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Introduction: Facial morphogenesis is regulated by several cellular interactions
that are mediated by numerous morphogenetic signals. Based on the existing
evidence, we hypothesize that oral cleft-associated single nucleotide
polymorphisms (SNPs) are involved in the normal range of human face
development. Therefore, this study aimed to investigate the association
between SNPs in oral cleft-related genes and variations in the normal range of
facial morphology.
Method: A sample of healthy Brazilian teenagers (aged between 11 and 18 years
old) were screened and collected. Frontal facial digitized photographs from
orthodontic records were used to determine phenotypes, while the DNA
extracted from saliva samples was used to investigate the candidate SNPs. Five
oral cleft-associated SNPs in BMP2 (rs235768), BMP4 (rs17563), WNT3A
(rs708111), WNT11 (rs1533767), and RUNX2 (rs1200425) were selected, and
allelic discrimination analysis was performed using real-time PCR.
Results: A total of 58 individuals (27 boys and 31 girls) were included. The facial
landmarks used for the facial measurements were the trichion (Tr), glabella (G),
nassion (N), subnasale (Sn), labrale superior (Ls), labrale inferior (Li), gnathion
(Gn), cheilon (Ch), and zygoma (Zg). rs17563 in BMP4 was associated with lip
proportion, in which individuals with the homozygous GG genotype had a
higher Ch-Ch:Ls-Li proportion than the heterozygous AG genotype
(p=0.034). rs1533767 in WNT11 was associated with G-Sn:Sn-Gn (p= 0.028),
N-Gn:Sn-Gn (p= 0.035), and Sn-Gn:Tr-Gn (p= 0.039).
Conclusion: Our study supported the hypothesis that oral cleft-associated SNPs
are involved in the normal range of human facial morphology.
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1 Introduction

The human face displays high morphological variability. Its

appearance is a fascinating trait, and facial variability is

important for social interactions. Facial variability also has

implications for clinical practice, forensic intelligence

identification, personal identity, clinical genetics, and possible

counseling. Human faces result from the intrinsic complexity of

morphogenesis, in which many genetic and environmental

factors are involved. Genetics is clearly one of these factors, and

this knowledge is long supported by the evidence on familial

similarities, especially for monozygotic twins (1).

Some studies have emerged in the past two decades that aimed

to unravel the genes that may play a critical role in defining the size

and shape of facial features (2–7). Certain studies explored the

connection between oral cleft-related genes and normal-range

variations in facial morphology (1–8). These studies have

provided some important insights into genes and single

nucleotide polymorphisms (SNPs) in facial genetics (1). SNPs are

a type of polymorphism involved in a variation of a single base

pair at a single position in a DNA sequence. SNPs located in

several protein encoding genes have already been associated with

non-syndromic (isolated) oral cleft (9–14).

Facial morphogenesis is regulated by several cellular

interactions that are mediated by numerous morphogenetic

signals, such as bone morphogenetic protein (BMP), wingless

(WNT) (15), and Runt-related transcription factor 2 (RUNX2)

(16). BMPs are well-known as multi-functional growth factors.

BMP signaling is one of the most important pathways regulating

craniofacial development. It is involved in the early development

of the head and facial patterning (17), in which their

components are important factors in the growth of facial

processes. Animal models showed that BMP signaling has

distinct roles in lip and palate fusion (18), especially BMP2 and

BMP4, which are expressed in maxillary and mandibular

processes (19). SNPs in BMP2 (11, 12) and BMP4 (10, 11, 13)

have been associated with oral clefts in different populations.

