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Introduction: As personalized medicine advances, the need to explore
periodontal health across different sexes and gender identities becomes
crucial. This narrative review addresses the gap in understanding how
biological sex and gender-affirming hormone therapy (GAHT) influence
periodontitis risk.
Results: Research has uncovered significant sex-based immunological disparities
driven by X and Y chromosome gene expression and sex-hormones, which may
influence susceptibility to periodontitis. Additionally, preliminary findings suggest
that GAHT, particularly testosterone therapy in transgender men, could
exacerbate pro-inflammatory cytokine production and alter immune cell
responses, which may exacerbate inflammatory pathways crucial in the
progression of periodontitis. Conversely, the effects of estrogen therapy in
transgender women, although less extensively studied, suggest modifications
in B cell functionality. These observations highlight the complex role of GAHT
in modulating immune responses that are central to the development and
exacerbation of periodontal disease.
Discussion: The review highlights a complex interaction between sex hormones,
gene expression patterns, immune responses, and periodontitis risk. While
cisgender males show increased susceptibility to periodontitis that could be linked
to specific immune pathways, GAHT appears to modify these pathways in
transgender individuals, potentially altering their risk anddiseaseprogressionpatterns.
Conclusion: There is a critical need for more focused research on the direct
impacts of GAHT on periodontal health. Understanding the nuances of
immune modulation by GAHT will aid in crafting personalized periodontal care
for transgender individuals, aligning with the broader goals of inclusive and
effective healthcare.
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Introduction

In the evolving paradigm of personalized medicine, it is imperative to address

inclusivity across all genders and sexes in biomedical research. This approach is not

merely a matter of ethical consideration but a foundational pillar for achieving equitable

and effective healthcare outcomes. The importance of this inclusive perspective is
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notably reflected in the context of periodontitis, a leading cause of

tooth loss worldwide, and a significant public health concern with

substantial implications for individuals’ quality of life and overall

well-being (1). Periodontitis, characterized as a multifactorial

chronic inflammatory condition, results from the complex and

dynamic host-microbiota-exposome interplay (2–4). These factors

collectively shape a highly individualized immune response,

contributing to the patient disease susceptibility (2–4).

Recent epidemiological studies have unveiled sex-based

disparities in the prevalence of periodontitis, with cisgender

males being 11.95% more likely to develop the condition

compared to cis females (5). This discrepancy underscores the

complex, sex-specific regulatory mechanisms governing the

immune system, which are influenced by the interplay of sex

hormonal and chromosomal factors (6). The X chromosome

plays a pivotal role in this regulatory divergence, hosting an array

of immune-related genes such as the Toll-like receptor (TLR)-7,

CD40, CXCR3, and the transcription factor FOXP3 (7–9). In

cisgender females, the presence of two X chromosomes adds

complexity to immune system regulation due to X-chromosome

inactivation. This mechanism balances gene expression by

turning off one X chromosome in each cell. Despite this,

approximately 15% of X-linked genes escape silencing, resulting

in a distinct biallelic expression pattern (7). In contrast, cisgender

males, with only one X chromosome, are more susceptible to

mutations in X-linked genes (6, 10, 11). Sex hormones add

additional complexity to immune regulation by interacting with

receptors on both innate and adaptive immune cells, thereby

influencing immune responses (6, 12). The impact of these

interactions is highly nuanced, varying with the nature of the

immune stimulus, the target cell, and sex-hormone

concentrations (12).

The complexity of this landscape is further increased when

considering the transgender population undergoing gender-

affirming hormone therapy (GAHT) (13). GAHT plays an

essential role in alleviating gender dysphoria and improving

psychological well-being by introducing exogenous hormones.

This intervention likely alters the immune system’s regulatory

mechanisms, potentially affecting susceptibility to autoimmune

and inflammatory diseases. Despite its significance, the impacts

of GAHT on immunological responses and vulnerability to

infectious and inflammatory conditions remain largely

underexplored. Firstly, while sex-based differences in immune

function are well-documented, it is unclear how these differences

translate to transgender individuals undergoing hormone therapy.

