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Object: In forensic dentistry, dental age estimation assists experts in determining

the age of victims or suspects, which is vital for legal responsibility and

sentencing. The traditional Demirjian method assesses the development of

seven mandibular teeth in pediatric dentistry, but it is time-consuming and

relies heavily on subjective judgment.

Methods: This study constructed a largescale panoramic dental image dataset

and applied various convolutional neural network (CNN) models for

automated age estimation.

Results: Model performance was evaluated using loss curves, residual

histograms, and normal PP plots. Age prediction models were built separately

for the total, female, and male samples. The best models yielded mean

absolute errors of 1.24, 1.28, and 1.15 years, respectively.

Discussion: These findings confirm the effectiveness of deep learning models in

dental age estimation, particularly among northern Chinese adolescents.
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1 Introduction

Age estimation plays a crucial role in various fields, including forensic science,

orthodontics, pediatric healthcare, and social management, especially in pediatric

dentistry (1, 2). Accurately determining an individual’s physiological age is not only

essential for forensic identification, personal identification, and criminal responsibility

assessment but also directly impacts the evaluation of children’s growth and

development as well as the formulation of orthodontic treatment plans (3, 4).

Traditional dental age estimation methods rely on manually scoring the developmental

stages of teeth and then estimating dental age using preestablished conversion tables, such

as Demirjian method (5). While these methods can effectively reflect dental development

within certain age ranges, their accuracy is influenced by factors such as population

ethnicity, environmental conditions, nutritional status, and individual developmental

differences. Due to the complex nonlinear relationships between tooth mineralization

and root development, traditional methods struggle to fully capture these subtle

variations. In particular, during late adolescence, as dental development approaches

maturity, traditional methods often exhibit a “ceiling effect,” leading to significant

prediction deviations and limiting their practical applicability (6).

With advancements in science and technology, new dental age estimation methods

have emerged, incorporating medical imaging analysis and deep learning, especially
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convolutional neural network. Compared to traditional methods,

convolutional neural network (CNNs) can capture subtle changes

in dental microstructures more precisely, reduce human errors,

and improve both accuracy and applicability. With the

integration of intelligent algorithms, dental age estimation

becomes even more precise and universally applicable, providing

a more scientific basis for forensic identification, dental medicine,

and child health assessment (7–9).

Dental radiographs serve as crucial imaging data for assessing

the growth and development of children and adolescents,

containing abundant information on dental development (10).

Convolutional Neural Networks, has demonstrated exceptional

performance in various fields such as medical diagnosis and

pathological detection, thanks to its ability to automate feature

extraction and represent multilevel information (11, 12). This

technology offers a novel approach to automatic dental age

estimation, overcoming the limitations of traditional methods

and improving both accuracy and efficiency.

This study aims to explore an automatic dental age estimation

method based on deep learning. The primary objective is to

develop and optimize deep neural network models to automatically

extract dental developmental features from panoramic dental

radiographs, thereby achieving high precision age prediction. To

accomplish this, the study employs various classic and advanced

deep learning architectures, including LeNet5, AlexNet, VGG16,

ResNet50, ConvNeXt, and Swin Transformer, and compares their

performance in the dental age estimation task.

2 Materials and methods

2.1 Materials

This study selected a total of 3,790 panoramic dental

radiographs (orthopantomograms) from children and adolescents

aged 5–23 years who visited the Department of Dentistry at the

Affiliated People’s Hospital of the Medical University between

June 2021 and December 2024. Among them, 1,693 were male,

and 2,097 were female.

All imaging data used in this study were obtained through

retrospective analysis and were not associated with any

commercial interests. During the research process, the images

were anonymized, with only gender, imaging date, and birthdate

recorded to ensure the protection of personal privacy. According

to the current Ethical Review Measures for Biomedical Research

Involving Humans, this study is exempt from the requirement of

obtaining informed consent.

Inclusion Criteria: (1) The sample consists of Han Chinese

individuals who were born and have lived long-term in the

North China region to ensure consistency in regional and ethnic

characteristics. (2) The collected panoramic images must be clear

and free of blurring, with the width difference between the left

and right first permanent molar crowns not exceeding 20% to

ensure measurement accuracy. (3) The sample must have a

complete dentition with normal dental growth and development,

without cavities, periodontal disease, dental trauma, or congenital

or acquired tooth loss.