Canonical WNT signaling factors play a decisive role in many

aspects of craniofacial development, while their dysregulation is

involved in facial congenital defects (20). In animal models,

WNT3A was involved in malformations of the face (2, 20) due to

increased cell proliferation in the mesenchyme and increased

expression of BMP2 and BMP4 (21). WNT11 is also important

for craniofacial development, especially the palate area (22). In

fact, SNPs in WNT3A and WNT11 have been associated with

oral cleft in humans (9). RUNX2 is a critical regulator of

transcription processes and involved in craniofacial development,

in bone and dental formation in particular, and was furthermore

connected to cleft palates in mice (23). A study that examined

the association between 49 genetic variants in RUNX2 and oral

cleft in different populations observed that some SNPs in this

gene are associated with oral cleft (24).

The identification of SNPs associated with normal facial

morphology is a valuable tool for advancing medical, scientific,

and applied fields. This knowledge improves the understanding

of the biological processes underlying facial structure, growth,
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and variation. Understanding the genetic basis of facial

morphology may lead to personalized surgical or orthodontic

interventions, ensuring better functional and esthetic outcomes.

SNP data associated with facial features could enhance forensic

reconstruction, allowing for more accurate predictions of an

individual’s appearance from DNA samples. SNPs linked to facial

morphology can offer insights into human evolution, population

genetics, and how environmental and genetic factors have shaped

human facial diversity. In addition, understanding the role of

oral cleft-associated SNPs in normal facial traits is crucial for

identifying parents who may be at a higher risk of having a child

with an oral cleft. Therefore, in the present study, we selected

SNPs previously associated with oral cleft (rs235768, rs17563,

rs708111, rs1533767, and rs1200425) to investigate their role in

normal facial morphology. Our hypothesis is that oral cleft-

associated SNPs are involved in the normal range of human

face development.
2 Methods

2.1 Ethical aspects and sample description

The ethical rules for research described in the Helsinki

Declaration (1964) were followed throughout the study. All

included individuals provided written informed consent, and the

study protocol was approved by the Ethics Committee of the

School of Dentistry of Ribeirão Preto, University of São Paulo,

São Paulo, Brazil (Protocol No. 50765715.3.0000.5419). Children

who had parental consent were then asked for assent before they

were included in the study. Only children with both informed

consent and assent were included in the screening.

This study is part of a larger project regarding the etiological

aspects involved in craniofacial development. For this study,

frontal facial digitized photographs from the orthodontic records

were used to determine the phenotypes, while the DNA samples

were used to investigate the candidate SNPs. During the

recruiting process, only biologically unrelated healthy teenagers

or young adults who sought orthodontic treatment at the School

of Dentistry of Ribeirão Preto, University of São Paulo, were

included. The exclusion criteria were based on the clinical

examination performed by dentists and the self-reported

information acquired during the anamnesis. Patients were

excluded if they had syndromes, had received or were receiving

hormonal treatment, presented with congenital alterations such

as cleft lip and/or palate or oligodontia (congenital absence of six

or more teeth), had first-degree relatives with cleft lip and/or

palate, had undergone previous orthodontic and/or orthopedic

treatments, had a history of or required orthognathic surgery, or

had facial trauma or endocrinological problems such as growth

hormone deficiency, thyroid disorders, and diabetes mellitus.

During clinical examination, none of the patients had permanent

teeth extracted.

The sample size calculation was based on the frequency of the

most common allele, an expected mean difference of 0.3 among
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genotypes, and a standard deviation of 0.3, with an established

alpha level of 5% and a power of 80%.
FIGURE 1

Facial landmarks and linear measurements used in the present study.
The figure was adapted from an AI-generated image created using
ChatGPT (January 2025, version 4), OpenAI.
2.2 Phenotyping

The photographs were taken with the patient positioned

under standardized conditions in portrait mode (non-smiling).

Briefly, the patient was standing upright with a natural

posture. Their hair was pulled back to ensure full visibility of

facial features, and glasses, earrings, and any accessories that

could obstruct facial landmarks were removed. The camera

was positioned at the patient’s eye level. The patient faced the

camera directly with their head in a natural head position and

the Frankfort Horizontal Plane parallel to the floor. The

patient should have a relaxed facial expression in a natural rest

position for the photograph. All photographs were taken in

high resolution with the correct exposure settings.

