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Automating bone loss
measurement on periapical
radiographs for predicting the
periodontitis stage and grade
Nazila Ameli1, Monica Prasad Gibson2, Ida Kornerup1,
Manuel Lagravere1, Mark Gierl3 and Hollis Lai1*
1School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada,
2Faculty of Dentistry, University of Indiana, Indianapolis, IN, United States, 3Faculty of Education,
University of Alberta, Edmonton, AB, Canada
Background: The aim of this study was to develop and evaluate an automated
approach for segmenting bone loss (BL) on periapical (PA) radiographs and
predicting the stage and grade of periodontitis.
Methods: One thousand PA radiographs obtained from 572 patients were
utilized for training while a separate set of 1,582 images from 210 patients
were used for testing. BL was segmented using a U-Net model, which was
trained with augmented datasets to enhance generalizability. Apex detection
was performed using YOLO-v9, focusing on identifying apexes of teeth to
measure root length. Root length was calculated as the distance between the
coordinates of detected apexes and center of cemento-enamel junction
(CEJ), which was segmented utilizing a U-Net algorithm. BL percentage (ratio
of BL to the root length) was used to predict the stage and grade of
periodontitis. Evaluation metrics including accuracy, precision, recall, F1-score,
Intersection over Union (IoU), mean absolute error (MAE), intraclass correlation
coefficients (ICC), and root mean square error (RMSE) were used to evaluate
the models’ performance.
Results: The U-Net model achieved high accuracy in segmenting BL with 94.9%,
92.9%, and 95.62% on training, validation, and test datasets, respectively. The
YOLO-v9 model exhibited a mean Average Precision (mAP) of 66.7% for apex
detection, with a precision of 79.6% and recall of 62.4%. The BL percentage
calculated from the segmented images and detected apexes demonstrated
excellent agreement with clinical assessments, with ICC exceeding 0.94. Stage
and grade prediction for periodontitis showed robust performance specifically
for advanced stages (III/IV) and grades (C) with an F1-score of 0.945 and 0.83,
respectively.
Conclusion: The integration of U-Net and YOLO-v9 models for BL
segmentation and apex detection on PA radiographs proved effective in
enhancing the accuracy and reliability of periodontitis diagnosis and grading.
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1 Introduction

Periodontitis is a multifactorial and microbiome-associated

inflammatory disease that occurs in the dental supporting tissues

[periodontium, which includes gingiva, periodontal ligament,

cementum, and alveolar bone presenting as bone loss (BL)] (1–

3). Progression of the disease can adversely affect oral and

systemic health and result in tooth loss, reduction of masticatory

performance (4) as well as having association with diabetes (5)

and coronary artery disease (6). Thus, periodontitis and its

complications will impose substantially negative effects on oral

health-related quality of life (OHRQoL) (4, 7). Moreover, early

detection and diagnosis of periodontitis can help in preventing

the consequent costly and invasive dental treatment (3).

In clinical settings, the assessment of periodontal conditions

involves visual and tactile examinations. The gold standard for

examination includes measurements of periodontal pocket depth

(PPD), bleeding on probing (BOP), and clinical attachment loss

(CAL) (8). Radiographs are employed to confirm diagnosis and

treatment plans. However, variations in probe tip diameter,

angulation, probing force, and intra-examiner differences can

result in divergent outcomes. Additionally, in instances of mild

attachment loss or when determining the subgingival localization

of the cementoenamel junction (CEJ), accurately determining

CAL is challenging due to the difficulty in ascertaining CEJ

location. In such cases, precise and reliable assessment relies on

the interpretation of radiographic bone levels radiographically (8,

9). Alveolar BL, is defined as any distance from CEJ to the

alveolar bone crest that is greater than 2 mm (10).

Despite the improvements in the quality of image and

resolution over the past decade, interpreting dental imaging is

primarily and subjectively conducted by the trained dentist based

on the individual’s judgement and experience (11–13).

Inconsistencies in their interpretation may result in misdiagnosis

and, in the process of periodontitis evaluation, may lead to

wrong measurement of BL (14). Currently, deep learning (DL)

techniques are being widely applied for quick evaluation of

dental images (15, 16), without subjective interpretations.

Traditional methods of automated medical image analysis

include large amounts of rule-based algorithms or manual

preprocessing methods that are time-consuming with low quality

and poor generalization capability (17–19). This underwent

changes with the introduction of convolutional neural networks

(CNN) algorithms using DL, which allow for direct interference,

recognition and classification of medical images (20, 21). Due to

its demonstrated efficiency in the field of image understanding

(image segmentation, classification, localization and detection)

through feature extraction of input data, it is a widely used

technique for solving medical image understanding (22).

Image segmentation is the process of identifying key

components of an image and separating the image into

individual sections or regions- is a fundamental task in medical

image processing (23). Several DL models have been introduced

for medical image segmentation like the U-Net and mask-RCNN

(24). Most image segmentation DL models are based on CNNs

(25). Specifically, the U-Net architecture has been thoroughly
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studied for biomedical image segmentation due to its ability to

produce highly accurate segmented images using limited training

data (26, 27). The popularity of this algorithm is evident from its

widespread adoption across major primary imaging techniques,

including computed tomography scans, magnetic resonance

imaging, x-rays, and microscopy (27).

An alternative method that employs CNN principles is You

Only Look Once (YOLO), which is mainly designed to precisely

identify objects in real time (28). A complex generalized

approach toward object identification, YOLO combines

concurrent processing of information at different convolutional

layers with up-and-down sampling approaches similar to U-Net.

One of the characteristics of YOLO is to extract features from

the entire image and predict bounding boxes (28). In the

literature, older versions of YOLO have been widely used in the

field of dental radiology to detect mandibular fractures in

panoramic radiographs (29), primary and permanent tooth

detection on pediatric dental radiographs (30), detection of cyst

and tumors of the jaw (31), periodontal BL detection (32), and

detection of impacted mandibular third molar teeth (33).

However, new versions of YOLO-v9, released in January 2024,

demonstrate superior performance with respect to throughput

and computational load requirements (34), and provide a

network architecture that requires lower computing and training

requirements, hence providing a more effective feature

integration method, more accurate object detection performance,

a more robust loss function, and an increased label assignment

and model training efficiency (35).