Exclusion Criteria: (1) Diseases affecting normal jawbone

development, such as temporomandibular joint ankylosis, cleft

lip and palate, jaw deformities, or jaw tumors. (2) History

of maxillofacial trauma. (3) Previous orthodontic treatment.

(4) Abnormal development of the third molar, such as short

roots, malformed roots, or impacted third molars. (5) Individuals

with chronic diseases, systemic conditions, genetic disorders, or

abnormal physical development.

The distribution of gender characteristics and age

characteristics of the samples involved in this study are shown in

Tables 1, 2, respectively.

In the sample of this study, males accounted for 44.67% and

females accounted for 55.33%, indicating a relatively balanced

gender ratio with little deviation. However, considering the

significant differences in tooth age development between genders,

gender factors have a strong impact on tooth age estimation.

Therefore, when constructing a dental age prediction model, it is

necessary to perform gender stratified analysis on the samples to

improve the model’s prediction accuracy and generalization ability.

The age distribution of the sample shows a clear concentration

trend, especially during the tooth replacement period (6–12 years

old), with a sample proportion of as high as 60.26% in this age

group. At this stage, the mineralization, eruption, and root

development characteristics of teeth are relatively active and

significant, which is a critical period for tooth age assessment

research. In contrast, the proportion of samples in the age

groups of under 5 years old (4.46%) and 18 years old and above

(11.06%) is relatively low, which may be related to the lower

frequency of individual visits or atypical and unrepresentative

dental development characteristics in these stages.

To maximize the use of image information from panoramic

radiographs, irrelevant elements were first removed prior to

analysis, ensuring that the images processed by the convolutional

neural networks (CNNs) contained only the dental arch region,

as illustrated in Figure 1.

The fully automated dental age estimation method involves the

following steps: First, OpenCV image processing tools were used to

locate and label the oral region in the radiographs (13). Second,

various convolutional neural network models were employed to

TABLE 1 Gender characteristics of the research subjects included.

Group Number of people Constituent ratio

Male 1,693 44.67%

Female 2,097 55.33%

TABLE 2 Age characteristics of the research subjects included.

Group Number of people Constituent ratio

Under 5 years old 169 4.46%

6–11 years old 2,284 60.26%

12–18 years old 918 24.22%

18 years old and above 419 11.06%
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train on the panoramic dental images for age prediction. Finally,

the trained CNN models were evaluated on a test set to assess

their performance and to perform dental age estimation, as

shown in the Figure 2.

2.2 Deep learning model and training

Automatic dental age estimation is a fine-grained visual

regression task, made particularly challenging by the subtle

inherent differences between individual teeth. Unlike traditional

regression problems, this task requires precise recognition of fine

visual cues. Motivated by the hypothesis that incorporating

segmentation tasks can enhance regression performance, this

study first compared various tooth segmentation methods and

ultimately employed the U-Net architecture for tooth

segmentation (14). Using the U-Net model, segmentation masks

were automatically generated for the teeth in panoramic

radiographs. These masks were then manually reviewed to ensure

that they accurately captured the complete tooth regions, as

shown in Figure 3. After verifying the masks, various deep

learning models were applied to perform age prediction based on

the segmented images. The models used include LeNet-5,

AlexNet, VGG-16, ResNet-50, Swin Transformer, and

ConvNeXt (15).

The following subsection will introduce the specific

architectures of these neural network models.

2.2.1 LeNet-5
The LeNet-5 network is a classical convolutional neural

network (CNN) architecture, known for its simplicity and

effectiveness in early image recognition tasks (16). Its main

features include the use of alternating convolutional and pooling

layers to progressively extract features, followed by fully

connected layers for classification. Through weight sharing and

local connections, LeNet-5 significantly reduces the

computational load while preserving spatial information.

By combining convolution and pooling operations, LeNet-5

effectively captures both local and global features in the image.

This structure not only reduces the number of parameters but

also lowers computational cost and minimizes the risk of

FIGURE 1

The preprocessing of panoramic dental images.

FIGURE 2

The flow chart of tooth age estimation based on deep learning.
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overfitting, making it a suitable choice for tasks involving limited

data or relatively simple image structures.