All frontal facial digitized photographs were available in the

orthodontic record and only the images from before the

orthodontic treatment were used.

A total of 15 facial landmarks (7 single and 4 paired) were

selected for this study. The landmarks were selected based on

their reliable identification in all photographs, and being

minimally affected by changes due to the patients’ grooming

(i.e., eyebrow plucking or hair styling). The facial landmarks

used for the facial measurements were the trichion (Tr),

glabella (G), nassion (N), subnasale (Sn), labrale superior (Ls),

labrale inferior (Li), gnathion (Gn), cheilon (Ch), and zygoma

(Zg). The description of the selected landmarks is presented in

Table 1 and their locations are depicted in Figure 1. The

position of each landmark was recorded as a set of X-Y pixel

coordinates and to place the landmarks on the 2D images,

Adobe Photoshop Creative Cloud (Adobe Systems

Incorporated, San Jose, CA, USA) was used. The edited

photographs were imported into the Image J software (NIH,

Bethesda, MD, USA) and the distance between any two points

in a given plane of space was accomplished by calculating the

number of pixels that existed between the two coordinates.

The measurements were Tr-G, G-Sn, Sn-Gn, N-Gn, Zg-Zg, Ls-

Li, Ch-Ch, Sn-Ls, and Li-Gn. The ratios were calculated for

each individual.
TABLE 1 Facial landmarks used.

Abbreviation Landmark
Tr Trichion

G Glabella

N Nassion

Sn Subnasale

Ls Labrale superior

Li Labrale inferior

Gn Gnathion

Ch Cheilion

Zg Zigoma
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2.3 Reliability

To ensure the accuracy and reproducibility of the measurements,

both intra- and inter-observer reliability assessments were performed.

The intra-class correlation coefficient (ICC) was used to evaluate the

reproducibility and compared with that of the senior examiner. For

the inter-observer reliability, the senior examiner and the trained

examiner analyzed the same set of five randomly selected images

under identical conditions. The ICC was used to determine the level

of agreement between observers. There were no discrepancies to be

resolved and the value for the inter-observer agreement was 0.87. For

the intra-observer reliability, a single examiner conducted facial

measurements twice on the same set of five randomly selected images

(images different from the ones used in the inter-observer reliability

stage), with a 2-week interval between assessments to minimize recall

bias. The ICC was used to evaluate the consistency of repeated

measurements and the value for the intra-observer agreement was

0.92. ICC values were interpreted as follows: <0.50 (poor), 0.50–0.75

(moderate), 0.75–0.90 (good), and >0.90 (excellent) reliability.
2.4 DNA extraction, genotyping, and
quality control

DNA was extracted from buccal cells in saliva. For DNA

extraction, an established previously published protocol was used
frontiersin.org
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(25) and the amount and purity of the DNA were assessed using

spectrophotometry (Nanodrop 1000; Thermo Scientific,

Wilmington, DE, USA). The DNA was stored until the

polymerase chain reaction (PCR) analysis.

The oral cleft-associated SNPs in the candidate genes were

selected from published association studies on isolated oral clefts,

including a systematic review and meta-analysis. We only

selected SNPs that are common in the global population (minor

allele frequency > 0.25). A detailed description of the selected

SNPs is provided in Table 2.

Allelic discrimination analysis was blindly performed using the

TaqmanTM method for real-time PCR (Step One Plus Real-Time

PCR System, Applied Biosystems, Foster City, CA, USA).

Duplicated genotyping of 10% of the total sample was

performed and 100% agreement was observed.
2.5 Statistical analysis

Deviations on the Hardy–Weinberg equilibrium (HWE) for

each SNP were tested using the Chi-squared test.

