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Automated classification of
midpalatal suture maturation
using 2D convolutional neural
networks on CBCT scans

Mahshid Nik Ravesh, Nazila Ameli, Manuel Lagravere Vich and

Hollis Lai*

School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada

Introduction: Accurate assessment of midpalatal suture (MPS) maturation is

critical in orthodontics, particularly for planning treatment strategies in patients

with maxillary transverse deficiency (MTD). Although cone-beam computed

tomography (CBCT) provides detailed imaging suitable for MPS classification,

manual interpretation is often subjective and time-consuming.

Methods: This study aimed to develop and evaluate a lightweight two-

dimensional convolutional neural network (2D CNN) for the automated

classification of MPS maturation stages using axial CBCT slices. A retrospective

dataset of CBCT images from 111 patients was annotated based on Angelieri’s

classification system and grouped into three clinically relevant categories: AB

(Stages A and B), C, and DE (Stages D and E). A 9-layer CNN architecture was

trained and evaluated using standard classification metrics and receiver

operating characteristic (ROC) curve analysis.

Results: The model achieved a test accuracy of 96.49%. Class-wise F1-scores

were 0.95 for category AB, 1.00 for C, and 0.95 for DE. Area under the ROC

curve (AUC) scores were 0.10 for AB, 0.62 for C, and 0.98 for DE. Lower AUC

values in the early and transitional stages (AB and C) likely reflect known

anatomical overlap and subjectivity in expert labeling.

Discussion: These findings indicate that the proposed 2D CNN demonstrates

high accuracy and robustness in classifying MPS maturation stages from CBCT

images. Its compact architecture and strong performance suggest it is suitable

for real-time clinical decision-making, particularly in identifying cases that may

benefit from surgical intervention. Moreover, its lightweight design makes it

adaptable for use in resource-limited settings. Future work will explore

volumetric models to further enhance diagnostic reliability and confidence.
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1 Introduction

Maxillary transverse deficiency (MTD) is characterized by a reduced width of the

upper jaw relative to the mandible. It can present clinically as posterior crossbite, dental

crowding, altered tongue position, and impaired nasal airflow, and has been associated

with compromised airway dimensions and increased risk for obstructive sleep apnea

(1–8). Treatment options depend heavily on whether the midpalatal suture (MPS)—a

key growth site in the maxilla—has fused. In growing patients with an open or partially
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ossified MPS, non-surgical expansion techniques such as rapid

maxillary expansion (RME), slow maxillary expansion (SME), or

microimplant-assisted rapid palatal expansion (MARPE) are

typically effective (9–13). In contrast, patients with complete

MPS fusion often require surgically assisted rapid palatal

expansion (SARPE) or segmental LeFort I osteotomy, which

carry additional cost, morbidity, and recovery time (14, 15).

Misclassifying the MPS stage can lead to complications such as

relapse, pain, and unnecessary surgeries. Therefore, an objective

evaluation of MPS maturation is essential for optimizing

treatment outcomes and ensuring that patients receive the most

effective and least invasive care (16–19). Conventional assessment

methods, such as the five-stage CBCT-based classification

proposed by Angelieri et al. (Stages A to E), rely on visual

interpretation of axial slices and are inherently subjective. Inter-

examiner agreement has been reported as low as 43%–68%,

highlighting the diagnostic variability that may lead to

overtreatment or undertreatment (20–22).

InAngelieri et al’s system as shown in Figure 1, StageA represents

a straight, high-density suture line with no interdigitation

(Figure 1A); Stage B shows increased scalloping (Figure 1B); Stage

C features two parallel high-density lines (Figure 1C); Stage

D marks partial fusion in the palatine bone (Figure 1D); and Stage

E indicates complete fusion throughout the palate (Figure 1E),

rendering the suture invisible. While this method is widely

accepted, staging remains subjective, and clinical decisions often

depend not on the specific stage but on whether the suture is open,

transitional, or fused. As such, clinicians commonly group these

into three actionable categories: AB (immature), C (uncertain), and

DE (fused), which directly influence treatment strategy (23).

Recent advances in artificial intelligence (AI), particularly

convolutional neural networks (CNNs), have shown promise in

automating radiographic interpretation in medicine and dentistry

(24–29). CNNs are particularly suited to image classification

tasks due to their ability to extract complex features from raw

pixel data (30–33). In orthodontics, Zhu et al. (34) recently

demonstrated the use of a ResNet-based CNN to classify MPS

maturation stages from CBCT images, offering proof of concept.