The interplay between sex hormones such as estrogen and

testosterone and immune function is complex and not fully

understood. Furthermore, transgender individuals are

significantly underrepresented in scientific research, leading to a

lack of long-term studies focusing on the immunological impacts

of hormone therapy in this population. This gap in research is

particularly concerning given the increasing number of

transgender adolescents and adults seeking gender-affirming care,

highlighting the urgent need for more comprehensive studies to

ensure their positive health outcomes (14, 15). In a landscape

that increasingly values gender diversity and personalized
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healthcare, it becomes crucial to understand how biological sex

and GAHT impact periodontal health. This review aims to

bridge this knowledge gap by exploring how biological sex

and GAHT modify immune responses, thereby influencing the

risk of periodontitis.
Immune responses in periodontal disease

Periodontitis, recognized as a chronic inflammatory disease,

arises from a complex interplay between microbial dysbiosis,

environmental factors, and the host’s immune response. This

complex interplay transcends simple microbial pathogenicity,

revealing a scenario where an altered inflammatory state drives

cycles of microbial dysbiosis and tissue destruction (2–4, 16).

Periodontitis is marked by increased activity of various

immune cells, creating a harmful inflammatory environment.

Neutrophils, for instance, play a dual role. While essential for

controlling bacterial infections, neutrophils become hiperactive in

periodontitis. This overactivity results in excessive production of

enzymes and pro-inflammatory mediators that exacerbate tissue

damage (3, 17, 18). Similarly, macrophages in periodontitis are

often induced towards a pro-inflammatory M1 phenotype,

secreting large amounts of cytokines such as interferon-gamma

(IFN-γ), tumor necrosis factor-alpha (TNF-α), and interleukins

(IL) (e.g., IL-6, IL-12), along with matrix metalloproteinases

(MMPs), further intensifying the inflammation (19).

The pathogenesis of periodontitis is also critically influenced by

the orchestrated interplay among CD4+ T cell subsets, including

Th1, Th2, Th17, and regulatory T (Treg) cells (20). The dynamic

equilibrium between the pro-inflammatory effects of Th17 cells

and the immunosuppressive actions of Treg cells is crucial for

maintaining periodontal health while its imbalance drives disease

progression (21). Th17 cells, found in increased numbers in

periodontitis, promote inflammation and tissue destruction by

producing IL-17 (21, 22). In contrast, Treg cells counteract these

effects by releasing anti-inflammatory cytokines like IL-10 and

transforming growth factor-beta (TGF-β), thus mitigating Th17-

driven damage (23). Th1 cells, known for their IFN-γ

production, are key in driving the cellular immune response,

including activating neutrophils and macrophages (24). Although

essential for defending against pathogens, this response can lead

to increased periodontal tissue damage if it becomes

dysregulated. Conversely, Th2 cells contribute to the humoral

immune response by producing cytokines such as IL-4 and IL-5,

which help in antibody production. Depending on the disease

stage and individual immunological context, this can either help

control or worsen periodontal damage (24).

B cells play multifaceted roles including antibody production,

cytokine secretion, antigen presentation, and maintaining

immunological memory (25). In healthy states, memory B cells

are sparse near the apical region of the junctional epithelium

(18, 26), strategically positioned to defend against constant

microbial invasions. However, in periodontitis, this balance is

significantly disrupted, marked by a notable increase in B cells

and plasma cells, particularly those producing IgG and IgM (27).
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A shift towards a predominance of antibody-secreting cells over

memory B cells indicates a heightened immune reaction (28),

with a significant role in the development and progression of

periodontitis. Research involving both humans and animals

underscores the contribution of B cells to periodontal tissue

destruction. Through the release of pro-inflammatory cytokines

such as IL-1β and TNF-α, along with the expression of RANKL,

B cells exacerbate periodontal damage (25, 29–32).
Differences in immune responses and
periodontal health in cisgender populations

Influence of biological sex on immune responses
Both sex hormones and genetic factors significantly shape

immune functions, influencing disease susceptibility and

treatment responses across sexes. Typically, females exhibit

greater immune reactivity than males, a trait influenced by the X

chromosome. The phenomenon of X chromosome inactivation

gives women a biological advantage, allowing for heterogeneous

expression of gene mutations. This heterogeneity often results in

females either not developing X-linked diseases or experiencing

them in a milder form compared to males who possess the same

genetic variant (33, 34). The X chromosome encodes several

proteins that contribute to sex-based differences in immune

responses, including Toll-Like Receptors (e.g., TLR7, TLR8),

cytokine receptors (e.g., IL2Rg, IL9R), and transcription factors

such as FOXP3 and NKRF (35). Additionally, approximately 10%

of the genomic non-coding microRNAs (miRNAs) reside on the

X chromosome. Specific miRNAs, such as miR-223, regulate

neutrophil differentiation and suppress inflammatory responses,

whereas others like miR-221/222 modulate STAT3 expression. A

group including miR-20a/b, miR-106 a/b, miR-424, and miR-513

influences the stability and translation of the PD-L1 transcript,

which inhibits activated immune cells (36, 37).