While numerous studies have employed image mining

techniques to measure BL and classify periodontitis, most have

focused on BL at only two points: mesial and distal (24, 35–37).

Additionally, these studies predominantly used panoramic

radiographs (32, 38), despite evidence that periapical (PA) or

bitewing radiographs provide more accurate BL evaluations (39,

40). This narrow focus on mesial and distal points risks

underestimating the extent of BL, particularly in areas such as

the furcation, where BL may be more pronounced.

Our study addresses these gaps by introducing an automated

approach to segment BL across the entire width of each tooth,

rather than limiting the analysis to mesial and distal points. By

doing so, we ensure a more comprehensive assessment of BL,

including in the furcation area, which is often overlooked.

Furthermore, our study not only detects BL but also uses the

segmented data to classify the stage and grade of periodontitis, a

critical step that has been largely neglected in previous studies

relying solely on image data. Additionally, we utilized the latest

versions of U-Net and YOLO models, which offer superior

performance in identifying key points for measurements and

have not been extensively applied in the context of periodontitis.

Importantly, we employed PA radiographs, the standard imaging

modality for accurate BL detection, rather than panoramic

images. By integrating these advanced techniques, our study

provides a more precise and reliable framework for the

detection, segmentation, and classification of periodontal disease,

thereby contributing to improved diagnostic accuracy and

treatment planning.
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FIGURE 1

A polygon indicating the BL area (between CEJ and bone level).
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2 Materials and methods

2.1 Study population

After obtaining the University Human Research Ethics Board

approval under the code Pro00107743, PA radiographs belonging

to 210 patients collected from the Periodontal Graduate Program

in the School of Dentistry between 2017 and 2021. A total of

1,582 images were included in the study for testing the model

performance. Training was conducted for both BL segmentation

and apex detection models utilizing a separate dataset comprising

1,000 PA images from 572 patients sourced from a private dental

radiology office.
FIGURE 2

An example of a PA image with its corresponding mask.
2.2 Bone loss segmentation

2.2.1 Data preprocessing
To detect the amount of BL, the images were processed using

an open-source tool called Roboflow (41) for annotation using

polygons. Each radiograph was read by a dentist and a

periodontist with more than 5 years of clinical experience. To

manually determine the BL (the area between the CEJ of the

teeth and bone level in tooth-bearing areas), a polygon passing

through the CEJ of the teeth and the corresponding bone levels

was drawn (Figure 1). The final label was determined based on

consensus between the dentist and periodontist.

The annotated area was then changed to a binary mask (BL as

the mask area or region of interest and the background structures

in black). The images and their corresponding binary masks were

exported as Portable Network Graphics (PNG) format for further

analysis (Figure 2). The image dataset was preprocessed for

future analysis, which included resizing to 160*320 pixels and

enhancement using histogram equalization technique.
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2.2.2 Data augmentation
Image augmentation continued after data splitting to ensure

that data leakage would not occur. First, the total of 1,000 PA

images was randomly split into three parts: training, validation,

and testing in an 80:10:10 ratio (42, 43), respectively using scikit-

learn library (44), then the augmentation was done through

horizontal flipping and/or rotating at different angles (45) to

increase out the dataset by two folds. The final result was a total

of 1,600 PA images and their corresponding masks for training

and 200 images and masks for validation.
2.2.3 U-Net architecture for BL segmentation
Following data augmentation, the image dataset was

normalized by dividing by 255 to scale down the pixel values of
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FIGURE 3
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the images and their corresponding masks to a range between 0

and 1. The set of 1,582 images obtained from 210 patients

referred to the university periodontal clinic were finally used to

evaluate the model performance and its generalizability.

Different variations of U-Net (46) were trained and evaluated

to find the best architecture and hyperparameter settings for the

segmentation model. Finally, a U-Net model featuring 4 encoder

blocks with increasing filters (64, 128, 256, 528), a bridge of a

convolutional block with 1,024 filters, and 4 corresponding

decoder blocks with decreasing filters (512, 256, 128, 64) was

utilized for training. The model was trained with a batch size of

8 and a learning rate of 0.0001 over 15 epochs, using the Adam

optimizer, ReLU activation function, and the Dice coefficient as

the loss function.
Annotating the apexes on PA images using bounding boxes.
2.2.4 Evaluation of diagnostic outcome
Evaluation metrics include accuracy (the ratio of the correctly

predicted observations to the total observations), recall (the ratio

of true positives to the sum of true positives and false negatives),

precision (the ratio of true positives to the sum of true positives

and false positives), and F1-score (the harmonic mean of

precision and recall (35). Also, the Intersection over Union (IoU)

and area under receiver operating characteristics (ROC) curve

were used to evaluate the model performance on the validation

dataset. The magnitude of these metrics ranges from 0 to 1

indicating a perfect performance (47).

Additionally, the comparison was made between the maximum

amount of BL predicted by the model for each tooth and the

measurements obtained by the dentist and periodontist using

several metrics that are the standard metrics in understanding

the efficiency of the model in terms of error rate, including the

mean absolute error (MAE) and root mean square error (RMSE).

Also, the intraclass correlation coefficient (ICC) (48, 49), which

is a desirable measure of reliability that reflects both degree of

correlation and agreement between measurements was used to

assess the consistency and agreement among three raters (dentist,

periodontist, and model predictions) concerning numerical

measurements. For the MAE and RMSE the best value equals 0

while the worst value can be infinity (50). For ICC, values less

than 0.5 are indicative of poor reliability, values between 0.5 and

0.75 indicate moderate reliability, values between 0.75 and 0.9

indicate good reliability, and values greater than 0.90 indicate

excellent reliability (51).
2.3 Apex detection

2.3.1 Data preprocessing
A total of 1,000 PA images were imported into Roboflow (41)

for annotation. Annotation was performed by delineating

bounding boxes around the apices, ensuring that the center of

each box corresponded to the apex’s anatomical point. The

annotations were carried out by a general dentist and

subsequently reviewed and approved by a periodontist with over

10 years of experience (Figure 3).
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Subsequently, the annotated images were exported in PNG

format for subsequent analysis. The final determination of the

bounding box was made through consensus between the dentist

and the periodontist.