The dependent variables were the ratio measurements, and the

independent variables were the genotypes. The dimensions

presented normal distribution according to the Kolmogorov–

Smirnov test. The ratios were compared among the genotypes

with a t-test or one-way ANOVA with Tukey’s post-hoc test.

Data were analyzed using the GraphPad Prism Version 9.3.1.

The established alpha for all analyses was 5%.
3 Results

A total of 58 individuals (27 boys and 31 girls) were included in

this study after the screening and exclusion criteria process.

The age of the included individuals ranged from 11 to 18 years

old, and the mean age was 13.5 years old (standard

deviation = 1.83).

According to the genotypic data presented, we calculated the

HWE in each SNP. Chi-square analysis was used to confirm that

the genotype distribution of each evaluated SNP’s HWE. The

results are as follows: chi-square HWE = 10.81 for rs235768, chi-

square HWE = 2.63 for rs17563, chi-square HWE = 2.25 for
TABLE 2 Characteristics of the candidate SNPs.

Gene SNP Base
change

Des

BMP2 rs235768 A/T This SNP was associated with isolated oral cle

BMP4 rs17563 A/G A systematic review showed that this SNP migh
population (13).

WNT3A rs708111 A/G Multiple haplotypes in Wnt genes, including ha
cleft (9).

WNT11 rs1533767 A/G Multiple haplotypes in Wnt genes, including h
oral cleft (9).

RUNX2 rs1200425 A/G This SNP was statistically significantly associate
which was associated with a decreased risk of
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rs708111, chi-square HWE = 0.10 for rs1533767, and chi-square
HWE = 1.01 for rs1200425.

Table 3 shows the p-values and facial ratio proportion values

(mean, standard deviation, minimum, and maximum)

distributions according to the genotypes for each studied SNP

(rs235768, rs17563, rs708111, rs1533767, and rs1200425).

Figure 2 shows the differences in facial morphology with

different facial proportions. The different facial proportions

represent the influence of the genotypes in BMP4 and WNT11

on the facial phenotypes. As a reference, a face with average

proportions is provided in Figure 2A.

rs17563 in BMP4 was associated with lip proportion.

Individuals with the homozygote GG genotype had a higher Ch-

Ch:Ls-Li ratio than the heterozygote AG genotype (p = 0.034)

(Table 3). Patients carrying the AG genotype had thicker lips

(Figure 2B).

rs1533767 in WNT11 was associated with the mid to lower face

height ratio, in which patients carrying the GG genotype had larger

lower face height compared to the AG genotype: G-Sn:Sn-Gn

(p = 0.028) and N-Gn:Sn-Gn (p = 0.035). The results are shown

in Table 3. Patients with the GG genotype are represented in

Figure 2C.

rs1533767 in WNT11 was associated with the ratio of the lower

face height and the total face height (Sn-Gn:Tr-Gn). Table 3 shows

that patients carrying the GG genotype had a larger lower face

compared to the AG genotype (p = 0.039). Figure 2D represents

patients carrying the GG genotype.
4 Discussion

Only recently have scientists started identifying the specific

genes that impact the normal range of human facial morphology.

As in the current study, previous studies applied a candidate

gene approach to investigate whether genetic variants in genes

were related to craniofacial development and therefore involved

in one or more metric and non-metric facial traits (26). Gene

selection is typically based on prior knowledge of their biological

relevance, such as their expression during craniofacial

development or being causal for a syndrome with craniofacial

alterations resulting from single-gene mutations. SNPs in genes

involved with syndromes were previously associated with a

variety of facial measurements, for example, genes such as
cription of the studied SNPs

ft in two previous published studies (11, 12).

t be a risk factor for isolated oral cleft in the Chinese population and in the Brazilian

plotypes that include the SNP rs708111, were previously associated with isolated oral

aplotypes that include the SNP rs1533767, were previously associated with isolated

d with isolated oral cleft. A study observed an under-transmission of the minor allele,
oral cleft (24).
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TABLE 3 Dimension distributions according to the genotypes in the candidate SNPs.

