
TYPE Original Research
PUBLISHED 22 November 2024| DOI 10.3389/fdmed.2024.1480346
EDITED BY

Carlos M. Ardila,

University of Antioquia, Colombia

REVIEWED BY

Chiharu Fujihara,

Osaka University, Japan

Nicole De Mello Fiallos,

University of Florida, United States

*CORRESPONDENCE

Xuejing Duan

miqiu410@126.com

†These authors share first authorship

RECEIVED 20 August 2024

ACCEPTED 07 November 2024

PUBLISHED 22 November 2024

CITATION

Li H, Du W, Ye X, Luo X and Duan X (2024)

Genetic analysis of potential markers and

therapeutic targets for immunity in

periodontitis.

Front. Dent. Med 5:1480346.

doi: 10.3389/fdmed.2024.1480346

COPYRIGHT

© 2024 Li, Du, Ye, Luo and Duan. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with
these terms.
Frontiers in Dental Medicine
Genetic analysis of potential
markers and therapeutic targets
for immunity in periodontitis
Hui Li1†, Wanqing Du1†, Xin Ye2, Xi Luo2 and Xuejing Duan2*
1School of Stomatology, Shandong First Medical University, Jinan, China, 2Department of Stomatology,
Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
Objective: Periodontitis is a chronic inflammatory periodontal disease resulting
in destroyed periodontal tissue. Many studies have found that the host’s
inflammatory immune responses are involved in the risk of periodontal tissue
damage. In this study, we aim to identify potential biomarkers and therapeutic
targets related to immunity in periodontitis.
Methods: GSE16134 and GSE10334 were downloaded from the Gene Expression
Omnibus (GEO) database, and the immune-related genes were obtained from the
Immunology Database and Analysis Portal (ImmPort). After the differentially
expressed immune-related genes (DE-IRGs) were identified, enrichment analysis
was performed. Two machine learning methods, the least absolute shrinkage
and selector operation (LASSO) logistic regression and the support vector
machine-recursive feature elimination (SVM-RFE), were used to screen out
potential markers for the diagnosis of periodontitis. The CIBERSORT algorithm
and LM22 matrix were used to analyze the percentage of infiltrating immune
cells in periodontitis. Finally, the potential drug targets for the selected
immune-related marker genes were predicted using relevant databases.
Results: A total of 7 genes (CD19, CXCR4, FABP4, FOS, IGHD, IL2RG, and PPBP)
were upregulated in periodontitis samples. The area under the receiver operating
characteristic curve (AUC) value of only one gene for distinguishing periodontitis
from healthy samples ranged from 0.724 to 0.894. The prediction ability of the
combined risk score of these 7 DE-IRGs was improved (AUC= 0.955). Naïve B
cells, neutrophils, plasma cells, and activated memory CD4 T cells were
significantly enriched in periodontitis samples, and 25 drugs targeting 4
DE-IRGs were predicted.
Conclusion: We developed a diagnostic model based on seven IRGs for
periodontitis. The possible drugs targeting IRGs may provide new ideas for
periodontitis treatment.
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Introduction

Periodontitis is currently the sixth most prevalent disease among adults worldwide (1).

Periodontitis is a bacterially induced inflammatory disease that slowly destroys the

connective tissue and bone-supporting teeth in the oral cavity. The initiating factor of

periodontal disease is dental plaque microorganisms, which is a major contributing

factor in periodontal disease (2). Furthermore, the development of periodontitis is also

affected by local and systemic risk factors, among which are dental calculus, occlusal

trauma, smoking, diabetes mellitus, etc. Recent studies have uncovered novel

mechanisms underlying the breakdown of periodontal hostmicrobe homeostasis, which
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can precipitate dysbiosis and periodontitis in susceptible hosts. In

periodontal diseases, polymicrobial communities induce a

dysregulated and destructive host response through an overall

mechanism referred to as polymicrobial synergy and dysbiosis

(3, 4). The main treatment methods for periodontitis are basic

and surgical therapies, which mainly aim to remove plaque,

calculus, the inner wall, and root surface of infected pockets, in

order to completely eliminate periodontal inflammation (5). The

former encompasses scaling, subgingival scaling and root

planning, plaque control, adjunctive therapy with antibacterial

drugs, etc. The latter comprises periodontal resection and

periodontal regeneration. Additionally, there are some new

technologies, such as the application of lasers and bioactive factors.

