this have yet to be established.

In addition to genes encoded by the X chromosome, several

genes that show sex-biased expression are implicated in pSD

pathogenesis. One such gene is Vestigial-like family member 3

(VGLL3), a cofactor of the TEA-domain containing transcription

factor (TEAD) that contributes to diverse inflammatory processes

such as autoimmunity (75). While VGLL3 is not located on the

X chromosome, this gene is expressed at higher levels in women

in both the skin and parotid gland (76). Complement genes are

integral to immune function and C4A and C4B display sexual

dimorphism (77). Alleles that increase gene dosage of C4A

strongly protect against SLE and pSD. Effects of C4 alleles are

stronger in men with SLE as compared to female SLE patients,

although similar analyses performed in patients with pSD had

limited power due to the small numbers of male pSD patient

samples available (77). Additional genes display sexual

dimorphism in murine salivary tissue in pSD that could

contribute to disease, such as those that encode IL-17 and

Kallekrein protease family members (78, 79).

A separate study that examined primary B cells from males and

females reported that CXCR5 is a pSD-associated SNP that

displayed differential eQTL effects in women as compared to

men (80). Dysregulation of CXCR5 is well-established in pSD, as

CXCR5 expression was increased in lymphocytes within salivary

tissue but decreased on peripheral B and T cells (81).

Additionally, IRF5 is expressed in a sex-biased manner, as IRF5

gene expression was upregulated in splenic tissue derived from

both healthy and lupus-prone females as compared to strain-

matched males (82). Of relevance to pSD, polymorphisms in

IRF5 are associated with pSD (83, 84) and TLR7 activation of

IRF5 mediates the production of type I IFNs (85). Finally, recent

data demonstrate that G protein receptor 78 (GPR78) is elevated

in minor salivary gland tissue from male pSD patients as

compared to females with pSD and male healthy controls (86).

Interestingly, a mouse model that overexpressed GPR78 displayed

salivary hypofunction and enhanced epithelial apoptosis, and

these findings were observed in males but not females (87).

Figure 1 contains a summary of genes dysregulated in pSD that

are related to the female sex bias observed and a summary of

genes implicated in human SLE and pSD is provided in Table 2.
5. Estrogen governs expression of
genes implicated in autoimmunity

Recent work highlights the complex regulatory network that

exists between estrogen and immune-related genes, including
frontiersin.org
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FIGURE 1

Genes dysregulated in pSD pathogenesis are differentially expressed in a sex-specific manner. Both peripheral (gray circle) and exocrine tissue (purple
circle) show alterations in sexually dimorphic genes in pSD. Red text indicates genes that are expressed on the X chromosome.
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those expressed on the X chromosome. Indeed, elegant studies in a

humanized mouse model revealed that TLR7 responses are

enhanced in female pDCs as compared to those derived from

males (87). Moreover, treatment of post-menopausal women with

17β-estradiol, the main estrogenic hormone, resulted in elevated

IFNα secretion by pDCs in a TLR7-dependent manner (87).

When ERα was ablated in the DC lineage, this population was

rendered unresponsive to TLR7-dependent Type I IFN

production (87). Additionally, estrogen stimulation of CD11b+

monocytes derived from C57BL/6 female mice culminated in the

enhanced expression of Unc93b1, a molecular chaperone required

for TLR7 activity (97) and splenocytes from lupus-prone female

mice expressed higher levels of Unc93b1 as compared to C57BL/

6 controls (98).

Moreover, splenocytes derived from ERα-deficient mice

expressed decreased Irf5 when compared to those from

ERα-sufficient controls, and treatment of splenocytes with

17β-estradiol resulted in increased Irf5 levels (82). In addition,

mice lacking expression of ERα in either the DC or

hematopoietic compartment showed reduced frequency of Type

I IFN–producing pDCs following TLR7 stimulation (99). Finally,

studies in humans demonstrate levels of IRF5 and ERα correlate

in pDCs derived from females but this association is not

observed in male pDCs (99). It is important to point out that

studies in the peripheral blood suggest that estrogen is pro-

inflammatory, while studies in salivary tissue indicate a protective

role for this hormone in the context of pSD, and epidemiologic

data from pSD patients is somewhat inclusive at present (vide

supra). This dichotomous role of estrogen highlights the complex

influence of sex hormones in autoimmunity and suggests both

pro-inflammatory and protective effects of sex hormones,

depending on the cell type and specific microenvironment.
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Collectively, these data establish mechanisms whereby estrogen

exerts potent effects on the expression of genes that are

dysregulated in autoimmunity in a sex-dependent manner.
6. Sex-specific differences in
microbiota may contribute to pSD