Furthermore, the image dataset underwent preprocessing steps

in preparation for future analysis. This preprocessing included

resizing all images to dimensions of 160 × 320 pixels. This

standardized format ensures consistency and facilitates

subsequent computational procedures, ensuring the compatibility

of the dataset for further analysis and model training.

2.3.2 Data augmentation
The data was split using Roboflow (41) splitting tool into 70%

training, 20% validation and 10% test datasets. Image

augmentation was done afterwards during model training to

ensure that data leakage would not occur.

2.3.3 YOLO-v9 architecture for apex detection
To detect the apexes of the teeth, the YOLOv9 model was

utilized. Hyperparameters were defined to optimize training, with

a learning rate set at 0.01. The model was trained for 75 epochs

with a batch size of 16.

During training, various techniques were employed to enhance

model performance and robustness. These included: data

augmentation using techniques such as blur, median blur,

grayscale conversion, and Contrast Limited Adaptive Histogram

Equalization (CLAHE) to introduce diversity and variability in the

training dataset. Additionally, optimization was performed using

the Stochastic Gradient Descent (SGD) optimizer with a learning

rate of 0.01. The training process was monitored using metrics

such as box loss, class loss, and DFL (Detect From Language) loss,

which were computed and evaluated across multiple epochs.

The training dataset consisted of annotated images and labels,

which were scanned and preprocessed before training commenced.

The dataset was divided into training and validation sets, with

appropriate caching mechanisms implemented to optimize data

loading and processing efficiency. Furthermore, performance

evaluation was conducted periodically during training using
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metrics such as precision, recall, and mean Average Precision (mAP)

calculated at various Intersection over Union (IoU) thresholds.

2.3.4 Evaluation of diagnostic outcome
To evaluate the model performance and generalizability in the

correct detection of root apexes, precision, recall, and mean average

precision (mAP) were used on the validation dataset. Additionally,

the model’s performance on the new test dataset (1,582 images)

was evaluated using MAE (the average magnitude of the errors

between the predicted values and the actual values), RMSE (the

square root of the mean of the squared differences between the

predicted and actual values), and ICC (two-way random effect,

single rater, absolute agreement) (48, 51) to compare the

agreement in the coordinates of the apexes in the ground truth

with those predicted by the model.
2.4 Measurement of maximum bone loss
percentage

2.4.1 Finding the maximum BL height
The maximum BL for each tooth on 1,582 new PA radiographs

was independently measured by a general dentist and a

periodontist, both with over five years of experience. These

measurements were conducted using Adobe Photoshop 24.1.1,

where the cursor was dragged to draw a line connecting the CEJ

to the deepest bone level via the ruler tool. BLs less than 2 mm

from the CEJ were not considered normal, as they were not

detectable by the model.

To determine the maximum height of BL in every individual

PA radiograph first, a custom Python function was developed to

automate the process of quantifying BL height within the images.

This function utilized established image processing techniques,

including thresholding and connected component analysis, to

identify regions of interest corresponding to areas of BL.

Upon thresholding the input image, connected component

analysis was applied to identify distinct regions representing

areas of BL (white areas in the masks). Each identified region

was then enclosed within a bounding box, facilitating the

extraction of its maximum height. This process ensures that the

height measurement accurately reflects the extent of BL within

the region of interest.

To evaluate the performance of the method in accurately

quantifying maximum BL height across the dataset, the measured

maximum BL heights by three raters were compared using the

MAE, RMSE, and ICC utilizing the “pingouin” package in

Python to assess the reliability or consistency of measurements

taken by computer, dentist, and the periodontist.
2.5 Finding the root length

2.5.1 Finding the coordinates of the segmented
CEJ center

To accurately calculate the root length of lower and upper teeth

from radiographs, a method was developed to locate the center
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point of the CEJ using OpenCV for image processing. Firstly, the

mask images were preprocessed by thresholding to obtain binary

images. The thresholding technique converts grayscale images

into binary images, simplifying subsequent image analysis.

Subsequently, contours representing the segmented mask in

the binary images were identified using the contour detection

algorithm provided by OpenCV. Contours are continuous lines

or curves that represent the boundaries of objects in an image. In

this context, contours outlined the edges of the BL area in the

mask images.

For each identified contour, the bounding rectangle enclosing

the contour was calculated. From the bounding rectangle, the

center point of the upper border of the segmented area for lower

teeth, and lower border of the segmented area for the upper

teeth were determined. This center point corresponds to the

approximate location of the CEJ center, a critical anatomical

landmark for measuring root length. The coordinates were then

recorded for further analysis.

To evaluate the performance of the method in accurately

locating the CEJ center points across the dataset, the values were

compared to their ground truth using the MAE, RMSE, and ICC.

2.5.2 Measuring the distance between CEJ and
detected apex

To calculate the root length for finding the percentage of BL,

the Euclidean distance formula - enables the calculation of the

straight-line distance between two points on the image grid

solely based on their pixel coordinates- was utilized. The formula

encapsulates these computations:

Distance =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(X2� X1)2 þ (Y2� Y1)2

p
in which, (x1, y1)

and (x2, y2) denote the pixel coordinates of the two points

respectively. (x1) and (x2) represent the x-coordinates and (y1)

and (y2) represent the y-coordinates of the first and second

points. By applying this formula, the exact distance between the

obtained CEJ center point and the root apex were determined.

Finally, using the maximum BL height and the root length for

each individual tooth, the BL percentage was calculated.

Also, the BL percentage for each tooth on PA radiographs was

independently measured by the same dentist and periodontist.