Periodontal pathogens can escape from the host immune

reaction through various mechanisms and thus suppress the

innate immune response of oral epithelial cells, which results in

persistent periodontal infection (6). Chronic inflammation caused

by the subgingival microbial community has been identified as

the main reason for periodontitis and alveolar bone resorption

(7). The keystone-pathogen hypothesis holds that certain low-

abundance microbial pathogens can orchestrate inflammatory

disease by remodelling a normally benign microbiota into a

dysbiotic one (8). Porphyromonas gingivalis is a key pathogen in

periodontitis that reshapes commensal microbiota to dysbiotic

partners and destroys the stable balance with the host tissue,

resulting in destructive inflammation (8, 9). This partially

explains the complex etiology of periodontitis. In addition,

the dysbiotic oral microbial communities could mediate

inflammatory pathology (10). Periodontal bacteria can influence

the interaction with the host immune reaction to increase

their adaptability (10). Chronical exposure to dysbiotic microbial

communities that evade the host immune response and promote

inflammation can adversely affect systemic health.

At present, the molecular mechanisms of periodontitis are not

fully understood, but it is generally believed that they involve

complex interactions among multiple factors. These include the

release of inflammatory mediators, imbalanced regulation of

cytokines, abnormal host immune responses, the effects of

microorganisms and their toxins on cell signaling pathways, and

individual susceptibility differences due to genetic factors. The

specific molecular mechanisms remain incompletely clear. Recent

advancements in bioinformatics techniques have opened new

avenues for understanding the underlying genetic and molecular

frameworks associated with periodontitis. By employing high-

throughput sequencing technologies and microarray analyses,

researchers are able to identify differentially expressed genes that

may play critical roles in the pathogenesis of this condition.

These genes could be involved in various biological processes

such as cell signaling pathways, immune responses, and tissue

remodeling. The use of bioinformatics techniques to investigate

the differentially expressed genes related to periodontitis and

their possible functions and signaling pathways may offer a

bioinformatics foundation for the diagnosis, treatment and

prognosis of periodontitis. Furthermore, integrating bioinformatics

approaches with clinical data could enhance our ability to develop
Frontiers in Dental Medicine 02
biomarkers for early diagnosis and prognosis of periodontitis.

Identifying periodontitis at an early stage of chronic inflammatory

responses greatly improves the prognosis because the alveolar bone

resorption is irreversible at a later stage (11). A number of studies

have employed bioinformatics techniques in the diagnosis and

prognosis of periodontal diseases. For instance, some research has

discovered diagnostic markers based on miRNAs and cell

pyroptosis-related genes, whose sensitivity and specificity are

convincingly applicable for the diagnosis of periodontal diseases

(12, 13), suggesting the potential application of bioinformatics in

diagnosis and prognosis of periodontitis.