While still an emerging area of study, there are several lines of

evidence that suggest sex steroids drive distinct differences in the

composition of the intestinal microbiome and this has significant

implications for health and disease. In both men and women,

levels of sex hormones correlate with microbial diversity, and

those with the highest levels of hormones show the greatest

diversity (100). Significant differences are reported in the

composition of the gut microbiome between pre- and post-

menopausal women, as pre-menopausal women had increased

levels of Bacteroidetes and Firmicutes species, which was

reminiscent of the male microbiota (101). It is important to

point out that while the human microbiome is shaped by

biological sex and sex steroids, there is considerable variability

among studies and the underlying mechanisms governing

intestinal dysbiosis in this context remain incompletely

understood (101).

While factors that shape the human microbiota are complex,

seminal studies established an important sex-specific role for the

microbiome in the autoimmune pathogenesis in mice (102, 103).

Indeed, these studies revealed that microbial exposure early in

life governs sex hormone levels and modifies disease progression

in a mouse model of type I diabetes (T1D). Strikingly, when

male mice of this strain were colonized with commensal

microbiota, serum testosterone was elevated and the animals
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TABLE 2 A comparison of genes with sex-biased expression in SLE and pSD.

Gene Human disease association Refs

SLE pSD

X-linked
TLR7 • Increased in immune cells

from females with SLE
compared to males with
SLE and HC females

• TLR7 polymorphisms
associated with SLE

• Increased in immune
cells and salivary tissue
from pSD patients
compared to healthy
controls (HCs)

Table 1
(31, 88–
90)

TLR8 • TLR8 polymorphisms are
associated with SLE

• Increased in CD19+ B
cells from Ro-positive
pSD females compared to
female HCs

(52, 88,
90)

CXorf21 • Risk allele for SLE
• Elevated in immune cells
from female and male SLE
patients compared to sex-
match HCs

• Risk allele for pSD (56, 57)

BTK • Elevated in PBMCs from
SLE patients compared with
HCs

• BTK+ B cells elevated in
SLE patients with lupus
nephritis (LN) compared to
LN-negative SLE patients

• Increased in B cells from
pSD patients compared to
HCs

(61, 91,
92)

CXCR3 • Increased in female SLE T
cells compared to those
from males with SLE

• Increased in conjunctiva
of pSD patients compared
to HCs

(66, 69)

CD40LG • Increased in female SLE T
cells compared to those
from males with SLE

• Increased in activated
CD4+ T cells from female
pSD patients compared to
HCs

(72, 74)

Sex-biased expression, non-X-linked
VGLL3 • Increased and localized to

the nucleus in skin of HC
females and SLE patients of
both sexes

• Increased in parotid
tissue from pSD patients
compared to HCs

(76)

C4A,
C4B

• Alleles that increase gene
dosage of C4A strongly
protect against SLE

• Effects of C4 alleles are
stronger in men with SLE

• Alleles that increase gene
dosage of C4A strongly
protect against pSD

(77, 93)

CXCR5 • Expression is increased in
CD4+ T cells from female
SLE patients compared to
sex-matched HCs

• Risk allele for pSD
• Differentially regulated in
pSD females compared to
males with pSD

(80, 83,
94, 95)

IRF5 • Risk allele for SLE • Risk allele for pSD (83, 95,
96)

GPR78 • Not reported • Elevated in minor
salivary gland tissue from
pSD male patients
compared to female pSD
patients and male HCs