These measurements were performed using Adobe Photoshop

24.1.1, where the cursor was used to draw a line connecting the

CEJ to the root apexes (root length) with the ruler tool. The BL

percentage was calculated by dividing the maximum BL by the

measured root length. The BL percentages obtained from all

three raters were then compared to evaluate consistency using

RMSE, MAE, and ICC metrics to find the consistency in the BL

percentage measurements.
2.6 Determining the stage and grade of
periodontitis

The calculated percentage of the maximum BL was then used

to categorize the patients’ periodontitis stage as stage I (<15%),

stage II (15%–33%), and stage III/IV (>33%). Also, to assign the

grade of the disease, the same value was divided by the patient’s
frontiersin.org

https://doi.org/10.3389/fdmed.2024.1479380
https://www.frontiersin.org/journals/dental-medicine
https://www.frontiersin.org/


FIGURE 4

Training results of the U-Net model for segmentation of BL on PA radiographs.
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age. The outcome values less than 0.25 were assigned to grade A,

between 0.25 and 1 were assigned to grade B, and values greater

than 1 were assigned to grade C. To evaluate the final results,

evaluation metrics (accuracy, precision, recall, and F1-score) were

used to compare the output of this chapter with the ground

truth stages and grades.
FIGURE 5

ROC curve and AUC, evaluating the model performance on the
validation (A) and test (B) datasets.
3 Results

3.1 Bone loss segmentation

3.1.1 U-Net performance in segmenting Bl
The U-Net model achieved an accuracy of 94.9%, 92.9%, and

95.62% on training, validation, and test datasets, respectively for

segmentation of BL.

Over the course of 15 epochs, the model demonstrated a

consistent improvement in both training and validation

performance, as indicated by the metrics of loss and accuracy.

The learning rate remained constant at 1.0000e-04 throughout

the training, ensuring a stable and gradual optimization process

without drastic changes that could destabilize the learning

dynamics. The results of the training process are shown in Figure 4.

In addition to the training and validation metrics recorded over

the 15 epochs, the model’s performance was further evaluated

using several other metrics to provide a comprehensive

understanding of its effectiveness. The Receiver Operating

Characteristic (ROC) curve and Area Under the Curve (AUC)

were used to assess the model’s diagnostic ability for both

validation and new test images.

The ROC curve plots (Figures 5A,B) the true positive rate

(sensitivity) against the false positive rate (1-specificity) at

various threshold settings, offering a graphical representation of

the model’s performance. The AUC provides an aggregate

measure, with an AUC of 1 indicating a perfect model and an

AUC of 0.5 indicating no discriminatory power (52). For the

validation dataset, a high AUC value of 0.95 demonstrated the

model’s strong ability to segment the BL area correctly. Similarly,

evaluating the ROC curve and AUC (0.90) on the test dataset

confirmed the model’s generalization capabilities. Consistent high

AUC values for both datasets indicated that the model

performed well without overfitting to the training data.
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The Intersection over Union (IoU), also known as the Jaccard

Index, was used alongside the DC to further evaluate the

segmentation performance. IoU measures the overlap between

the predicted and true segmentation masks by dividing the

intersection of these masks by their union. IoU values also range

from 0 to 1, with 1 indicating perfect segmentation where the

predicted mask exactly matches the ground truth. This metric is

particularly valuable for assessing how well the model predicts

the boundaries and shapes of objects within an image. High IoU

values confirmed the model’s ability to accurately capture the

details and contours of the segmented objects.

The proposed model showcased a great performance across

various metrics on the test dataset. Figure 6 represents a sample

of the prediction made by the model for segmenting the BL area

in a PA image. The overall accuracy of the model on the test

dataset was 95.62%, indicating a high level of correctness in its

segmentation task.

Table 1 depicts the evaluation metrics used for assessment of

model performance on a set of 1,582 new PA images. According

to Table 1, precision, measuring the proportion of correctly

predicted positive pixels among all predicted positive pixels, was

notably high at 97.26%. This suggests that the model exhibits a

strong capability to accurately segment the regions of interest

while minimizing false positives (53). However, the recall metric

was comparatively lower at 63.90%. This indicates that while the

model accurately identifies many positive pixels, it misses slightly

more than 1/3 of the actual positive pixels present in the images.
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FIGURE 6

Model segmentation performance on the test dataset compared to the ground truth label.

TABLE 1 Performance metrics of the proposed U-Net model on 1,582 new
set of PA images for segmenting BL.

Metric Value
Accuracy 95.51

Precision 97.26

Recall 63.90

F1-score 77.12

Intersection over Union (IoU) 81.69

TABLE 2 Assessment of the agreement between the predicted and ground
truth coordinates of CEJ center points on the test PA images.

Metric CEJ-X coordinates CEJ-Y coordinates
RMSE 12.64 10.93

MAE 4.55 4.25

Ameli et al. 10.3389/fdmed.2024.1479380
In segmentation tasks, recall reflects the model’s ability to capture

the entirety of the target objects, highlighting areas where the

model may need improvement.

The F1-score was recorded at 77.12%. This metric provides a

balanced measure of the model’s segmentation performance,

considering both false positives and false negatives. The F1-score

underscores the need for a trade-off between precision and recall,

indicating areas where the model may excel in delineating object

boundaries while still needing enhancement in capturing entire

objects. The IoU was measured at 81.69%, indicative of the

effectiveness of the model in capturing the relevant regions of

interest within the images.
3.1.2 CEJ centre localization
In assessing the consistency of locating the CEJ center of the

teeth for measuring the BL percentage, a thorough analysis was

conducted using the same set of 1,582 new test images. The CEJ

center coordinates obtained through the application of OpenCV

library on the segmented masks were compared against ground

truth annotations, which were verified by a consensus between a

dentist and a periodontist.
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To quantitatively evaluate the agreement between the predicted

and ground truth coordinates, RMSE and MAE metrics were used

for both the X and Y coordinates (Table 2). Moreover, the ICC was

utilized to assess the inter-rater reliability between the model

predictions and the ground truth annotations. The ICC values

for CEJ_X and CEJ_Y coordinates were calculated as 0.9468 and

0.9629, respectively, indicating excellent agreement between the

model predictions and the ground truth (52).

3.1.3 Maximum bone loss measurement
The results revealed that the dentist and periodontist exhibited

the highest RMSE (0.0700) and MAE (0.0570), indicating the

greatest discrepancies between these raters. In contrast, the

periodontist and model measurements showed the lowest RMSE

(0.0617) and a moderate MAE (0.0507), reflecting the best

agreement. Measurements between the dentist and the model

demonstrated intermediate values, with an RMSE of 0.0637 and

the lowest MAE (0.0446), indicating good but slightly lesser

agreement than that between the periodontist and the model.

Also, ICC analysis was done to have a better understanding of

agreement among 3 raters. The results indicated that there is a very

high level of consistency among the three raters for the maximum

BL measurement. Both individual and average raters’ scores

showed strong agreement, with ICC values consistently above

0.94. This suggests that the ratings are reliable and that the
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maximum BL measurement done by model can be confidently used

for further analysis or decision-making processes.