Research using a mouse model of multiple sclerosis has shown

that polymorphisms in genes on the Y chromosome can increase

susceptibility to experimental encephalomyelitis, supporting the

notion that sex-based genetic factors are linked to autoimmune

diseases (38, 39). Further studies have indicated that genetic

variations on the Y chromosome not only heighten susceptibility

to influenza A virus infection in male mice but also affect their

survival post-infection, a phenomenon associated with an

increase in IL-17-producing γδ T cells (40). Moreover, preclinical

research on Coxsackievirus B3, linked with myocarditis and

higher mortality in individuals under 40, suggests that reduced

survival rates in infected male mice could be due to epigenetic

changes driven by polymorphisms on the Y chromosome’s

heterochromatic regions (41).

The biological differences in sex steroid concentrations

significantly influence the immune response regulation. Steroid

hormones are produced mainly in the adrenal cortex, gonads and

placenta. During steroidogenesis, mitochondrial metabolism of

cholesterol originates pregnenolone, the precursor of all steroid

hormones (42). Estrogens, specifically estrone (E1), estradiol (E2),

and estriol (E3), along with their receptors (ER) found on several
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immune cells, regulate not only secondary sexual characteristics

but also modulate various immune processes (43, 44). Estrogen

therapy, including ERβ agonists, promotes IL-4-induced M2 gene

expression in asthma models (45) and reduces the severity and

mortality of experimental autoimmune encephalomyelitis (EAE)

through its effects on T cells, demonstrating a profound impact

across both innate and adaptive immunity (46). Estradiol and

progesterone have been shown to delay neutrophil apoptosis,

thereby prolonging neutrophil function in healthy adults (47),

this may explain the observed decline in blood neutrophils in

postmenopausal women. Additionally, estrogen’s interaction with

peripheral tolerance mechanisms suggests a role in modulating T

cell differentiation, particularly influencing the differentiation of

CD4+ T cells into Treg cells (48). The ability of estradiol to

boost the humoral immune response, increasing immunoglobulin

synthesis in a concentration-dependent manner, further

highlights its critical role in immune modulation (49). Studies in

Rhesus macaques have confirmed that estrogen significantly

increases the frequency of antibody-secreting cells, with

variations that align with the menstrual cycle (50).

Like estrogen, progesterone serves roles beyond its well-known

functions in female sexual and reproductive health. Research

conducted in vitro has demonstrated that progesterone exerts an

immunosuppressive effect. It inhibits the production of

inflammatory cytokines such as TNF-α, IL-1β, IL-6, and IL-12 as

well as the expression of costimulatory molecules such as CD40,

CD80, and CD86 by dendritic cells activated through TLR3 and

TLR4 ligands (51, 52). Synthetic derivatives of progesterone,

known as progestins, have also been shown to decrease the

release of IL-6, IL-8, and MCP-1 by endometrial stromal cells

(53). Further studies revealed that both progesterone and

dexamethasone can induce apoptosis of mouse CD4+ T cells,

while Treg cells are resistant to these effects (54). Notably,

progesterone also enhances the differentiation of naïve T cells

into Treg cells while reducing the production of pro-

inflammatory Th17 cells (55). Additionally, it shifts the immune

response towards Th2 dominance, diminishing Th1 responses

in vitro (56).

Testosterone, the primary male hormone, interacts with cells

manly via the androgen receptor (AR). While AR plays a critical

role in neutrophil development (57), testosterone administration

has been observed to decrease the microbicidal activity of these

cells (58). Interestingly, female natural killer cells produce more

IFN-γ than their male counterparts, an effect that can be reduced

by testosterone exposure (59, 60). Additionally, androgens

influence circulating B cells and serum antibody levels, impacting

B cell tolerance (61). Furthermore, males have been shown to

exhibit higher thymic expression of the autoimmune regulatory

gene (AIRE) compared to females, a difference regulated by

androgens and their receptors, which significantly shapes central

T cell tolerance (62). It is worth noting, however, that the

biological activity of testosterone can be peripherally altered.