However, ResNet architectures require substantial computational

resources and are not easily integrated into routine clinical practice.

Furthermore, prior AI-based studies have generally maintained

the five-category structure proposed by Angelieri, which may

not align with how clinicians make treatment decisions. In practice,

MPS stages are commonly consolidated into three actionable groups:

• Stages A and B (AB): immature suture, favorable for non-

surgical expansion

• Stage C: transitional morphology, uncertain outcome

• StagesD andE (DE): fused suture, requiring surgical expansion (23)

Given the importance of early and accurate diagnosis of MTD in

ensuring efficient treatment, this study aims to develop and

evaluate a 2D CNN model for the automated classification of MPS

maturation stages from CBCT images. The model is designed to

classify MPS into three groups: AB (stages A and B), C, and DE

(stages D and E), corresponding to different treatment strategies.

By leveraging a lightweight CNN architecture, this study seeks to

balance high classification accuracy with low computational

demand, offering a practical tool to improve diagnostic consistency

and patient care in orthodontics.

2 Materials and methods

2.1 Data collection and preparation

This study was approved by the Health Research Ethics Board of

the University of Alberta (study number: Pro00125920).

Anonymized and de-identified CBCT scans were retrospectively

obtained from 155 patients who underwent imaging as part of

routine orthodontic treatment between 2014 and 2022 at the

University of Alberta Orthodontics Clinic. Patients included in the

study were between 7 and 21 years of age. All data were fully

anonymized prior to the study, and individual demographic

identifiers such as gender were not available. Although CBCT

produces volumetric data, all labeling, image selection, and model

training in this study were performed exclusively on 2D axial slices.

Scans were excluded if patients had prior orthodontic treatment,

impacted upper teeth in the mid-palatal region, congenital

craniofacial anomalies (e.g., cleft palate), if the MPS was not clearly

visible in a single axial slice, or if image quality was compromised by

motion artifacts or scatter. A total of 44 scans were excluded: 34 due

to poor visualization of the suture, and 10 due to scatter or artifacts.

The rationale for these exclusions was to ensure that the deep

learning model was trained on diagnostically interpretable images,

FIGURE 1

Representative axial CBCT slices showing the five stages of midpalatal suture (MPS) maturation according to angileri et al. (A) Stage A: Straight high-

density line with no interdigitation. (B) Stage B: Scalloped appearance with early interdigitation. (C) Stage C: Increased interdigitation and partial fusion.

(D) Stage D: Significant fusion with reduced suture visibility. (E) Stage E: Complete fusion; suture no longer visible.

Nik Ravesh et al. 10.3389/fdmed.2025.1583455

Frontiers in Dental Medicine 02 frontiersin.org

https://doi.org/10.3389/fdmed.2025.1583455
https://www.frontiersin.org/journals/dental-medicine
https://www.frontiersin.org/


where the MPS could be reliably visualized in a single slice and

labeled. Including scans with unclear sutures or confounding

anatomy would have introduced label noise, reduced model

performance, and undermined study validity. In cases where the

presence of the suture was ambiguous, multiple slices were

reviewed by orthodontists before exclusion was confirmed. This

approach prioritized label accuracy and model generalizability to

real-world clinical CBCTs with sufficient image quality for diagnosis.

The remaining 111 CBCT scans from 111 patients were

included in the study. Each scan consisted of approximately 450

2D axial slices which were converted from DICOM format to

PNG using ITK-SNAP software, resulting in images with a

dimension of 726 × 644 pixels. All CBCTs were acquired using a

full field-of-view i-CAT scanner (Imaging Sciences International,

Hatfield, PA, USA) at medium dimension, with a voxel size of

0.3 mm and an acquisition time of 8–9 s. Axial view of the

patient images was classified into 5 groups of MPS maturation

stage as first stated by Angeliere et al. by two orthodontists.

In case of disagreement, a third orthodontist evaluated the

images to determine the class of MPS. Once the patients were

classified, the slices showing patients’ palates were selected and

saved in a separate folder.