(86)
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were protected from disease. When the microbiota from male mice

was transferred to females of the same strain, the female recipients

showed high testosterone levels and were protected from T1D
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(102). Transfer of specific species that comprise the microbiome

can modulate disease in mice and humans. Indeed, corroborative

work found that transfer of the intestinal bacteria Blautia

(Ruminococcus) gnavus from SLE patients induced intestinal

permeability that was enhanced in female recipient mice as

compared to males. These recipient animals developed some

features of SLE, such as anti-DNA autoantibodies (104). Of note,

this effect was specifically related to patients with SLE, as transfer

of the same bacteria derived from healthy donors did not induce

this pathology (104). Additional work found that Lactobacillus

strains protected against renal damage in the lupus-prone mouse

model, MRL/lpr. Treatment of MRL/lpr mice with 5 strains of

Lactobacillus resulted in reduced intestinal permeability and

diminished IgG2a production, the antibody class that comprises

most of the immune deposits observed in glomerulonephritis

(105). Moreover, levels of IL-10 were increased, indicating a

protective effect of these bacteria (105). Finally, these effects were

sex-specific, as they were only observed in females and castrated

males (105).

Additional mechanistic studies have uncovered a role for TLR7

activation in gut microbiota interactions in the context of

autoimmunity. Indeed, TLR7 activation by intestinal bacteria

resulted in lupus-like disease, as Lactobacillus reuteri mediated

TLR7-dependent lupus in both conventional and germ-free mice

(106). Complimentary studies in different lupus mouse models as

well as in other female-biased autoimmune diseases, such as

multiple sclerosis and rheumatoid arthritis (RA), provide

additional evidence to support a role for sex-driven alterations in

intestinal microbiota (107, 108).

While many studies demonstrate alterations in the gut, oral,

and vaginal microbiome in patients with pSD (109), there is a

paucity of data related to pathogenicity of the microbiota. There

is one study, to our knowledge, that provides direct evidence

for intestinal dysbiosis in a mouse model of pSD (110). Indeed,

in studies in which gut microbiota from pSD patients was

transferred to germ-free mice, the recipient animals developed

heightened corneal barrier disruption (110). This study,

however, only enrolled female pSD patients and microbiota was

transferred to female mice, so additional work is needed to

determine whether differences exist in male microbiota derived

from pSD patients as compared to females, and whether

alterations in the clinical phenotype occur between male and

female recipient mice.

In addition, a separate study revealed that the bacteria

identified in pSD patients were related to clinical disease features

(109). Interestingly, treatment of pSD patients with

hydroxychloroquine (HCQ) altered the composition of the

microbiome in the oral cavity, vagina, and intestine, and this was

distinct from that observed in healthy control subjects. Following

6–12 months of treatment, pSD patients who responded to HCQ

treatment showed different oral microbiomes as compared to

those derived from pSD patients who did not respond to

therapy, and the microbiota of the responders was more similar

to that of the healthy control subjects as compared to pSD

patients who were refractory to treatment (109). Of note, HCQ

suppresses inflammation through several mechanisms, including
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the prevention of endosomal acidification (111). Thus, one of the