Pairwise ICC comparison was done to find the agreement

between every two raters (Table 3). According to the table, the

best agreement was observed between the periodontist and the

model measurements with the highest ICC1 (0.945) and F-value

(35.71), and the 95% confidence interval (CI) of [0.92, 0.96].
3.2 Apex detection

The YOLOv9 model, employed for detecting the apexes of

teeth, was trained for 75 epochs, leveraging a range of

hyperparameters to optimize its performance. The training
TABLE 3 Inter-examiner reliability in maximum BL measurements among
periodontist, GP, and the model.

Raters ICC F-value 95% CI p-value
Dentist vs. model 0.944 34.73 0.92–0.96 <0.001

Dentist vs. periodontist 0.937 30.88 0.91- 0.96 <0.001

Periodontist vs. model 0.945 35.71 0.92- 0.96 <0.001

FIGURE 7

Training results of the YOLO-v9 model for apex detection.

FIGURE 8

An example of the model performance in detecting apexes on PA images.
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results are shown in Figure 7. A sample of the model

performance in detection of root apexes has been shown

in Figure 8.

The evaluation revealed promising results, with the model

achieving a mAP of 66.7%. Additionally, the precision metric

stood at 79.6%, indicating the model’s accuracy in correctly

identifying apexes. The recall metric, which measures the model’s

ability to capture all relevant instances, was recorded at 62.4%,

showcasing less than two third of the true positives being

correctly identified. Figure 9 demonstrates the precision-recall

and F1-curves indicating the performance of the model in

detecting root apexes.

To evaluate the performance of the YOLO-v9 model in

accurately detecting tooth apexes, a comprehensive analysis was

conducted using a new set of 1,582 images. The coordinates of

the detected apexes by the model were compared against ground

truth annotations, which were meticulously curated by a qualified

dentist and subsequently confirmed by a periodontist to ensure

accuracy and reliability.

To quantitatively assess the agreement between the predicted

and ground truth coordinates, RMSE and MAE for both the X

and Y coordinates were used (Table 4). Furthermore, the ICC
frontiersin.org

https://doi.org/10.3389/fdmed.2024.1479380
https://www.frontiersin.org/journals/dental-medicine
https://www.frontiersin.org/


FIGURE 9

Performance analysis of YOLO-v9 model for apex detection: (A) precision-recall and F1-score curves.

TABLE 4 Assessment of the agreement between the predicted and ground
truth coordinates of detected apexes on the test PA images.

Metric CEJ-X coordinates CEJ-Y coordinates
RMSE 1.25 0.03

MAE 0.15 0.01

TABLE 5 Inter-examiner reliability in BL percentage measurements among
periodontist, GP, and the model.

Raters ICC F-value 95% CI p-value
Dentist vs. model 0.943 34.33 0.92–0.96 <0.001

Dentist vs. periodontist 0.954 42.54 0.93–0.97 <0.001

Periodontist vs. model 0.959 47.57 0.94–0.97 <0.001

Ameli et al. 10.3389/fdmed.2024.1479380
measure for absolute consistency, was utilized to measure the inter-

rater reliability between the model predictions and the ground

truth. For the Apex_X coordinate, the ICC value was calculated

as 0.9832 with a 95% confidence interval of [0.98, 0.99],

indicating nearly perfect agreement between the model

predictions and the ground truth. Similarly, for the Apex_Y

coordinate, the ICC value was found to be 0.9936 with a 95%

confidence interval of [0.99, 1.00], demonstrating excellent

agreement between the model predictions and the ground truth.
3.3 Bone loss percentage

The results indicated that the model has higher consistency

with the periodontist (lower RMSE values) compared to the

dentist. Specifically, the RMSE (3.98) values for the periodontist

and measurements made by the model comparison were lower

than those for the dentist and model comparison (4.64),

suggesting that the model’s predictions align more closely with

those of the periodontist. Additionally, the comparison between

the periodontist and the dentist revealed that there is a moderate

level of consistency between their measurements (RMSE = 4.28).

However, the slightly higher RMSE values in the dentist and

periodontist comparison indicated some variability in their BL

percentage evaluations.
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Additionally, the ICC analysis indicated an excellent

consistency among the three raters for the BL percentage

measurement. Both individual and average raters’ scores

demonstrated excellent agreement, with ICC values consistently

exceeding 0.94.

Pairwise ICC comparison was done to find the agreement

between every two raters (Table 5). According to the table, the

pair with the best agreement was the model vs. periodontist, with

the highest ICC (0.9588) and F-value (47.5692), and a CI of

[0.94, 0.97].
3.4 Prediction of periodontitis stage

The performance of the proposed method for predicting the

stage of periodontitis was evaluated on a new test dataset

comprising 210 samples (181 stage III/IV, 27 stage II, and 3

stage I). The overall metrics for stage prediction demonstrated

promising results, as shown in Table 6. The method achieved a

precision of 0.7805, an accuracy of 0.7952, a recall of 0.7952, and

an F1-score of 0.7878. These metrics indicate a robust

performance in identifying the correct stage of periodontitis

across the test dataset.
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TABLE 6 Metrics for individual stage and grade categories.

Stage/grade Precision Accuracy Recall F1-Score
I 0.0 0.0 0.0 0.0

II 1.0 0.19 0.19 0.32

III/IV 1.0 0.89 0.89 0.94

A 0.0 0.0 0.0 0.0

B 1.0 0.71 0.71 0.77

C 1.0 0.62 0.62 0.83

Ameli et al. 10.3389/fdmed.2024.1479380
The detailed analysis of the individual stage categories revealed

varying degrees of prediction accuracy, as summarized in Table 6.

For stage III/IV, the method exhibited excellent performance with a

precision, recall, and accuracy of 1.0, 0.8950, and 0.8950,

respectively, resulting in a high F1-score of 0.9446. This indicates

that the model was particularly effective in identifying advanced

stages of periodontitis.

Conversely, the method’s performance for stage II was

significantly lower, with precision, recall, and accuracy of 1.0,

0.1923, and 0.1923, respectively, and an F1-score of 0.3226. This

suggests difficulties in correctly identifying stage II cases,

potentially due to overlapping features with other stages.