Measures Min–max Mean (SD) Min–max Mean (SD) Min–max Mean (SD) p-value

rs235768 AA (n = 0) AT (n = 34) TT (n = 19)
Ch-Ch:Ls-Li — — 1.79–3.87 2.65 (0.44) 1.70–3.79 2.70 (0.60) 0.778

G-Sn:Sn-Gn — — 0.59–1.11 0.86 (0.10) 0.69–0.97 0.84 (0.08) 0.696

G-Sn:Tr-Gn — — 0.24–0.34 0.30 (0.01) 0.26–0.33 0.30 (0.01) 0.982

N-Gn:Sn-Gn — — 1.58–1.93 1.73 (0.09) 1.64–1.83 1.72 (0.06) 0.685

Sn-Gn:Li-Gn — — 1.09–3.50 2.02 (0.43) 1.56–2.77 2.14 (0.32) 0.294

Sn-Gn:Tr-Gn — — 0.30–0.40 0.35 (0.02) 0.32–0.40 0.35 (0.02) 0.645

Sn-Gn:Sn-Ls — — 2.30–6.86 3.75 (0.87) 2.56–5.26 3.84 (0.71) 0.713

Tr-G:G-Sn — — 0.89–1.41 1.13 (0.10) 0.93–1.36 1.12 (0.12) 0.771

Tr-G:Tr-Gg — — 0.28–0.37 0.34 (0.01) 0.29–0.37 0.33 (0.02) 0.696

Tr-Gn:Zg-Zg — — 1.31–1.60 1.45 (0.08) 1.25–1.62 1.45 (0.08) 0.889

rs17563 AA (n = 24) AG (n = 18) GG (n = 9)
Ch-Ch:Ls-Li 1.79–3.79 2.71 (0.49) 1.70–3.12 2.47 (0.36) 2.27–3.87 2.96 (0.53) 0.034

G-Sn:Sn-Gn 0.69–1.11 0.87 (0.10) 0.59–1.08 0.83 (0.10) 0.78–0.91 0.85 (0.04) 0.499

G-Sn:Tr-Gn 0.26–0.34 0.30 (0.01) 0.24–0.33 0.29 (0.01) 0.27–0.32 0.30 (0.01) 0.593

N-Gn:Sn-Gn 1.60–1.91 1.74 (0.08) 1.58–1.93 1.71 (0.08) 1.60–1.79 1.71 (0.05) 0.478

Sn-Gn:Li-Gn 1.09–3.50 2.09 (0.52) 1.61–2.63 2.00 (0.24) 1.64–2.43 2.11 (0.24) 0.712

Sn-Gn:Tr-Gn 0.30–0.39 0.35 (0.02) 0.31–0.40 0.36 (0.02) 0.33–0.38 0.35 (0.01) 0.521

Sn-Gn:Sn-Ls 2.30–6.86 3.83 (1.09) 2.56–4.42 3.63 (0.47) 3.02–4.45 3.86 (0.51) 0.693

Tr-G:G-Sn 0.93–1.30 1.12 (0.10) 0.98–1.41 1.14 (0.10) 0.89–1.36 1.14 (0.13) 0.866

Tr-G:Tr-Gg 0.29–0.37 0.34 (0.01) 0.31–0.37 0.34 (0.01) 0.28–0.37 0.34 (0.02) 0.850

Tr-Gn:Zg-Zg 1.25–1.59 1.43 (0.08) 1.31–1.55 1.48 (0.08) 1.31–1.55 1.43 (0.09) 0.125

rs708111 AA (n = 15) AG (n = 21) GG (n = 17)
Ch-Ch:Ls-Li 1.70–3.87 2.82 (0.60) 1.79–3.28 2.52 (0.35) 1.91–3.79 2.59 (0.48) 0.168