As previously stated, inflammatory immune responses are

correlated with the risk of periodontal tissue damage. Bacteria

trigger an immune response within the host’s body, leading to

inflammatory cell infiltration. The host’s immune cells play dual

roles in chronic periodontitis, including controlling periodontal

infections and destroying periodontal tissues. Numerous genes or

cytokines play different roles in the process. Hence, through

analyzing the relationship between periodontitis and immune

genes, we can acquire a deeper understanding of this disease and

apply it to subsequent diagnosis and treatment. Here we

systematically explored the expression of immune-related genes

(IRGs) and constructed an IRGs-based diagnostic signature to

analyze the relationship between the expression of IRGs and the

level of immune cell infiltration. Furthermore, identifying

possible drugs targeting these IRGs could provide valuable

insights into novel treatment options for periodontitis

management. These therapeutics might include small molecules

or biologics designed specifically to modulate key signaling

pathways associated with inflammation and immunity within

periodontal tissues. Ultimately, integrating findings from our

research into clinical practice has the potential to enhance

diagnostic accuracy and improve patient outcomes through

personalized medicine approaches tailored for individuals

suffering from chronic periodontitis.
Materials and methods

Data acquisition and pre-processing

Microarray data GSE16134 (14) and GSE10334 (15) were

download from the Gene Expression Omnibus (GEO) database

(http://www.ncbi.nlm.nih.gov/geo). GSE16134 dataset contained

241 periodontitis samples of gingival tissues and 69 healthy

samples, while GSE10334 dataset contained 183 periodontitis

samples and 64 healthy samples. Periodontitis samples in two

dataset are obtained from patients with chronic or aggressive

periodontitis. Both datasets were retrieved from the GPL570

(HG-U133_Plus_2) Affymetrix Human Genome U133 Plus 2.0

Array. The GSE16134 dataset was used as the discovery dataset,

while the GSE10334 dataset as the external validation dataset. To

pre-process the gene expression data, probes were converted to

gene symbols based on the annotation file provided by the

platform manufacturer. In particular, probes without a
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corresponding gene symbol were removed, and average values were

calculated when a gene corresponded to multiple probes. A total of

2,483 IRGs were obtained from the Immunology Database and

Analysis Portal (ImmPort, https://www.immport.org/) (16). After

removing duplicated genes, 1,793 IRGs were finally included in

this paper.
Differential gene analysis and functional
enrichment

The differentially expressed genes (DEG) between periodontitis

samples and healthy samples were identified using limma package

version 3.34.7 in R3.6 (17). The inclusion criteria of DEGs included

an absolute log2FC > 1 and the BH-adjusted p value < 0.05. The

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) enrichment were performed with ClusterProfiler

packages 4 (18).
Identification of IRG diagnostic markers
for periodontitis

In the training step, the least absolute shrinkage and selection

operator (LASSO) in the R3.6.1 package Version 1.2 penalty was

applied to the discovery dataset to build an optimal IRG

signature for data dimension reduction (19). Ten-fold cross-

validation was performed to find the optimal penalty parameter

that gave the maximum AUC value. Meanwhile, the e1071 R3.6.1

package was used to build a support vector machine-recursive

feature elimination (SVM-RFE) model and the mean error rate

was compared with 10-fold cross-validation (20). Additionally,

overlapping genes obtained from both algorithms were

considered the best IRG markers for periodontitis. Moreover,

using the R package glm, the best gene markers were used to

construct the IRG diagnostic signature based on the following

formula: Risk Score =
Pn

i¼1 Coefi � Ei, where the Coefi is the

coefficient and the Ei is the normalized expression of selected

IRGs by log2 and Z-score transformation. Finally, receiver

operating characteristic (ROC) curves were plotted, and the AUC

was used to evaluate whether the selected gene markers and IRG

signature had diagnostic values.

In the validation step, the same formula generated on the

discovery dataset was used to calculate the risk score in the

external validation dataset and the AUC value was used to

evaluate the IRG signature in periodontitis diagnosis.
Immune cell infiltration

To assess the immune activity, we applied the R3.6.1 package

“ESTIMATE” (21) to quantify the infiltrating immune cells in

the gingival tissues according to their gene expression values and

obtained immune scores for each sample in the GSE16134 dataset.

The CIBERSORT algorithm and LM22 matrix were used to

analyze the percentage of infiltrating immune cells in the
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microenvironment for each sample in the GSE16134 dataset (22).

CIBERSORT is a deconvolution algorithm using transcriptomic

data of 547 characteristic genes to predict the infiltration of 22

immune cell types in each sample (22).
Marker gene and drug interactions

To identify potential drugs for periodontitis, relevant databases

were used to predict the drug targets of the selected marker genes

(23). Over 100,000 drug-gene interactions were collected from

DrugBank (24), PharmGKB (25), Chembl (https://www.ebi.ac.uk/

chembl/), Drug Target Commons (26), TTD (http://bidd.nus.edu.

sg/group/cjttd/), and Drug Gene Interaction Database (DGIdb)

(23) and the interactions were visualized with Cytoscape (27).