The palate slices were then categorized into three groups AB

(maturation stages A and B) C and DE (maturation stages

D and E). This was done as a way to reduce the amount of

variability for the DL model as the aim of this study was to help

in reaching a diagnosis for an optimal treatment plan (23).

2.2 Data preprocessing

To improve model performance and ensure consistency across

samples, several preprocessing steps were applied to the CBCT

axial slices prior to CNN training. The goal of preprocessing was

to focus the model’s attention on the midpalatal suture (MPS),

reduce irrelevant variation, and standardize image inputs.

First, each slice was cropped to isolate the maxilla using fixed

predefined coordinates, resulting in a cropped area with

dimensions of 190 × 220 pixels (Figure 2B). This ensured that the

entirety of the maxilla was included in the Region of Interest

(ROI). Next, to further reduce noise and highlight image

contours, a Gaussian blur was applied using OpenCV and

NumPy libraries (35, 36). A binary mask of the maxilla was also

generated for reference (Figure 2C).

To correct angular differences, the images were rotated based on

the transverse dimension of the maxilla. A rectangle was drawn

around the widest contour (Figure 2D), and the rotation angle was

calculated and adjusted to align the images horizontally

(Figure 2E). After rotation, the ROI for the MPS was determined

by cropping an area 47 pixels around the X-axis and 140 pixels

around the Y-axis, ensuring the MPS was fully captured in all

CBCT images. This resulted in a final ROI dimension of 140 × 47

pixels, verified manually for accuracy. (Figures 2F,G).

These cropping dimensions were chosen to capture the MPS

consistently across all CBCT images, reducing irrelevant

information while maintaining computational efficiency. Each

FIGURE 2

Image preprocessing steps for CNN input preparation. (A) Original axial CBCT scan. (B) Cropped slice isolating the maxilla using fixed coordinates

(190 × 220 pixels). (C) Binary mask identifying the maxillary region. (D) Angular correction was performed by drawing a rectangle around the

widest maxillary contour and estimating the rotation angle. (E) Aligned image following rotation to standardize transverse orientation. (F) Region of

interest (ROI) selection for the midpalatal suture, defined as 140 pixels vertically and 47 pixels horizontally, centered over the MPS. (G) Final

cropped ROI used as model input. These preprocessing steps were applied uniformly to all axial slices to ensure anatomical consistency, reduce

noise, and improve model focus on the midpalatal suture (MPS). CNN, convolutional neural network; ROI, region of interest; CBCT, cone-beam

computed tomography.
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image was manually checked to ensure that the MPS was fully

contained within the final region of interest (ROI), thereby

maximizing the model’s ability to learn relevant features for

accurate classification. While this preprocessing pipeline was

applied uniformly across all samples, the coordinate parameters

and ROI dimensions were based on this specific dataset and may

not be directly transferable to other CBCT datasets. Manual

verification or dataset-specific adjustments would likely be

required when applying the pipeline elsewhere, due to variations

in patient anatomy, image acquisition protocols, and field of

view. This highlights the importance of validating preprocessing

procedures in the context of each new clinical dataset to ensure

model reliability and generalizability.

2.3 ROI classifier development using DL

To identify the optimal axial slices containing the MPS, a

separate binary classification CNN was developed to distinguish

between slices that clearly displayed the MPS (preferred) and

those that did not (non-preferred).

2.3.1 Data collection

A dataset of 996 axial slices was constructed from the full

CBCT volumes of 111 patients. Of these, 575 slices were labeled

as “preferred” slices, where the MPS was clearly visible, and 421

non-preferred slices, selected randomly from other regions of

the scans.

2.3.2 Data splitting
The dataset was divided into training (70%), validation (20%),

and testing (10%) subsets, maintaining class balance (37). This

resulted in 402 preferred and 294 non-preferred slices for

training, 115 preferred and 84 non-preferred for validation, and

57 preferred and 42 non-preferred for testing.

2.3.3 Model architecture

The architecture consisted of two convolutional layers with 32

and 64 filters respectively, each using a 3 × 3 kernel and ReLU

activation. Each convolutional layer was followed by a 2 × 2 max-

pooling layer to reduce spatial dimensions and computational

load. The output was flattened and passed through a fully

connected dense layer with 64 units and ReLU activation,

followed by a final dense layer with a sigmoid activation function

to output the probability of belonging to the “preferred” class.