G-Sn:Sn-Gn 0.59–1.08 0.86 (0.11) 0.71–1.01 0.84 (0.07) 0.72–1.11 0.87 (0.10) 0.523

G-Sn:Tr-Gn 0.24–0.33 0.30 (0.02) 0.27–0.33 0.30 (0.01) 0.28–0.34 0.30 (0.01) 0.548

N-Gn:Sn-Gn 1.58–1.93 1.74 (0.10) 1.60–1.91 1.71 (0.07) 1.62 −1.90 1.74 (0.08) 0.438

Sn-Gn:Li-Gn 1.61–2.63 2.06 (0.31) 1.30–3.50 2.16 (0.44) 1.09–2.77 1.98 (0.38) 0.362

Sn-Gn:Tr-Gn 0.30–0.40 0.35 (0.02) 0.31–0.39 0.35 (0.02) 0.31–0.39 0.35 (0.02) 0.474

Sn-Gn:Sn-Ls 2.56–4.45 3.75 (0.52) 2.57–6.86 4.01 (0.97) 2.30–5.26 3.58 (0.77) 0.261

Tr-G:G-Sn 0.89–1.41 1.16 (0.13) 0.93–1.29 1.12 (0.08) 0.97–1.30 1.10 (0.09) 0.301

Tr-G:Tr-Gg 0.28–0.37 0.34 (0.02) 0.31–0.37 0.33 (0.01) 0.29–0.37 0.34 (0.01) 0.300

Tr-Gn:Zg-Zg 1.31–1.60 1.47 (0.09) 1.25–1.62 1.47 (0.08) 1.31–1.52 1.42 (0.07) 0.126

rs1533767 AA (n = 2) AG (n = 15) GG (n = 21)
Ch-Ch:Ls-Li 2.31–3.00 2.55 (0.62) 1.70–3.87 2.79 (0.60) 2.07–3.57 2.62 (0.37) 0.559

G-Sn:Sn-Gn 0.86–0.95 0.90 (0.05) 0.70–1.11 0.90 (0.10) 0.59–0.95 0.81 (0.08) 0.028

G-Sn:Tr-Gn 0.29–0.32 0.31 (0.02) 0.27–0.34 0.30 (0.01) 0.24–0.31 0.29 (0.01) 0.096

N-Gn:Sn-Gn 1.72–1.89 1.81 (0.11) 1.59–1.91 1.76 (0.10) 1.58–1.81 1.70 (0.06) 0.035

Sn-Gn:Li-Gn 1.93–2.01 1.97 (0.05) 1.09–2.79 1.99 (0.43) 1.30–3.50 2.12 (0.44) 0.613

Sn-Gn:Tr-Gn 0.34–0.34 0.34 (0.00) 0.30–0.39 0.34 (0.02) 0.31–0.40 0.36 (0.02) 0.039

Sn-Gn:Sn-Ls 3.63–3.68 3.65 (0.03) 2.30–5.44 3.76 (0.82) 2.57–6.86 3.82 (0.86) 0.952

Tr-G:G-Sn 0.99–1.22 1.10 (0.16) 0.97–1.30 1.13 (0.10) 1.03–1.41 1.15 (0.09) 0.803

Tr-G:Tr-Gg 0.32–0.36 0.34 (0.02) 0.29–0.37 0.34 (0.02) 0.31–0.37 0.33 (0.01) 0.348

Tr-Gn:Zg-Zg 1.42–1.54 1.48 (0.08) 1.31–1.58 1.43 (0.09) 1.31–1.62 1.46 (0.09) 0.711

rs1200425 AA (n = 11) AG (n = 21) GG (n = 18)
Ch-Ch:Ls-Li 2.00–3.87 2.72 (0.61) 1.70–3.57 2.70 (0.46) 1.91–3.79 2.61 (0.46) 0.815

G-Sn:Sn-Gn 0.72–0.97 0.83 (0.08) 0.59–1.11 0.85 (0.11) 0.69–1.08 0.87 (0.09) 0.606