For stage I, the method failed to correctly identify any cases,

resulting in precision, recall, accuracy, and F1-score all being 0.0.

This highlights a significant limitation in the model’s ability to

predict early-stage periodontitis, likely due to the insufficient

number of training samples for stage I, with only three samples

available. To enhance the model’s performance in this category,

further refinement and the inclusion of a larger, more

representative dataset for early-stage periodontitis are necessary.
3.5 Prediction of periodontitis grade

The performance of the proposed method for predicting the

grade of periodontitis was assessed on a separate new test dataset

of 209 samples (8 with grade A, 58 grade B, and 144 grade C).

The overall metrics for grade prediction showed a precision of

0.67, an accuracy of 0.66, a recall of 0.66, and an F1-score of

0.66. These results indicate a reasonable ability to predict the

grade of periodontitis, although there is room for improvement.

An in-depth examination of the individual grade categories

provided further insights, as detailed in Table 6. For grade B, the

method performed excellently with precision, recall, and accuracy

of 1.0, 0.7083, and 0.7083, respectively, and an F1-score of

0.8293. This reflects a strong capability in identifying grade B

periodontitis cases.

For grade C, the method also showed good performance with a

precision, recall, and accuracy of 1.0, 0.6207, and 0.6207,

respectively, and an F1-score of 0.7660. This suggests that the

model is fairly accurate in predicting more advanced grades of

periodontitis. However, the method struggled significantly with

Grade A predictions. The precision, recall, accuracy, and F1-score

for grade A were all 0.0, indicating a complete inability to

correctly identify any cases in this category. This underscores the

need for further increase in the size of data by utilizing a larger,
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more diverse training dataset to capture the nuances of early-

grade periodontitis.
4 Discussion

This study aimed to enhance the accuracy and efficiency of

diagnosing and grading periodontal disease using advanced

models. Specifically, a U-Net model for segmenting BL on PA

images and a YOLO-v9 model for detecting the apexes of teeth

were employed. These methods were chosen for their recent

advancements and high performance in medical imaging tasks

(26, 27, 34). Comparing our results with those from existing

literature highlights both our achievements and the areas where

our approach offers distinct advantages.

The proposed U-Net model for BL segmentation achieved high

performance in segmenting BL, with an accuracy of 95.62%,

precision of 94.67%, recall of 66.06%, F1-score of 78.16%, and

IoU of 80.74%. These metrics are competitive with those

reported in similar studies, such as the work by Shon et al. (54),

where the U-Net model was used to segment the boundary of

periodontal BL (PBL) and CEJ on panoramic radiographs. In

their approach, the U-Net algorithm was applied separately to

detect PBL and CEJ boundaries by creating segmentation masks

for each structure. The model was trained independently for PBL

and CEJ segmentation, with training conducted for 30 epochs

and a batch size of 16 on a dataset of 1,044 panoramic

radiographs. Shon et al. reported training and validation

accuracies of 98.6% and 98.9% for PBL and CEJ

segmentation, respectively.

In the present study, PA radiographs, which are the standard

for detecting periodontal disease (55–57), were utilized. The

method for segmenting the boundaries of the BL and CEJ

involved a single U-Net model, applied to segment the

boundaries of both structures. This approach simplifies the

segmentation process and is tailored to the specific radiographic

modality used in periodontal diagnosis.

Chang et al. (58) also applied a hybrid DL approach for

detecting the radiographic bone level on panoramic radiographs.

The aim of their study was to develop an automated method for

diagnosing PBL (of individual teeth) for staging the periodontitis

according to the 2017 World Workshop criteria (2) on dental

panoramic radiographs using the DL hybrid method. They

applied a modified CNN from the Mask R-CNN based on a

feature pyramid network (FPN) and a ResNet101 backbone (59)

to detect the PBL and CEJ on 330 panoramic radiographs which

were increased by 64 times using the augmentation techniques.

Similar to the approach by Shon et al. (54), the model was

applied twice to segment the boundaries of PBL and CEJ

separately. Their results demonstrated a Jaccard index of 0.92,

pixel accuracy of 0.93, and DC of 0.88 for PBL detection. For

CEJ level segmentation, the Jaccard index, pixel accuracy, and

DC values were 0.87, 0.91, and 0.84, respectively. These results

are comparable to those obtained in our study, highlighting the

effectiveness of automated models for detecting PBL on

radiographs. However, in the present study, PA radiographs were
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used instead, and a single U-Net model was trained to segment

both the PBL and CEJ. This approach represents a more efficient

method for determining the extent of PBL on dental radiographs.

Ezhov et al. (60), applied U-Net with CNN architecture to

segment the alveolar BL on 1,135 CBCT scans. The PBL

sensitivity and specificity were 0.95 and 0.97, respectively with

the highest values obtained for severe PBL (0.93 AND 0.99,

respectively). Although CBCT can provide three-dimensional

information, there are still some limitations caused by artifacts,

noise and poor soft tissue contrast (61). Additionally, CBCT is

not routinely prescribed for the detection of periodontitis due to

its relatively high radiation dose compared to PA radiographs.

In a recent study conducted by Li et al. (62), the authors

systematically reviewed papers to identify the application of DL

for the classification of periodontitis and assess the accuracy of

this approach. In terms of dental imaging modalities, the studies

included primarily utilized PA images, panoramic images, and

CBCT images for periodontitis classification. PA radiograph

images capture the teeth and surrounding alveolar bone, thus

providing comprehensive information on RBL. However, this

modality has a limited view, typically showing only three to four

teeth per image (63). Regarding the task of classification using

DL models, classical models such as U-Net and YOLO were

often utilized in the included studies (46, 64), regardless of the

specific diagnosis task chosen. The authors reported that U-Net

has been proven to quickly and accurately identify targets in

medical images and generate high-quality segmentation results.

Additionally, the structure of U-Net can be flexibly adjusted

according to the specific needs of the task (62, 65).

Several studies have utilized image mining approaches to detect

the amount of BL for classifying periodontitis. While accurate

identification and delineation of BL is crucial for periodontal

treatment planning and monitoring disease progression, most

studies have focused on measuring the BL at two points (mesial

and distal) (14, 35–37). The novelty of this research lies in

segmenting the BL across each individual tooth rather than

focusing solely on mesial and distal points. This approach

mitigates the potential for underestimating the extent of BL,

providing a more comprehensive and accurate assessment

specifically when the furcation is involved in posterior teeth.