2.2.2 AlexNet

AlexNet builds upon the foundation laid by LeNet and

introduces several key innovations that significantly improve the

performance of convolutional neural networks, especially on

large-scale image classification tasks (17). One major

advancement is the introduction of the ReLU (Rectified Linear

Unit) activation function. ReLU effectively alleviates the

vanishing gradient problem, speeds up training, and is

computationally efficient. Its operation is simple: when the input

is greater than zero, the output equals the input; when the input

is less than or equal to zero, the output is zero.

However, a drawback of ReLU is that neurons can “die”

during training if they fall into the negative range and stop

updating, which may reduce model capacity. To address model

overfitting and improve generalization, AlexNet also incorporates

regularization techniques. One of the most notable is Dropout,

which randomly deactivates a subset of neurons during training

with a certain probability. These deactivated neurons do not

participate in forward or backward propagation for that iteration.

2.2.3 VGG-16

VGG-16 is a classic model from the VGG architecture family,

known for its deep network structure and simple yet powerful

design (18). Its main strength lies in its ability to extract rich,

multi-level features from images through a significantly deep

architecture. The name “VGG-16” comes from its total of 16

weight layers, which include 13 convolutional layers and 3 fully

connected layers. One of the defining features of VGG-16 is its

architectural consistency and scalability. All convolutional layers

use uniform 3 × 3 kernels, which helps capture fine-grained

spatial features while keeping the design straightforward.

Additionally, a 2 × 2 max pooling layer is inserted after every two

convolutional layers to reduce spatial dimensions while retaining

important information.

This uniform structure not only simplifies network design

and implementation but also enhances training stability and

computational efficiency. Due to its balance between depth and

simplicity, VGG-16 has become a foundational model for many

computer vision tasks and is widely used as a baseline in both

academic research and practical applications.

2.2.4 ResNet-50

ResNet-50 introduces the concept of residual learning, which

allows each block in the network to learn the residual between

the input and the desired output, rather than attempting to learn

a direct and potentially complex mapping (19). This innovation

effectively addresses the vanishing gradient and performance

degradation problems that typically occur when the depth of a

neural network increases.

In traditional deep networks, each layer attempts to learn a

complete transformation from input to output. However, as

networks become deeper, this task becomes increasingly difficult,

leading to training challenges and a drop in accuracy. ResNet-50

overcomes this by adding shortcut connections, which bypass

one or more layers and allow the network to learn residual

functions more easily.

2.2.5 Swin transformer
Swin Transformer uses the Transformer architecture to process

image data and effectively improves computational efficiency and

modelling capability through local window partitioning and shifted

window techniques (20). The Swin Transformer consists of multiple

stages, where the size of the output feature maps gradually

decreases, while the number of channels increases across stages.

This design helps in extracting multi-scale image features.

By utilizing two core components—Window-based Multi-

Head Self-Attention (W-MSA) and Shifted Window-based

Multi-Head Self-Attention (SW-MSA)—the model reduces

computational load while capturing local features. Swin

Transformer divides the input feature map into several non-

overlapping windows. Within each window, the multi-head self-

attention mechanism computes queries, keys, and values.

FIGURE 3

The result of tooth segmentation.
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Through this mechanism, the model captures feature relationships

from different perspectives. Finally, the outputs from all heads are

concatenated and passed through a linear transformation to

produce the final output.

2.2.6 ConvNeXt

ConvNeXt draws inspiration from Transformer design

principles to enhance the performance of traditional

convolutional neural networks (CNNs) (21). Each stage of

ConvNeXt consists of a series of convolutional and pooling

layers that progressively reduce the resolution of the feature

maps while increasing the number of channels, allowing the

model to extract features at multiple scales.

ConvNeXt adopts relatively large convolutional kernels to

capture broader contextual information in images. It also

leverages a combination of depth-wise convolutions and

pointwise (1 × 1) convolutions, which increases the network’s

expressive power while maintaining computational efficiency.

3 Results

3.1 Implantation details and evaluation
metrix

To expand the dataset and enhance model robustness, data

augmentation techniques such as image rotation and flipping

were applied to the original images. Before validation, this study

applied data augmentation techniques (horizontal flip, vertical

flip, rotation, and Gaussian blur.) to expand the original set of

3,790 images to 18,950 images (22, 23). These augmented images

were then split into training, validation, and test sets in a 7:2:1

ratio. As a result, the dataset contained 13,265 training images,

3,790 test images, and 1,895 validation images. All experiments

were conducted on a workstation equipped with an NVIDIA

RTX 3090 (32GB) GPU running CUDA 11.4. The models were

developed using Python 3.11 and PyTorch v1.12.1.