G-Sn:Tr-Gn 0.27–0.32 0.29 (0.01) 0.24–0.34 0.30 (0.02) 0.26–0.33 0.30 (0.01) 0.699

N-Gn:Sn-Gn 1.62–1.88 1.72 (0.07) 1.58–1.90 1.71 (0.09) 1.64–1.93 1.74 (0.08) 0.536

Sn-Gn:Li-Gn 1.61–2.58 2.17 (0.31) 1.09–3.50 2.03 (0.52) 1.56–2.79 2.03 (0.26) 0.598

Sn-Gn:Tr-Gn 0.32–0.39 0.35 (0.02) 0.30–0.40 0.35 (0.02) 0.31–0.38 0.35 (0.02) 0.587

Sn-Gn:Sn-Ls 2.56–5.15 3.84 (0.73) 2.30–6.86 3.80 (1.02) 2.68–5.44 3.71 (0.63) 0.900

Tr-G:G-Sn 1.00–1.36 1.15 (0.10) 0.89–1.41 1.12 (0.12) 0.98–1.30 1.13 (0.09) 0.797

Tr-G:Tr-Gg 0.31–0.37 0.34 (0.01) 0.28–0.37 0.33 (0.02) 0.31–0.37 0.34 (0.01) 0.665

Tr-Gn:Zg-Zg 1.33–1.56 1.44 (0.07) 1.25–1.60 1.46 (0.10) 1.31–1.62 1.44 (0.08) 0.763

T-test was used for the rs235768 analysis. ANOVA with Tukey’s post-hoc test was used for the rs17563, rs708111, rs1533767 and rs1200425 analysis. Tr, trichion; G, glabella; N, nassion; Sn,

subnasale; Ls, labrale superior; Li, labrale inferior; Gn, gnathion; Ch, cheilon; Zg, zygoma.

Bold values denote the difference between AG and GG.
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FIGURE 2

Schematics of different face morphologies associated with the genotypes in BMP4 and WNT1. (A) A reference face with average proportions. (B) Face
with thicker lips. (C) Face with a change in the mid- to lower facial height ratio, showing a larger lower face height. (D) Face with a changed ratio of
lower face height to total face height, showing a larger lower face height. The figure was adapted from an AI-generated image created using ChatGPT
(January 2025, version 4), OpenAI.
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FGFR1 (e.g., Pfeiffer syndrome and Kallmann syndrome) (3), IRF6

(e.g., Van der Woude syndrome) (5), and RUNX2 (e.g.,

cleidocranial dysplasia syndrome) (4). Some genome-wide

association studies (GWASs) have also been performed and

suggested some loci and SNPs (2, 6, 7). Other studies selected the

candidate genes based on their role in oral cleft formation (1, 8).

This is a similar approach used in our study, which selected

SNPs in genes previously associated with oral clefts.
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One of the most remarkable pieces of evidence that supports

the association between oral cleft-related genes and normal face

variability is the fact that the faces of unaffected parents of

subjects with oral clefts display meaningful shape differences

compared with the general population (8, 26). Indencleef et al.

(8) conducted an interesting study design in which they studied

unaffected parents of patients with non-syndromic oral clefts and

control subjects. They found that some loci associated with oral
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cleft risk are also involved in some facial phenotypes. In our study,

none of the included patients reported first-degree relatives with

oral clefts.

The SNPs rs235768 (BMP2) and rs17563 (BMP4) were

suggested as risk factors for oral cleft in the Iranian population

(11). In our study, rs235768 in BMP2 was not associated with

the studied facial proportions, however, rs17563 in BMP4 was

associated with the Ch-Ch:Ls-Li ratio (lip proportion). A meta-

analysis that pooled the results for this SNP supported that

rs17563 may be associated with the risk for oral cleft

development (13). Interestingly, this SNP was involved in lip

proportion, as individuals carrying the GG genotype have a

thinner lip, while patients carrying the AG genotype have thicker

lips, supporting that this SNP may have an important role in

perioral development.