Testosterone can be naturally converted into dihydrotestosterone

(DHT), which acts via AR to amplify its effects; inactivated

through its conversion to androstenedione; or converted to

estradiol during ovarian steroidogenesis and peripheral
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modulation via aromatase. The estradiol produced from

testosterone diversifies the hormone’s activity by acting through

ER, further influencing physiological processes (42, 63, 64).

In sum, while estrogens significantly boost the immune response

in cisgender women, leading to more effective pathogen clearance

and a stronger humoral response, progesterone’s role is more

complex, appearing to be crucial in balancing immune functions,

which is critical for maintaining tolerance during pregnancy. On

the other hand, increased androgen activity, particularly

testosterone, in cisgender men tends to foster anti-inflammatory

responses across both innate and adaptive immune systems. Thus,

the impact of sexual dimorphism on immune responses is highly

significant and is likely to explain disparities in susceptibility to

autoimmune and infectious diseases between sexes.

Implications for periodontal disease
Sex-based immune differences are likely to significantly

impact periodontal disease outcomes in cisgender populations.

Enhanced expression of TLR4 in male neutrophils correlates with

increased TNF-α production, either constitutively or following

lipopolysaccharide (LPS) stimulation (65). Similarly, male peripheral

blood mononuclear cells (PBMCs) also produce more TNF-α when

exposed to LPS (66), indicating a heightened pro-inflammatory

response of male inate immune cells to microbial challenges.

Conversely, testosterone treatment in vitro reduces TLR4 expression

and TNF-α production in macrophages, suggesting an anti-

inflammatory effect (67–69). The balance in the defense system

in periodontal disease is fundamental, for example, while controlled

TNF-α production assists in clearing periodontopathogens, their

unregulated production can lead to the destruction of periodontal

tissues (2).

In females, elevated phagocytic activity (70) and antigen

presentation efficiency (71) by antigen-presenting cells (APCs)

enhance the recognition and elimination of pathogens to limit

tissue damage. Estrogen and progesterone direct the immune

response towards Th2 and Treg dominance, boosting humoral

responses and suppressing Th17 cell proliferation and IL-17

production (55, 72), thereby potentially protecting against

periodontal destruction by moderating inflammation.

The literature presents mixed findings on the hormonal

influence on periodontal disease. Estrogen deficiency, as observed

in ovariectomy models, generally exacerbates alveolar bone loss

in experimental periodontitis (73–75). Ovariectomized rats

exhibit greater osteoclast activity and bone loss following

ligature-induced periodontitis (74), and similar effects are seen in

sheep, with increased alveolar bone loss and higher IL-6 levels in

diseased sites one year post-ovariectomy (75). Increased

osteoclast numbers, higher RANKL expression, and decreased

IFN-γ production are observed in cultures from ovariectomized

mice in response to LPS (76). IFN-γ, generally produced by T

cells, regulates osteoclastogenesis by interfering with the RANKL

signaling pathway (77), favoring bone resorption in estrogen

deficiency conditions. Ovariectomy also causes osteoporotic

changes and thinning of the alveolar bone in the rat molar

interradicular septum (78). Estrogen and calcitonin

administration do not protect against biofilm-induced bone loss
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in ovariectomy models but prevent direct estrogen-deficiency-

related alveolar bone loss (79). Conversely, some studies found

no significant impact of ovariectomy on periodontal attachment

(80) and observed reduced neutrophil and T-lymphocyte

migration to the periodontal tissues following local LPS

administration in ovarectomized mice (81).

Testosterone deprivation through both orchiectomy and

chemical AR blockade with flutamide increases bone resorption in

male rats under experimental periodontitis, though only

orchiectomy also increases osteoclast counts (82). Orchiectomized

animals show higher gingival IL-1β levels, while flutamide

treatment decreases gingival IL-6 levels (82). In a model of

ligature-induced periodontal inflammation in rats, orchiectomy has

been shown to increase prostaglandin E2 (PGE2) and lipoxin A4

(LXA4) expression in gingival tissues, while IL-10 increased with

subsequent testosterone supplementation (83). In this same model,

AR activation through testosterone administration combined with

an aromatase inhibitor induced significant increases in EGF and

VEGF levels in female rats, while receptor blockade significantly

increased bone loss (84). Treatment of periodontal disease further

demonstrates that bone repair is significantly impaired by AR

blockade, while testosterone supplementation significantly

increases the inflammatory infiltrate (85). Nonetheless, long-term

testosterone depletion has been shown to attenuate inflammatory

bone resorption and decrease IL-1β expression in experimental

periodontitis in rats (86).