consequences of HCQ therapy could be the reduction of

endosomal TLR activation, including TLR7 (112). However,

HCQ has broad effects on many signaling networks (111), and

additional studies are needed to determine if TLR7 governs or

influences the microbiome in pSD in a sex-biased manner and

whether this is of clinical consequence.
7. Implications for therapeutics

Altogether, these studies suggest that therapies targeting

proteins derived from genes that are expressed in the

X chromosome, particularly those that escape XCI, may be

particularly efficacious in 46, XX females, 47, XXX females, and

47, XXY Klinefelter males. Drugs that target pathways that are

overexpressed in a sex-biased manner may also have utility in

these patient groups. There are several therapeutics in clinical

trials that target products of genes that are expressed on the

X chromosome.
7.1. Blockade of Cd40/CD40L interactions

Inhibition of CD40/CD40L interactions ameliorates pSD in

mouse models, even when delivered at a pre-disease time point

(113–115). Two drugs are currently in clinical trials for pSD that

block this pathway: Dazodalibep and Iscalimab. Dazodalibep is

an Fc-deficient CD40L antagonist fusion human monoclonal

antibody. It binds to CD40L on activated T cells and blocks the

interaction with CD40. Iscalimab is a humanized IgG1

monoclonal antibody directed against CD40. Both drugs are

currently in phase 2 clinical trials for pSD (116–120).
7.2. BTK inhibition

Previous studies in both mice and humans provide a strong

rationale for the use of therapies that target BTK in pSD. Indeed,

deletion of BTK in a mouse model that has features of both pSD

and lupus results in attenuated disease (121). Moreover, genetic

analysis of salivary tissue from pSD patients revealed that BTK

inhibition was likely to be an effective therapy for pSD patients

with certain molecular signatures (64). A selective, covalent BTK

inhibitor, Remibrutinib, is currently in phase 2 clinical trial in

patients with moderate to severe pSD (122, 123).
7.3. TLR7 and TLR8 inhibition

Phase 2 clinical trials with Enpatoran, a highly selective small

molecule inhibitor of TLR7 and TLR8, are ongoing for patients

with SLE (124–126). There is considerable evidence in both mice

and humans that TLR7 activation mediates immune dysfunction

in pSD (Table 1), and thus there is a strong rationale to carry

out clinical trials to assess the efficacy of this drug in pSD patients.
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7.4. Drug efficacy differs between male and
female patients with autoimmune disease

It is important to note that there are several studies with

thousands of patients in aggregate that document differences in

drug efficacy between males and females with autoimmune disease.

This is observed most commonly in studies of male and female

patients who receive biologic therapies. In patients with axial

spondyloarthritis (315 females, 654 males), females showed a

diminished response to first-line TNF inhibitors (TNFi) by the

second year of treatment as compared to males (127) and females

also exhibited a lower rate of disease remission (104 females, 236

males) (128). Moreover, a lower percentage of female patients with

inflammatory arthritis (RA, ankylosing spondylitis, and psoriatic

arthritis) achieved disease remission after TNFi therapy as

compared to men (138 females, 167 males) (129). Similar findings

are reported in patients with moderate to severe psoriasis, as female

patients were less likely than males to achieve a therapeutic

response after at least one year of TNFi therapy (83 females, 97

males) (130). Finally, a 48-week phase 3 randomized control trial of

psoriatic arthritis patients found that women who received

methotrexate and the TNFi etanercept had worse treatment

outcomes as compared to men (139 females, 144 males) (131).

In addition, a study of RA patients (73 females, 28 males)

revealed that in patients receiving the TNFi infliximab as a

second-line drug, women were more likely to develop anti-drug

antibodies and have lower serum infliximab levels as compared

to males (132). Corroborative data were reported in

inflammatory bowel disease (IBD) patients who received TNFi

therapy for a minimum of 1 year, as females were more likely to

discontinue the therapy than males, due to a higher incidence of

side effects (265 females, 264 males) (133). Similar results were

reported in patients with psoriasis, as females reported

experiencing more side effects than males following biologic

therapy, and these included fungal and herpes virus infections

(127 females, 188 males) (134). Of note, contrasting findings

were reported in patients with IBD, as males that received

infliximab therapy showed greater anti-drug antibodies and lower

concentrations of the drug in sera as compared to females (228

females, 233 males) (135). Interestingly, these observations were

specific for infliximab, as there were no differences observed

between male and female IBD patients who received the TNFi

adalimumab (298 females, 333 males) (135). Altogether, these

findings provide evidence that biologic therapies have different

efficacies in men and women with autoimmunity, and biological

sex is a relevant consideration in the therapeutic management of

these patients.

These studies highlight the need for and importance of well-

designed clinical trials that have sufficient power to detect

differences in therapeutic efficacy that may be present between

males and females, as distinct hormonal, genetic and

immunological differences are documented between the sexes. It

is critical that clinical trials are designed with careful

consideration of these underlying sex-specific biological traits, as

these likely have important relevance for personalized treatments.
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8. Conclusion

In summary, a myriad of inter-related factors drive the female

sex-bias that is evident in many autoimmune diseases, including

pSD. Studies directed at understanding the underlying pathways

that contribute to the profound female sex-bias observed in pSD

will allow for the design of targeted therapies that may be tailored

in accordance with the patient’s biological sex for maximal efficacy.
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