This compact architecture was designed to balance accuracy with

computational efficiency and to minimize the risk of overfitting,

given the binary nature of the task and relatively small dataset size.

2.3.4 Training
The model was trained with the Adam optimizer and binary

cross-entropy loss function. Early stopping was applied after

5 epochs of no improvement, with the best model weights saved

using checkpointing.

2.4 2D CNN model for MPS classification

After selecting the preferred slices that include the suture

structure using a two-layer CNN model, another 2D CNN was

developed to classify MPS maturation stages into three categories:

AB (Stages A and B), C, and DE (Stages D and E).

2.4.1 Architecture

The model consisted of nine convolutional layers, designed to

progressively extract features from preprocessed axial CBCT slices.

The input to the model was a grayscale image of 140 × 47 pixels.

The first convolutional layer applied 64 filters of size 3 × 3,

followed by batch normalization, ReLU activation, and max

pooling. Each convolutional layer was followed by batch

normalization and ReLU activation, and dropout layers (with a

rate of 0.5) were interspersed throughout to reduce overfitting.

The output from the final convolutional block was passed

through a global average pooling layer, followed by a dense layer

with three output units and a softmax activation function, which

provided the probability distribution across the three classes. The

total number of trainable parameters was approximately 4.7

million. The model was implemented using TensorFlow (v2.12)

and Keras. A schematic of the architecture is shown in Figures 3, 4.

2.4.2 Training setup
111 CBCT scans from 111 patients were included in this study.

The ROI classifier was employed on the CBCTs to create a dataset

consisting of 580 images of the ideal slices containing the MPS. The

dataset was split for training, validation and test in patient-wise

manner, where 70% of the data was used for training, 20% for

validation and 10% for testing the CNN architecture.

The model was trained using the Adam optimizer with a

learning rate of 0.001, and the categorical cross-entropy loss

function. Training was conducted for up to 50 epochs with a

batch size of 32. Early stopping with a patience of 5 epochs was

applied based on validation loss to prevent overfitting. The best-

performing weights were saved for evaluation.

2.5 Evaluation metrics

Model performance was evaluated using accuracy, precision,

recall, and F1-score metrics for each class (AB, C, DE), providing

a comprehensive assessment of the model’s ability to classify

MPS maturation stages.

To further assess the model’s discriminative ability and ranking

confidence, one-vs.-rest receiver operating characteristic (ROC)

curves were generated for each class. The area under the curve

(AUC) was calculated to quantify the model’s ability to distinguish

each class from the others across a range of probability thresholds.

Additionally, 95% confidence intervals for AUC scores were

computed using bootstrapping with 1,000 iterations, providing

insight into the statistical reliability of model predictions. All

performance metrics were computed on the held-out test set and

are reported in detail in the Results section.
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3 Results

Manual classification of the 111 CBCT by the two

orthodontists in this study achieved an inter-rater reliability of

68%, comparably higher than similar studies at 43% (21).

Discrepancies were resolved by a third orthodontist with

experience in midpalatal suture (MPS) assessment.

3.1 ROI classifier performance

A separate CNN model was developed to classify slices as

“preferred” (containing the MPS) or “non-preferred.” The ROI

classifier was evaluated on a test set comprising 57 preferred

images and 42 non-preferred images. The evaluation yielded the

following results, with a test accuracy of 99%. During the

training and validation phases, both training and validation

accuracies reached 100%, accompanied by negligible loss values,

indicating effective model training. Manual verification of the

model-selected slices confirmed agreement with expert selection

in 99% of cases. This enabled construction of a final dataset of

580 ideal axial slices, used for MPS stage classification.

3.2 CNN model training and validation

The CNN model was trained to classify midpalatal maturation

stages based on CBCT images. The input shape was set to 140 × 47,

FIGURE 3

Schematic overview of the 2D convolutional neural network (CNN) architecture for MPS classification. Axial CBCT slices serve as input. Feature

extraction is performed through a series of convolutional and pooling layers. Outputs are passed to a fully connected layer and classified into one

of three clinically grouped stages: AB, C, or DE. Softmax activation provides class probabilities. MPS, midpalatal suture; CNN, convolutional

neural network.