In the context of object detection, the introduction of the

YOLO models has further revolutionized the field, with

applications across diverse contexts demonstrating remarkable

performance relative to their two-stage counterparts (66). For

detecting the apexes of teeth, the proposed YOLO-v9 model

exhibited minimal error. The RMSE for the Apex-X coordinate

was 1.25 and for the Apex-Y coordinate was 0.03, while the

MAE was 0.15 and 0.01, respectively. This precision is critical for

accurate root length measurements. The YOLO-v9 algorithm

represents a significant advancement in the field of object

detection, providing real-time performance with remarkable

accuracy (34, 66).

The recent YOLO-v9 builds upon its predecessors by

incorporating enhancements that further improve both accuracy

and speed. Notable improvements in YOLOv9 include the

integration of advanced backbone networks, which facilitate
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richer feature representation and enhanced context perception.

Additionally, the introduction of PANet (Path Aggregation

Network) enables effective feature fusion across different scales,

leading to improved localization accuracy. Comparative analysis

with previous YOLO versions and other object detection

algorithms demonstrates the efficacy of YOLOv9 in achieving a

favorable balance between accuracy and speed (34, 67, 68).

A systematic review conducted by Li et al. (62), has shown that

various versions of YOLO, from YOLOv3 to YOLOv5, have been

utilized for detecting the PBL and classifying the periodontitis

stage on various dental images. Consistently, Uzun Saylan et al.

(32), utilized a YOLO-v5 algorithm to detect the BL across 685

panoramic radiographs. In addition to general evaluation, models

were grouped according to subregions (incisors, canines,

premolars, and molars) to provide a targeted assessment. Their

findings revealed that the lowest sensitivity and F1 score values

were associated with total alveolar BL (0.75 and 0.76,

respectively), while the highest values were observed in the

maxillary incisor region (1 and 0.95, respectively). They

concluded that YOLO architecture has significant potential in

analytical studies detecting PBL conditions.

After obtaining information about the key points needed for

calculating the BL percentage (coordinates of apex, CEJ center,

and maximum BL) through the proposed U-Net and YOLO-v9

algorithms, the BL percentage was calculated by dividing the

maximum BL by the length of the root, yielding high agreement

with clinician assessments. The ICC values were 0.943 for dentist

vs. model, 0.954 for dentist vs. periodontist, and 0.959 for

periodontist vs. model, indicating strong reliability of the

proposed model’s measurements.

Additionally, the strong ICC values for the coordinates of

detected apexes and segmented CEJs, indicating a high level of

agreement between both models’ predictions and the ground

truth values. This demonstrates the accuracy and reliability of the

proposed integrated model in detecting these key anatomical

landmarks, further validating its potential utility in

clinical applications.

The stage and grade prediction results showed varying

performance across different categories. For stage III/IV, the

model achieved a precision of 1.0 and an F1-score of 0.945,

indicating high accuracy for severe cases. However, performance

for stage I was poor, with an F1-score of 0.0. This discrepancy is

similar to challenges reported in other studies, such as the work

by Chang et al. (58), who also found lower accuracy in

classifying early stages of periodontitis. However, the results of

the present study emphasize the need for more robust models

and larger, more diverse datasets to improve early-stage

detection. In grade prediction, the proposed model performed

well for grades B and C, with F1-scores of 0.829 and 0.766,

respectively. However, it failed to accurately predict grade A. In

this study, the distribution of the test dataset was significantly

imbalanced, with the highest frequency of teeth classified as stage

III and grade B. While the imbalance in the training dataset was

partially mitigated by augmenting the images of minority stages

and grades, this issue needs further attention through additional

data collection in future research.
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The overall metrics for grade prediction were found to be lower

compared to those for stage prediction. This finding aligns with the

results of Ertas et al. (35), who reported lower clinical accuracy

values for classifying the grade of periodontitis using panoramic

images (64.5% vs. 88.2%). This could be explained by the fact

that the progression of periodontal disease (grade) is influenced

by multiple factors. While some individuals may develop severe

periodontitis rapidly, others may maintain a mild stage of the

disease throughout their lives. Additionally, the progression of

periodontitis is less predictable in certain patients, necessitating

diverse treatment plans. Established risk factors that accelerate

BL include smoking and poorly controlled diabetes, alongside

obesity, genetics, physical activity, and nutrition (69, 70).

In contrast to the staging of periodontitis, there are a few studies

that determine the grade of periodontal disease solely based on BL

percentage. Shon et al. (54), selected a YOLO-v5 architecture for

detecting the teeth objects and classifying them according to the

teeth numbering system. The detected tooth numbers were then

integrated with the boundaries identified using U-Net to

determine the length of the roots and stage of periodontal disease

for each tooth. They reported that the integrated framework had

an accuracy of 0.929, with a recall and precision of 0.807 and

0.724, respectively, in average across all four stages.

Similarly, Jiang et al. (36), applied a YOLO-v4 model integrated

with U-Net to determine the stages of periodontitis according to

the percentage of PBL. After segmenting each tooth using the U-

Net model, YOLO-v4 was utilized to detect the 6 key points for

each posterior tooth (CEJ mesial and distal, bone level mesial

and distal, and root apexes mesial and distal), based on which

the PBL% was mathematically calculated on a set of 2,560

panoramic radiographs. They concluded that the performance of

the model was entirely acceptable, with an overall accuracy of

0.77, although it varied across different teeth.

Comparing our findings with existing literature, several differences

and advantages of our approach become evident. In this study, the

latest iterations of U-Net and YOLO models (YOLO-v9), were

utilized, which have demonstrated superior performance in recent

benchmarks. This choice likely contributed to higher accuracy and

precision observed in the results, particularly in segmentation and

apex detection tasks. The high ICC values and minimal errors in

apex detection highlight the precision and reliability of the proposed

models, making them suitable for clinical application. These metrics

are consistent with or superior to those reported in studies using

older model versions or alternative approaches.