A comprehensive flowchart was developed to illustrate the

entire experimental process (Figure 1).
Results

DE-IRGs identified from the GSDE16134
dataset

There were 234 up-regulated genes and 58 down-regulated

genes in periodontitis samples compared with healthy samples

(Figure 2A). Among them, 45 differentially expressed immune-

related genes (DE-IRGs) were identified, including 40 with

up-regulation and 5 with down-regulation (Figure 2B). To

elucidate the biological functions of the 45 DE-IRGs, GO and

KEGG enrichment analyses were performed. GO-molecular

function (MF) revealed the significant enrichment of DE-IRGs in

“cytokine activity”, “CXCR chemokine receptor binding”, “G

protein-coupled receptor binding”, “chemokine activity”, “receptor

ligand activity”, and “immune receptor activity” (Figure 2C). With

regard to cellar component (CC), DE-IRGs were significantly

associated with “external side of plasma membrane”, “blood

microparticle”, and “immunoglobulin complex” (Figure 2C). As

for GO-biological process (BP) annotation, DE-IRGs were

associated with “cytokine-mediated signaling pathway”, “neutrophil

chemotaxis”, “leukocyte chemotaxis”, and “granulocyte chemotaxis”

(Figure 2C). The KEGG enrichment analysis suggested the

close associations of DE-IRGs with “cytokine-cytokine receptor

interaction”, “chemokine signaling pathway”, and “IL-17 signaling

pathway” (Figure 2D).
Seven DE-IRGs served as markers to
diagnose periodontitis

The use of DE-IRGs in the diagnosis of periodontitis was

further investigated. Two different machine learning algorithms

LASSO and SVM-RFE were then used to select DE-IRGs in the

GSE16134 dataset. LASSO algorithm was performed on the 45

DE-IRGs, and a total of 11 optimized diagnostic DE-IRGs were

obtained (Figures 3A,B). Then SVM-RFE algorithm identified 14
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FIGURE 1

The flowchart of the experimental process.
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DE-IRGs as the optimal combination of feature genes (Figures 3C,

D). The 7 overlapping DE-IRGs (CD19, CXCR4, FABP4, FOS,

IGHD, IL2RG, and PPBP) were finally identified to serve as

diagnostic markers (Figure 3E).

Based on the filtered 7 DE-IRGs, the R package glm was

further used to construct the IRG diagnostic signature. The

corresponding risk score was computed according to the

formula: Risk score = 1.425 × CD19 + 0.447 × CXCR4 + 3.270 ×

FABP4 + 0.831 × FOS + 0.431 × IGHD + 0.832 × IL2RG + 1.925 ×

PPBP + 4.046. According to the ROC curve analysis, the AUC

value of only one gene for distinguishing periodontitis from

healthy samples ranged from 0.724 to 0.894 (Figure 3F). In the

combination of all 7 DE-IRGs, the prediction ability of the model

was improved (AUC= 0.955) (Figure 3G). Based on the calculated

risk score, the patients were assigned into high-risk and low-risk

groups according to the cutoff determined by the ROC curve

(Supplementary Figure S1). The expression levels of 7 DE-IRGs

were displayed in heatmap plot (Supplementary Figure S1).

We further validated the model in the GSE10334 dataset, with

the risk score calculated according to the same formula. The ROC

curve showed that the combined model had a good performance in

distinguishing periodontitis from healthy samples in the external

validation dataset (AUC = 0.925, Figure 4A). The expression

levels of all diagnostic marker genes were validated in the

GSE10334 dataset. All genes showed similar expression pattern to

that in the GSE16134 dataset, with significantly higher expression

in periodontitis samples (Figures 4B,H).
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Immune microenvironment in periodontitis

Evidence suggests that periodontitis is closely associated with

the immune microenvironment. Based on the R package

Estimate, immune scores for each sample in the GSE16134

dataset were calculated. The periodontitis samples showed higher

immune scores than healthy samples (p value < 2.26 × 10−16,

Figure 5A). The infiltration level of 22 immune cell types was

further determined with the CIBERSORT algorithm (Figure 5B).

After Bonferroni correction (p value < 2.3 × hnyt10−3, 0.05/22), it

was found that naïve B cells, neutrophils, plasma cells, and

activated memory CD4 T cells were significantly enriched in

periodontitis samples (p value < 2.26 × 10−16, Figure 5B). While

the percentages of memory B cells, activated dendritic cells, M1

macrophages, M2 macrophages, resting mast cells, CD8 T cells,

and follicular helper T cells in periodontitis samples were lower

than those in healthy samples (Figure 5B). Pearson correlation

analyses suggested that naïve B cells had strong positive

correlations with the expression of CD19 (r = 0.44, p value =

2.54 × 10−16), CXCR4 (r = 0.17, p value = 2.64 × 10−3), FABP4

(r = 0.12, p value = 0.036), IGHD (r = 0.60, p value = 1.78 × 10−31),

IL2RG (r = 0.44, p value = 3.42 × 10−16), and risk score (r = 0.32,

p value = 1.40 × 10−8). The expression of CXCR4 (r = 0.13,

p value = 0.027) and PPBP (r = 0.55, p value = 1.43 × 10−25) and

the risk score (r = 0.25, p value = 1.07 × 10−5) were positively

correlated with neutrophils. While plasma cells were positively

correlated with CD19 (r = 0.65, p value = 4.35 × 10−39), CXCR4
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FIGURE 2