FIGURE 4

Schematic overview of the 2D CNN used for midpalatal suture maturation classification. The model includes nine convolutional layers, each followed

by batch normalization, ReLU activation, and dropout. Max pooling and global average pooling reduce dimensionality before the dense layers. This

architecture enabled high classification performance while maintaining low model complexity (4.7 million trainable parameters).
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with a total of 405 training samples categorized into three groups:

AB (127 samples), C (158 samples), and DE (120 samples).

The training utilized early stopping with a patience of 15 epochs

and model checkpointing to save the best-performing weights.

Initially set for 100 epochs with a batch size of 16, the training

concluded at 90 epochs due to no improvement in validation loss

after epoch 75. At that point, the model achieved a training

accuracy of 97.81%, a validation loss of 0.0626, and a validation

accuracy of 98.08%. The training duration for this epoch was

approximately 5 s, with a processing time of 218 ms per step.

3.3 Testing results

The trained model was evaluated on a separate test dataset

consisting of 57 images, distributed among the three groups: AB

(18 samples), C (19 samples), and DE (20 samples). The testing

results revealed a test loss of 0.2286 and test accuracy of 96.49%.

The classification performance was further assessed using

precision, recall, and F1-score metrics for each class (AB, C, DE)

as demonstrated in Table 1 and Figure 5.

3.4 ROC and AUC analysis

ROC curves were generated for each class using a one-vs.-rest

approach. The model achieved an AUC of 0.98 for class DE,

indicating perfect separation from the other classes. The AUCs

for AB and C were 0.10 and 0.62, respectively. Full ROC curves

and associated metrics are shown in Figure 6.

4 Discussion

In this study, a dataset of 580 CBCT slices containing the MPS

was used to train a lightweight 2D CNN for automated MPS

maturation stage classification into three clinically relevant

groups: AB, C, and DE. The proposed CNN achieved a training

accuracy of 97.81%, a validation accuracy of 98.08%, and a test

accuracy of 96.49%. Class-wise performance metrics

demonstrated high precision (AB: 0.90, C: 1.00, DE: 1.00) and

recall (AB: 1.00, C: 1.00, DE: 0.90), with F1-scores ranging from

0.95–1.00. These results suggest that our CNN architecture

TABLE 1 Classification performance metrics (precision, recall, and
F1-score) for each class (AB, C, DE).

Class Precision Recall F1-Score

AB (18) 0.90 1.00 0.95

C (19) 1.00 1.00 1.00

DE (20) 1.00 0.90 0.95

FIGURE 5

Confusion matrix for 2D CNNmodel testing results. The model achieved a test accuracy of 96.49%. It classified AB with 100% recall (18/18), C with 100%

recall (19/19), and DE with 90% recall (18/20). Misclassifications primarily occurred between DE and AB. AB= Stages A and B; DE= Stages D and E.
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effectively supports early detection of MPS fusion stages from axial

CBCT images. Clinically, the AB, C, and DE stages also broadly

correspond to pre-pubertal, pubertal, and post-pubertal phases of

growth, respectively, which are key considerations in determining

the timing and method of maxillary expansion.

ROC analysis revealed AUC values of 0.10 for AB, 0.62 for C,

and 0.98 for DE. While DE classification was highly confident

and well-separated, the comparatively lower AUCs for AB and

C suggest that the model had more difficulty distinguishing

these early and transitional stages with consistent confidence.

This may reflect the anatomical overlap and subtlety between

AB and C stages, which are often difficult to distinguish even

among experienced clinicians. In our dataset, inter-rater

agreement between two orthodontists was 68%, underscoring

the inherent subjectivity and variability in labeling these stages.

Although the model predicted AB and C correctly in most

cases—as reflected in the high F1-scores—the ROC-derived

AUC indicates that the model often assigned similar

probabilities across neighboring classes, reducing its overall

ranking confidence.

Our results can be compared to Zhu et al., who also employed

a CNN-based approach (ResNet18) for MPS classification from

CBCT images where the distinction in model complexity is

worth noting. Zhu et al.’s ResNet18 model comprises 11.69

million parameters, trained from 785 patient samples, whereas

our custom model contains only 4.7 million parameters—

approximately 60% fewer parameters. Despite this reduction in

complexity, our model achieved significantly higher training

accuracy (97.81% vs. 79.10%), underscoring the efficacy of a

more efficient, lightweight architecture in this classification

task. Our model demonstrates alternative approaches in

development of small and task-specific DL models that can be

applied in resource-constrained environments, such as clinical

settings with limited samples, computational power, or on

mobile devices.