Expression of specific osteoclast genes also shows sexual

dimorphism, which may explain differences in bone loss

between males and females (87). Additionally, variations in the

microenvironment further influence osteoclast formation

disparities between sexes, with males displaying higher osteoclast

counts (87). Periodontal bone loss is driven and sustained by

uncontrolled leukocyte infiltration, leading to an intense

immunoinflammatory response. Observations indicate disparities

in neutrophil recruitment, chemokine expression, and osteoclast-

driven bone loss between male and female mice (87, 88).

Neutrophils, the first responders at inflammatory sites, migrate

via chemokine signaling and attempt to neutralize pathogens

while maintaining inflammation by secreting cytokines (89). The

chemokine receptors CXCR4 and CXCR2 play critical roles in

these dynamics; CXCR4 retains neutrophils in the bone marrow,

whereas CXCR2 facilitates their mobilization into the

bloodstream (87, 90). The ligands for these receptors include

CXCL12 (SDF-1) for CXCR4 and CXCL1 (KC) and CXCL2

(MIP-2) for CXCR2 (87). Notably, individuals with periodontal

disease show elevated CXCL12 levels, which decrease following

subgingival instrumentation (91). In a peritonitis model, female

mice demonstrated lower neutrophil recruitment and a less

intense inflammatory response, associated with higher CXCL12

and CXCR4 levels, compared to males (92). Additionally, studies

on Ly6G + cells activated with LPS reveal that male cells express

increased levels of chemokines CXCL1, CXCL2, and CXCL3, but

lower levels of CXCR2, CXCR3, and CXCR4 (88). Furthermore,

male neutrophils exhibit significantly higher expression of IL-1β,

IL-6, and TNF-α, and over tenfold higher IL-10 and iNOS

mRNA levels than females (88), suggesting a more pronounced
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pro-inflammatory and regulatory cytokine profile in males. Male

neutrophils also exhibit a significantly elevated CXCL10

expression, more than 82 times higher when compared with

females (88). This increase is critical as LPS-induced CXCL10

promotes osteoclast formation (93). Moreover, the pronounced

expression of the CXCR3 and CXCL10 in periodontal disease

correlates with elevated IFN-γ levels, which are instrumental in

activating macrophages (87), which can contribute to the higher

prevalence of periodontitis in males. Altogether, these profound

implications of sexual dimorphism on immune defense

mechanisms are likely to affect periodontal disease susceptibility

and progression.

Evidence from cisgender populations
The intricate relationship between sex hormones and

periodontal health varies across different life stages. While female

sex hormones generally provide a protective effect against

periodontal diseases, favoring Th2 and Treg responses, significant

fluctuations in estrogen and progesterone during puberty,

pregnancy, and menopause can intensify periodontal diseases

(94, 95). These hormones influence periodontal tissues through

specific receptors present in gingival fibroblasts, osteoblasts, and

periodontal ligament fibroblasts (96, 97), mediating both

protective and detrimental effects.

Puberty marks a critical phase where sex hormones, including

testosterone, estradiol, and progesterone, surge. This hormonal

increase is linked to an increase in gingival inflammation from

prepubertal years to puberty (98) that exceeds what is typically

observed in adults with comparable plaque levels (99). This

suggests a heightened sensitivity of the periodontium to hormonal

fluctuations during adolescence. This period is also characterized

by shifts in the subgingival microflora, with an increase in

Prevotella intermedia (P. intermedia), P. melaninogenica,

Actinomyces odontolyticus and Capnocytophaga species, which

respond dynamically to hormonal changes and exacerbate gingival

inflammation (100).

Further emphasizing the influence of testosterone, research

across various models has revealed the dual effects of

testosterone. Research using male rat models of ligature-induced

periodontitis has demonstrated the effects of testosterone

manipulation, employing both surgical orchiectomy (OCX) and

chemical AR inhibition. Initial studies revealed that these

interventions exacerbated bone loss when compared to controls

with normal testosterone levels (82, 101). However, subsequent

findings indicated that long-term testosterone depletion

significantly reduces bone resorption, an effect reversible with

exogenous testosterone supplementation (86), highlighting

testosterone’s pro-resorptive role in periodontal disease. This is

further supported by evidence that supra-physiological

testosterone levels, achieved through periodic injections, result in

increased ligature-induced bone loss (101). Extending these

findings to humans, data from the NHANES cohort of 755 men

confirmed that elevated testosterone levels correlate with

increased prevalence and severity of periodontitis (102).