DE-IRGs expression levels in periodontitis samples and functional analyses of DE-IRGs. (A) Volcano plot showed the DEGs between periodontitis and
healthy samples in the GSE16134 dataset. (B) The expression of 45 DE-IRGs in all samples in the GSE16134 dataset. The enrichment analysis showed
the enriched GO terms (C) and KEGG pathways (D).
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(r = 0.42, p value = 1.44 × 10−14), FABP4 (r = 0.25, p value = 9.33 ×

10−6), FOS (r = 0.12, p value = 0.031), IGHD (r = 0.77, p value =

3.75 × 10−63), IL2RG (r = 0.54, p value = 3.13 × 10−25), and the

risk score (r = 0.53, p value = 5.84 × 10−24) (Figure 5C).
Drugs that may target marker genes
were predicted

Drugs that may target the diagnostic markers were predicted

through the DGIdb database. The interactions between drugs and

markers were visualized with Cytoscape software (Figure 6).

Altogether 25 drugs that target markers were predicted from

DGIdb database, which including 11 for CXCR4, 6 for CD19, 3

for IL2RG, and 5 for FOS. However, no drugs were predicted for

other three genes (FABP4, IGHD, and PPBP).
Discussion

Even though periodontitis is caused by bacteria that colonize

the surface of teeth and the gingival sulcus, the host response is
Frontiers in Dental Medicine 05
believed to play a key role in the destruction of periodontal

connective tissue and alveolar bone. Bacteria trigger an immune

response in the host, leading to local inflammatory infiltration

and resorptive activity by osteoclasts, ultimately resulting in

severe damage to the periodontal tissue.

Similar to a previous study, we identified three types of

immune cells (naïve B cells, neutrophils, and plasma cells

elevated in periodontitis samples (28). Plasma cells make up

approximately 50% of total immune infiltrates (29, 30). The data

suggested the accuracy of the CIBERSORT algorithm in

predicting the percentage of infiltrating immune cells in the

gingival microenvironment.

Neutrophils (PMNs) exert bidirectional effects on

inflammation in chronic periodontitis. On the one hand, the

bactericidal function of PMNs can control infections by lowering

the level of pathogenic microorganisms and thus inhibiting

inflammatory responses (31). On the other hand, PMNs are

activated and recruited to the site of infection when bacteria and

their products invade the host, its metabolic products lead to

imbalance of periodontal homeosta, causing destruction of

periodontal supportive tissues, while the active oxygen species

produced by it cause bacterial- and host-mediated damage to
frontiersin.org
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FIGURE 3

Seven DE-IRGs were identified as diagnostic markers for periodontitis. (A,B) Using LOSSO logistic regression method, ten-fold cross-validation was
conducted to tune the optimal value of the penalty parameter, and 11 DE-IRGs were identified. (C,D) The SVM-RFE algorithm selected the best
combine of 14 DE-IRGs in predicting periodontitis. (E) The Venn plot showed the overlapping genes identified by the LOSSO logistic regression
method and the SVM-RFE algorithm. (F) The ROC curve showed the ability to predict periodontitis using single gene. (G) The combination of 7
DE-IRGs in a logistic regression model to identify the AUC of periodontitis samples in the GSE16134 dataset.

FIGURE 4

The combined risk score and the expression of 7 DE-IRGs in the GSE10334 dataset. (A) The ROC curve showed the ability to predict periodontitis in the
GSE10334 dataset. (A–H) The expression of 7 DE-IRGs in the GSE10334 dataset.
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FIGURE 5

Distinct immune cell infiltration in periodontitis samples and healthy controls. (A) Immune score was increased in periodontitis samples compared with
healthy controls. (B) CIBERSORT was conducted to show the level of 22 immune cell infiltration in periodontitis samples and healthy controls in the
GSE16134 dataset. (C) The correlation between the expression of 7 DE-IRGs and the percentage of immune cell infiltration.
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periodontal tissues (32). PMNs can also promote bone resorption

by upregulating the production of pro-inflammatory factors,

activating the expression of RANKL, or even directly acting on

osteoclasts to promote bone loss to promote alveolar bone

resorption (7, 33).