Our findings align with previous research highlighting the

effectiveness of DL techniques, particularly CNNs, in medical

image analysis. Other studies have demonstrated CNNs’ ability to

interpret complex biomedical images effectively, including tasks

like interstitial lung disease pattern classification and dental

diagnostics. These studies further validate the utility of CNNs in

healthcare, particularly in automating diagnostic processes and

reducing human error (25, 26, 38–40).

Moreover, the lightweight nature of our CNN architecture

offers practical advantages, especially in orthodontic clinics where

computational resources may be limited. The model’s efficiency,

coupled with its high accuracy, demonstrates its potential for

real-world applications, where rapid and accurate assessment of

FIGURE 6

Receiver operating characteristic (ROC) curves and area under the curve (AUC) scores for the three MPS maturation classes. The model’s performance

is shown using a one-vs.-rest approach. The DE class achieved a high AUC of 0.98, indicating excellent discriminative ability and model confidence. In

contrast, the AB and C classes had lower AUC values (0.10 and 0.62, respectively), reflecting reduced certainty in predictions, particularly in early-stage

classification. This may be due to anatomical overlap and subtle feature transitions between early and intermediate maturation stages. AB = Stages

A and B; DE = Stages D and E.
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midpalatal suture maturation could significantly enhance

treatment planning.

However, it is important to acknowledge some limitations

of our study. While the sample size of CBCT images aligns

with typical practices in medical research, it may impact

the generalizability of our findings to larger and more

diverse populations.

Future studies should focus on evaluating the model’s

performance with larger and more diverse datasets to ensure its

robustness and applicability across different demographics.

A limitation of the approach used in this study was the

exclusion of midpalatal sutures that were not visible in a single

slice, as the methods used in the study can effectively classify,

albeit only with individual slices. Future research should explore

three-dimensional (3D) approaches to provide a more

comprehensive analysis of MPS maturation stages, as well as

optimize imaging protocols or employ AI-based enhancement

techniques to improve suture detectability and reduce the need

for image exclusion.

Another limitation of this study is the higher radiation dose

associated with CBCT compared to occlusal radiographs.

However, CBCT offers significantly greater image quality and

precision, which was essential for the development of our small

models (41). The ability to use smaller models stems from the

superior clarity provided by CBCT, allowing for more precise

visualization and classification. While occlusal radiographs were

previously used to visualize the MPS (42), their clarity and

accuracy were limited, as they provided a less detailed view of a

potentially thin structure embedded deep within the palatal bone,

making classification more challenging (43). As small model

development becomes a growing focus in the field, the enhanced

resolution of CBCT imaging will continue to play a crucial role

in advancing research and clinical applications.

It is critical to recognize that our findings rely on Angelieri’s

staging system for midpalatal suture maturation, which could

affect the validity of our results if future studies challenge this

classification’s accuracy. Additionally, building on this work,

future research will explore volumetric (3D) CNN models to

capture full spatial context. Preliminary results from our follow-

up study suggest improved AUC values for AB and C stages,

supporting the potential of 3D architectures to enhance

diagnostic confidence in. By incorporating advanced imaging

techniques and larger datasets, we aim to further enhance the

accuracy and clinical relevance of AI-driven tools in orthodontic

diagnosis and treatment planning.

5 Conclusion

In conclusion, this study developed a lightweight 2D

convolutional neural network (CNN) to automate the

classification of midpalatal suture (MPS) maturation stages from

axial CBCT slices. The proposed model demonstrated high

accuracy, with strong precision and F1-scores across all three

clinically grouped classes: AB, C, and DE. ROC analysis further

confirmed excellent performance for the DE stage, which is

critical for identifying cases that may require surgically

assisted expansion.

The model’s efficient architecture, combined with its robust

classification ability, highlights its potential for real-world clinical use

—particularly in orthodontic settings where rapid and reliable MPS

assessment could aid treatment planning. While classification of early

and transitional stages (AB and C) presented lower AUC values,

these findings reflect known diagnostic ambiguity and suggest areas

for further development. Future research will explore 3D CNN

models to improve diagnostic confidence and generalizability

through volumetric context and larger, more diverse datasets.
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