Additionally, studies on androgenic anabolic steroid (AAS) abuse

in men have shown that AAS users not only have a higher
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incidence of periodontitis but also a significantly more dysbiotic

microbial profile, indicating the detrimental impact of supra-

physiological testosterone levels on periodontal health (103).

Pregnancy brings significant hormonal shifts, especially in

progesterone and estrogen, which are linked to increased

frequency and severity of gingival inflammation. This

inflammation typically peaks during the second or third month of

pregnancy and interestingly resolves postpartum without lasting

impacts on periodontal attachment levels (95, 104–106). The

clinical inflammation observed during pregnancy is primarily

driven by hormonal changes that modulate the immune response,

increasing the production of pro-inflammatory cytokines (e.g.,

IL-1β, IL-6, IL-8, and TNF-α) and shifting the Th1/Th2

cytokine balance toward a Th1 bias in gingival tissues (106–108).

Elevated progesterone also boosts prostaglandin E2 synthesis,

which enhances vascular permeability and intensifies gingival

inflammation (109). Moreover, it also exacerbates gingival

inflammation by disturbing the balance between MMP-8 and

MMP-9 and their tissue inhibitor TIMP-1, leading to increased

MMP-8/TIMP-1 and MMP-9/TIMP-1 ratios (110). Additionally,

these hormonal changes significantly transform the oral

microbiome, increasing the prevalence of key periodontopathogens

such as Porphyromonas gingivalis (P. gingivalis), P. intermedia,

Tannerella denticola, Aggregatibacter actinomycetemcomitans,

Parvimonas micra, Neisseria, Treponema, and Fusobacterium,

which heightens the susceptibility to periodontal inflammation

during pregnancy (107, 111–115).

Menopause is characterized by the cessation of ovarian activity

and has profound systemic health implications, including

periodontal health. Postmenopausal women, particularly those

experiencing early menopause, often exhibit increased serum

high-sensitivity C-reactive protein levels, greater clinical

attachment loss, and increased percentage of bleeding on probing

(BOP) compared to premenopausal counterparts (116). These

women face a higher risk of developing moderate to severe

periodontitis and experience a higher incidence of tooth loss

(117, 118). Although hormone replacement therapy has been

shown to modestly reduce the incidence of periodontitis, its

effectiveness is diminished when adjusted for confounding factors

such as age, body mass index, and smoking status (119).
Gender-affirming hormone replacement
therapy, immune response, and periodontal
health in transgender populations

The role of GAHT in immunity
GAHT is a pivotal component in the transition process for

transgender and non-binary individuals, aiming to align their

physical appearance with their gender identity. This treatment

strategy involves the careful selection and administration of

hormones to either feminize or masculinize the body. Transgender

women often receive a combination of estrogens, such as 17-β

estradiol, and antiandrogens to markedly decrease testosterone

levels (13). Conversely, transgender men and some non-binary

individuals seeking masculinization receive testosterone therapy
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(13), which notably increases testosterone levels up to 20-fold,

aligning them with the typical range seen in cisgender men (120).

Not just a temporary intervention, GAHT frequently becomes a

lifelong healthcare commitment, continuously supporting the

individual’s gender identity and overall well-being.

The transformative role of GAHT extends beyond physical

changes, significantly impacting the lives of transgender and

non-binary individuals. However, the effects of GAHT on the

immune system represent a less explored frontier. Emerging

research begins to shed light on how hormonal changes induced

by GAHT affect immunological functions. A pioneering study

by Sellau et al. (121) specifically examined the impact of

testosterone on cytokine expression in transgender men,

revealing a significant increase in pro-inflammatory cytokines

and chemokines such as TNF-α, IL-1α, CXCL1, and CCL2 over

200 days of testosterone therapy. These changes were directly

linked to the rising plasma levels of testosterone and its

metabolite, DHT, underscoring the significant role of testosterone

in influencing immune responses (121). To contextualize these

findings, it is important to compare them with observations from

in vitro and in vivo studies, as well as clinical data on cis men

under androgenic anabolic steroid (AAS) abuse. High doses of

AAS in murine and in vitro studies have been shown to increase

the production of pro-inflammatory cytokines such as IL-1 and

TNF-α, while decreasing IL-4, IL-5, and IFNs (122, 123).