A complex signaling network involving BMPs andWNTs in the

facial ectoderm and neural crest mesenchyme is involved in the

morphogenesis of the upper jaw (20). WNT signaling interacts

with BMP to regulate the patterning and growth of the

craniofacial skeleton (27). We observed that the SNP rs1533767

in WNT11 was associated with the following facial proportions:

the mid and lower face height ratio (G-Sn:Sn-Gn and N-Gn:Sn-

Gn) and the ratio of the lower face height and the total face

height of all three facial thirds (Sn-Gn:Tr-Gn). Previously, this

SNP was borderline associated with a brachyfacial profile

diagnosed using lateral cephalometric analysis to investigate

craniofacial patterns (28). Chiquet et al. (9) also found that the

SNP rs1533767 was associated with isolated oral cleft.

The current study has some obvious limitations that should be

discussed here. The first to be highlighted is the fact that two-

dimensional photographs were used in the phenotype evaluation.

Although this method is still used in different studies, a facial

scan followed by a three-dimensional analysis brings more

reliable data. The fact that only a few candidate genes and SNPs

were selected is also a limitation. Several SNPs in these genes

and in other oral cleft-related genes may play an important role

in facial morphology. It is important to mention that candidate

gene studies, such as our study, frequently only examine a small

number of genes/SNPs that are hypothesized to be relevant based

on previous research, as studying a large number of genes

requires significant time, funding, and resources. In addition,

analyzing several genes/SNPs increases the risk of false-positive

findings. A smaller, well-defined set of genes allows for more

robust statistical analysis and validation of results. Focusing on

fewer SNPs simplifies data analysis and makes it easier to draw

meaningful biological conclusions, especially in small samples.

Another important aspect to be mentioned is the sample size.

Although a sample size calculation was performed based on

the frequency of the common genotype (wild homozygotic), the

contribution of genotypes with a low frequency in the

phenotypic variation could not be tested. The fact that the study

was performed using two-dimensional photographs instead of a

three-dimensional photograph should also be mentioned as a

limitation of the current study. When studying facial

morphology, two-dimensional images have some limitations

compared to three-dimensional imaging, including a lack of
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depth perception, as two-dimensional images capture only height

and width, making it difficult to analyze facial depth and

curvature. Two-dimensional images also overlap structures and

can obscure some important details. In contrast, three-

dimensional imaging allows for direct, precise volumetric and

angular measurements. Therefore, future studies with a larger

cohort sample should be performed to confirm the findings of

the present study in a Brazilian population and other populations.

Briefly, the discovery of genes involved in facial morphology

has significant clinical relevance, particularly in orthodontics and

personalized dental care. Future genetic screening can help

predict facial morphology, guiding treatment plans for specific

phenotypes before they fully develop. In the long term,

discoveries in craniofacial genetics could lead to gene-

based therapies.
5 Conclusion

Our study supported the hypothesis that oral cleft-related genes

are involved in the normal range of variations in the human face.

The SNPs rs17563 in BMP4 and rs1533767 in WNT11 were

associated with facial proportion variations. Understanding the

genetic basis underlying the normal-range variation of the

human face has important implications in clinical studies,

developmental biology, counseling, and forensic science. It is

important to emphasize that the present genetic study was

conducted with a relatively small sample size, which may limit

the generalizability and statistical power of the findings. While

the results provide valuable insights regarding the genetic

background of the normal range of variation of the human face,

future studies with larger cohorts are necessary to validate these

findings, improve the accuracy of genetic associations, and

strengthen the reliability of conclusions drawn from this research.

Expanding sample sizes will also help to identify subtle genetic

effects and enhance our understanding of the complex interplay

between genetics and human face variability.
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