Lymphocytes also play a dual role in chronic periodontitis,

both accelerating the destruction of periodontal tissues (34, 35)

and inhibiting periodontal inflammation. When considering the

role of lymphocytes, it is necessary to consider specific

conditions and specific lymphocyte subtypes.

The host’s inflammatory immune system plays a dual role in

chronic periodontitis, with numerous genes or cytokines playing

different roles in the process. Controlling periodontal infections

and destroying periodontal tissues share similar cellular and

molecular signaling pathways. Cytokines are considered an

intermediate mechanism between bacterial stimulation and tissue

destruction (36). The balance between stimulatory and inhibitory

cytokines, as well as the regulation of their receptors and

signal cascades, determines the level of tissue loss in the

periodontal tissue.

In this study, seven genes (CD19, CXCR4, FABP4, FOS, IGHD,

IL2RG, and PPBP) were significantly up-regulated in periodontitis

samples. Altogether 25 drugs that target markers were predicted
Frontiers in Dental Medicine 07
from DGIdb database, which including 11 for CXCR4, 6 for

CD19, 3 for IL2RG, and 5 for FOS. CD19 is a B cell-specific

transmembrane protein that is expressed during the pre-B cell

stage to the plasma cell differentiation stage in humans and mice,

and functions as a co-receptor of the B cell receptor (37). CD19

is essential at multiple stages of B cell development, and its

expression level and activity directly affect the growth,

differentiation, and function of B cells. CXCR4, one of the

marker genes, is also an important chemokine receptor.

Chemokines are a kind of cytokines that mediate the recruitment

and activation of leukocytes and participate in the pathogenesis

of various immune system-related diseases, including periodontitis

(38, 39). The interleukin 2 receptor subunit gamma chain

(IL2Rg, also known as CD132) is a common receptor subunit

for several important immune factors, including IL-2, IL-4, and

IL-7, among others. The FOS gene, a component of the AP-1

transcription factor complex, is implicated in various cellular

processes, including cell proliferation, differentiation, and

survival (40). Some studies have found that an appropriately

high expression of AP1 can enhance the body’s immune and

antibacterial ability and improve its ability to respond to

multiple stimuli (41). The AP-1 family of transcription factors

can activate Toll-like receptor agonists and positively regulate
frontiersin.org
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FIGURE 6

Prediction of the interaction between the marker genes and drugs. The drugs that may target marker genes were predicted though the DGIdb
database. The interaction between drugs and marker genes were displayed with Cytoscape software.
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interleukin-4 (IL4) to activate macrophages, thereby enhancing

antibacterial activity (42). Fos/AP-1 also plays a central role

ininflammatory bone loss by regulating genes like NFATc1 as

well as the interferon system (43).

Whilst antimicrobial strategies might potentially contribute to

the management of periodontitis, a growing awareness prevails

that irreversible tissue damage is mainly ascribed to host

responses. This has impelled numerous researchers to direct their

attention towards strategies targeting host signaling pathways.

Despite the fact that the precise mechanisms underlying the

onset and persistence of periodontitis remain incompletely

comprehended, there is already adequate knowledge at the

experimental level to furnish valuable information for targeted

therapeutic interferences. The successful interventional measures

in animal models have targeted various interrelated inflammatory

pathways, such as the recruitment of inflammatory cells,

complement activation, pro-inflammatory cytokines, and
Frontiers in Dental Medicine 08
RANKL-dependent osteoclastogenesis (4). Although we identified

dozens of drugs that target the immune-related marker genes in

our study, there was no study to support the efficacy of these

drugs in periodontitis. Further studies are needed to investigate

the efficacy and mechanism of these drugs in the treatment of

periodontitis. In our study, we identified 7 IRG as diagnostic

markers and constructed a risk model based on these 7 genes.

These marker genes are involved in the regulation of the

immune microenvironment in periodontitis samples. Our future

studies will focus on the underlying mechanism of these marker

genes and targeting drugs for periodontitis.
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