Additionally, clinical data reveal that young male AAS users

exhibit higher concentrations of IL-1 and IL-6 compared to non-

users, although no significant differences in TNF-α levels were

observed among groups (124). Interestingly, despite the increased

pro-inflammatory cytokines, IL-10 levels were also higher in AAS

users, suggesting a potential balancing effect on the pro/anti-

inflammatory profile (124). These comparative insights highlight

the complexity of testosterone’s impact on the immune system.

While transgender men on GAHT show increased pro-

inflammatory markers similar to AAS users, the specific cytokine

profile variations and the potential modulatory role of anti-

inflammatory cytokines like IL-10 warrant further investigation.

Expanding on these findings, recent research has delved deeper

into the immunological implications of GAHT, focusing

particularly on the regulation of B cell-activating factor (BAFF)

and TNF-α in a diverse cohort comprised of cisgender men and

women, as well as transgender men and women who had

undergone hormone therapy for a minimum of three years (125).

The study unveiled a significant interaction between BAFF serum

levels and sex hormones, revealing that both cisgender and

transgender women have significantly higher BAFF levels

compared to male participants, irrespective of their transgender

or cisgender status (125). Additionally, this study shed light on

the differential response of peripheral blood cells to LPS,

revealing that LPS-induced TNF-α production was markedly

increased in both cisgender and transgender men, indicating a

gender-related difference in the immune system’s reaction to

inflammatory stimuli (125). Building on these findings, a

subsequent in vivo study assessed the impact of testosterone

GAHT on immune cell dynamics in female mice (126).

Testosterone administration to female C57BL/6J mice over eight
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weeks resulted in physiological changes consistent with clinical

observations in humans undergoing GAHT (i.e. increased lean

body mass and reduction in perigonadal fat mass) (126).

Notably, the testosterone treatment led to a significant increase

in peripheral Th17 cells (126).

The exploration into the effects of GAHT on the immune

system underscores the complex modulation of immune responses

by sex hormones. While research into the impacts of estrogen-

based GAHT for transgender women and testosterone-based

GAHT for transgender men has advanced, significant gaps

remain. These gaps hinder our comprehensive understanding of

GAHT’s implications for periodontal health. We can speculate

that the increases in TNF-α, IL-1α, CXCL1, CCL2, and Th17

responses following testosterone GAHT therapy (121–126) could

increase inflammation in periodontal tissues, potentially elevating

periodontitis risk (121–126). Conversely, the elevated serum levels

of B cell activating factor (BAFF) observed in transgender

women on GAHT may indicate a hormone-related modulation

of B cell function, which plays a critical role in inflammatory

responses and alveolar bone loss (125). Pre-clinical studies

further illuminate this dynamic. For example, testosterone

supplementation in female rats did not markedly alter ligature-

induced bone loss, yet it reduced inflammatory mediators such as

MIP-1α, IL-1α, IL-1β, IL-10, and RANTES (85). These changes,

however, could be an indirect role of testosterone, potentially

through its conversion to estradiol. Supporting this, a subsequent

study that combined testosterone supplementation with an

aromatase inhibitor to prevent estrogen signaling in female rats

demonstrated increased osteoclast activity and ligature-induced

bone loss, accompanied by elevated PGE2 and reduced IL-2 levels

in periodontal tissues (84). These findings indicate that the effects

of supplemental testosterone on periodontal health may be

partially mediated through its estrogenic metabolites. Additionally,

although direct data on estrogen supplementation and ligature-

induced bone loss in male rats are lacking, related research on

the influence of estrogen on bone modeling provides relevant

insights. A study evaluating the effects of estrogen on the

mandibular condylar bone in orchiectomized male mice showed

that estradiol supplementation after orchiectomy mitigated the

increase in TRAP-positive cells and reversed the loss of trabecular

bone volume in the condylar head (127), suggesting a protective

role of estrogen in bone preservation, which might extend

implications for periodontal health in GAHT contexts.