Additionally, by integrating U-Net for segmentation and YOLO-

v9 for detection, the authors leveraged the strengths of both models,

resulting in a comprehensive approach to diagnosing and grading

periodontal disease. This hybrid approach is supported by studies

that have shown improved performance using combined models

(58, 71). A novel hybrid framework combining DL architecture

demonstrated high accuracy and excellent reliability in the

automatic diagnosis of PBL percentage for individual teeth.

This study’s methodology, which aligns well with clinical

practices and provides high agreement with clinician assessments,

underscores the practical applicability of our models. By using

the most recent versions of U-Net and YOLO, this study benefits
Frontiers in Dental Medicine 12
from the latest advancements in DL, resulting in higher accuracy

and precision. In addition to evaluating segmentation and

detection performance, we validated our models against clinician

assessments, thereby providing a comprehensive evaluation of

their clinical utility. This method utilized the percentage rate of

BL to automatically stage and grade periodontitis, following the

new criteria proposed at the 2017 World Workshop (2).

Oh et al. (72) conducted a study to identify discrepancies in

periodontitis classification among dental practitioners with

different educational backgrounds. The study included two

cohorts: dental practitioners with periodontal backgrounds (n1 =

31) and those with other educational backgrounds (n2 = 33). The

survey instrument featured three periodontitis cases (one with

stage III grade C, one with stage II grade B, and one with stage IV

grade B), along with guidelines for classification and a

questionnaire comprising both closed and open-ended questions.

The study evaluated the accuracy of correct classification and the

agreement between the two cohorts. The findings revealed a fair

level of agreement in periodontitis classification among

practitioners from different educational backgrounds. The

periodontal cohort demonstrated better accuracy in classifying the

stage (71.33%) and grade (64%) compared to the non-periodontal

cohort (61.67% and 49.33%, respectively). In comparison, the

results of the approach in the present study show higher accuracy

in determining the stage and grade of periodontitis than those

observed in Oh et al.’s study involving human evaluators.

The findings of this study have significant implications for the field

of dental diagnostics. The application of AI to automate the

classification of periodontitis stages and grades can greatly enhance

diagnostic accuracy and efficiency, ultimately leading to improved

patient outcomes. By minimizing dependence on subjective

interpretations and increasing the consistency of diagnostic

assessments, these AI models hold the potential to revolutionize

periodontal disease management. Moreover, integrating these

techniques into Clinical Decision Support Systems (CDSS) can

further augment clinical workflows and decision-making processes,

providing real-time, evidence-based recommendations and enhancing

overall patient care.

Recently, software tools like the electronic periodontal

diagnosis tool (EPDT) and web-based PocketPerio application

(73, 74) have shown to increase diagnostic accuracy in clinical

settings. These tools enhance traditional methods by providing a

systematic approach to data collection and interpretation.

However, while these applications enrich clinical diagnosis, they

may not match the scalability and efficiency of AI-assisted

methods in handling large volumes of data and detecting subtle

patterns indicative of BL. AI models, such as those employed in

this study, offer the potential to not only match but also surpass

these advantages by incorporating advanced image processing

and ML techniques to refine diagnoses further.
4.1 Limitations

Radiographs, while invaluable in diagnosing periodontitis, have

certain limitations. They primarily offer a two-dimensional
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representation, which can lead to underestimation of BL,

particularly in the buccal and lingual areas. Additionally,

radiographs cannot visualize soft tissue, which is crucial for

assessing the entire periodontal condition. The inability to

capture early inflammatory changes and the difficulty in

distinguishing between old and active BL further limit their

diagnostic capabilities. Despite these drawbacks, radiographs

remain a cornerstone in periodontal diagnosis, especially when

complemented by clinical examination and patient history.

However, advances in AI, like the ones proposed in this

study, are particularly promising as they allow for the precise

classification of periodontal disease stages and grades by

analyzing radiographic images. Furthermore, AI can assist in

standardizing interpretations, reducing observer variability,

and processing large datasets rapidly, which can improve

clinical decision-making.

Also, the quality of the images and annotations was crucial.

High-quality images with precise annotations are necessary for

training accurate models, and any inconsistencies or errors in

annotations could lead to incorrect predictions and

misclassification of periodontal disease stages and grades. To

mitigate this, multiple annotators, including dental professionals

with expertise in periodontal disease, were engaged to ensure

accurate image annotations. Preprocessing methods such as

Contrast Limited Adaptive Histogram Equalization (CLAHE)

were used to standardize image quality and address variations.

It’s important to note that while the proposed method

demonstrated precise classification of the stage and grade of

periodontal disease, comparable to clinical experts, it relies solely

on image data. This method does not replace clinical judgment,

as it does not consider important patient information such as

medical and dental history. Integrating these aspects remains

essential for a comprehensive diagnosis.

Despite the challenges posed by data imbalance, the results of

this research are clinically useful. The high accuracies observed,

especially in advanced stages of periodontitis, suggest that these

AI models can provide reliable diagnostic support, even when

faced with unbalanced datasets. Clinically, this means that AI can

assist in identifying severe cases that require immediate attention,

thereby improving patient management and outcomes.

Future research should focus on expanding the dataset to

include a more diverse patient population and different clinical

settings. This would help validate the generalizability of the

models and refine their performance further. It is also important

to compare various models including the transformer

architectures and CNNs to provide insights into which

approaches are most effective for predicting periodontal disease

stages and grades based on PA radiographs.
5 Conclusion

This study demonstrates the significant potential of utilizing

advanced ML models, specifically U-Net and YOLO-v9, for the

accurate segmentation and detection of periodontal disease

markers on PA images. The results indicate that these models
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can achieve high precision and reliability in identifying BL and

detecting apexes, crucial for calculating BL percentages and

subsequent disease staging and grading.

The high concordance between the proposed model’s

measurements and clinician assessments underscores the

practical utility of these AI tools in real-world clinical settings.

By leveraging the strengths of U-Net and YOLO-v9, the

authors have developed a comprehensive approach that

enhances the accuracy and efficiency of periodontal disease

diagnosis and grading. This method can systematically and

precisely assist dental professionals in diagnosing and

monitoring periodontitis using PA radiographs. Consequently,

it has the potential to significantly enhance dental

professionals’ performance in the diagnosis and treatment of

periodontitis. Future research should aim to expand the

dataset size and diversity and refine the models further to

improve early-stage detection capabilities.
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