The limited number of studies investigating the effects of

GAHT on immune responses in humans is evident. Table 1

summarizes the findings from the only two studies conducted on

this topic, highlighting the need for more research in this area.
Summary and future perspectives

In this review, we explore the intricate relationship between

biological sex, GAHT, and periodontal health, elucidating the

underlying mechanisms that might influence periodontal disease

susceptibility and progression. A model is illustrated in the

accompanying Figure 1. Sexual dimorphism significantly impacts
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immune function, as evidenced by the differential expression of

immune-related genes on the X and Y chromosomes and the

modulation of immune responses by sex hormones. Cisgender

females exhibit enhanced immune reactivity due to the presence

of two X chromosomes, which contribute to a more robust

immune response. Elevated levels of estrogen and progesterone

in cisgender females influence immune regulation by shifting

responses towards Th2, Treg, and M2 dominance while

suppressing Th1, Th17, and M1 cell activities. Progesterone also

inhibits the production of inflammatory cytokines such as TNF-α,

IL-1β, IL-6, and IL-12, as well as chemokines like IL-8, and

costimulatory molecules including CD40, CD80, and CD86. This

hormonal environment enhances phagocytic activity and antigen

presentation efficiency by antigen-presenting cells and lowers
TABLE 1 Key findings related to GAHT and immune responses in transgende

Study Population Hormonal treatm
Sellau et al. (2020) (121) • Transgender men Testosterone

Tsatsanis et al. (2023) (125) • Transgender men
• Transgender women
• Cisgender men,
• Cisgender women

Transgender men: testosteron
Transgender women: estrogen
antiandrogen

FIGURE 1

Interplay of biological sex, GAHT, and immune regulation in periodontal dis
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osteoclast counts, underscoring the protective role of

physiological levels of estrogen and progesterone in periodontal

health. In contrast, cisgender males, possessing a single X

chromosome, are more susceptible to X-linked gene mutations,

which can influence immune function. Cisgender males exhibit

enhanced TLR4 expression in neutrophils and peripheral blood

mononuclear cells (PBMCs), leading to higher TNF-α production

while inhibiting the microbicidal activities of innate immune

cells. Elevated levels of chemokines (CXCL1, CXCL2, CXCL3)

and cytokines (IL-1β, IL-6, TNF-α) are observed, along with

higher expression of CXCR3 and CXCL10, which increase IFN-γ

production and macrophage activation. These findings, associated

with higher osteoclast counts in cisgender males, are likely to

increase their susceptibility to periodontal diseases.
r humans.

ent Key findings
Significant increase in pro-inflammatory cytokines (TNF-α, IL-1α,
CXCL1, CCL2) after 200 days of therapy. Direct correlation with plasma
testosterone and 5α-dihydrotestosterone levels.

e
and

Transgender women and cisgender women had higher BAFF levels
irrespective of their sex chromosome. LPS-induced TNF-α production was
higher in cisgender men and transgender men compared to cisgender
women and transgender women.

ease susceptibility.
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GAHT introduces additional complexity in immune

modulation for transgender individuals. In transgender females,

elevated serum levels of B cell activating factor (BAFF) suggest

a hormone-related modulation of B cell function, influencing

inflammatory responses and alveolar bone loss. Studies on

estrogen supplementation in male mice indicate a protective

role in bone preservation, which may extend to periodontal

health in transgender women. Conversely, testosterone therapy

in transgender males increases pro-inflammatory cytokines

(e.g., TNF-α, IL-1α, CXCL1) and Th17 cells, potentially

heightening inflammation in periodontal tissues and elevating

periodontitis risk. However, pre-clinical findings indicate that

while testosterone supplementation in female rats reduces

inflammatory mediators, this effect may be due to the

conversion of testosterone to estradiol. This emphasizes the

nuanced impact of GAHT on periodontal health, highlighting

the complexity where exogenous hormones may be metabolized

differently across sexes and/or have varied impacts due to

differences in receptor expression.

The exploration of the immunological impacts of GAHT

presents a promising yet largely untapped frontier in

personalized medicine. Future research should prioritize

comprehensive, long-term studies to elucidate the intricate

mechanisms by which GAHT influences immune responses and

periodontal health in transgender individuals. Given the growing

population seeking gender-affirming care, it is crucial to

investigate how hormonal variations affect susceptibility to

autoimmune and inflammatory conditions, including periodontitis.

Expanding research to include diverse cohorts, particularly

those that have been historically underrepresented, will ensure

that findings are representative and applicable to all individuals

undergoing GAHT. Furthermore, addressing barriers to healthcare

access for transgender individuals, such as discrimination, lack of

provider knowledge, and socioeconomic disparities, is essential

for facilitating participation in research and improving health

outcomes. By addressing these gaps, we can pave the way for

more effective, personalized healthcare strategies that account for
Frontiers in Dental Medicine 08
the unique immunological profiles of transgender patients,

ultimately improving their overall health outcomes and quality

of life.
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