To prevent data leakage, all augmented versions of a given

original image were grouped and assigned to the same dataset

split. Stratification and splitting were performed prior to data

augmentation, ensuring no overlap of source images across

training, validation, and test sets. Additionally, when applicable,

splits were made at the patient level to avoid intra-subject

information leakage.

During model evaluation, this study calculated Accuracy, Mean

Absolute Error (MAE), and the Coefficient of Determination (R2).

By comparing the performance metrics of different models, the

most optimal model for dental age estimation was selected. The

calculation formulas for different performance metrics are shown

in Equations 1–3:

MAE ¼
1

n

Xn

i¼1
j�ŷij (1)

R2 ¼ 1�
1

n

Xn

i¼1
(yi � ŷi)

2=
Xn

i¼1
(yi � �y)2 (2)

Accuracy ¼
TP

TP þ FP
(3)

In the above formula, yi is the true age of the i-th sample, ŷi is the

predicted age of the i-th sample, yi is the average of the true ages of

the samples, and n is the sample size. TP is the correct sample for

prediction (the residual between the predicted value and the true

value within 1 year old). FP is the wrong sample for prediction.

This research discretized continuous age values into 1-year bins

to assess performance from a clinically relevant perspective. In

dental age estimation, a prediction within ±1 year of the actual

age is generally acceptable in practice. Therefore, we defined

predictions within this range as “correct” and used this criterion

to calculate an accuracy metric.

3.2 Loss function and hyperparameter

By analyzing the data samples collected in this study, we

observed a class imbalance phenomenon, with most samples

concentrated in the 6–18 age range. Therefore, when designing

the loss functions for the various network models, it is important

to consider not only model performance but also the issue of

class imbalance. In this study, we followed approaches reported

in the literature and adopted the balanced MSE loss as the loss

function for all network models. The formula for the loss

function is shown in Equation 4.

L ¼
1

N

XN

i¼1
(yi � ŷi)

2 � wi (4)

Here, wi represents the weight assigned to each class, which is used

to suppress the influence of dominant classes and increase the

relative importance of minority classes. Specifically, wi is defined

as the inverse of the frequency fi of the class to which sample iii

belongs, i.e., wi ¼ 1=fi.

Hyperparameters are parameters that must be set before

training a deep learning model. They control the model’s

architecture and learning process, such as the learning rate,

optimizer, and weight decay. In this study, the optimal

hyperparameters for each network model are listed in Table 3.

3.3 Comparison of tooth segmentation

Tooth segmentation can significantly enhance the accuracy and

robustness of dental age estimation by isolating individual teeth or

tooth structures—from irrelevant background information. In this

study, incorporating a segmentation step prior to age estimation

helped the model learn more discriminative patterns, ultimately

contributing to improved regression performance. This study first
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compared various tooth segmentation methods, including dice

coefficients, segmentation time. The performance of different

segmentation methods in tooth segmentation as shown in Table 4.

The DICE coefficient is an indicator used to measure the

effectiveness of image segmentation, with higher values indicating

better segmentation performance. As seen in Table 4, U-Net

performs significantly better than the other methods in terms of

segmentation quality. Although its segmentation time is slightly

longer (4.93 s), overall, it provides the best performance.

Therefore, this research ultimately employed the U-Net

architecture for tooth segmentation due to its effectiveness

and robustness.

3.4 Comparison of quantitative results

To evaluate the effectiveness of convolutional neural networks

(CNNs) in dental age estimation, the study first compared the

performance of different CNN architectures based on various

metrics, as shown in Table 5.

Table 5 shows the performance metrics of six different network

models in the dental age estimation task, including Mean Absolute

Error, Coefficient of Determination, and Accuracy. Lower MAE

values, higher R2 values, and higher accuracy indicate better

model performance (24).

3.5 Comparison of loss function

The loss function curve is a vital tool for monitoring the

training dynamics of deep learning models (25). It illustrates how

the loss value changes over training epochs, enabling researchers

to determine whether the model is converging, overfitting,

or underfitting.

In this study, we compared the loss curves of multiple

convolutional neural network architectures throughout the

training process, as shown in Figure 4. By observing the trend

and stability of these curves, we can assess each model’s learning

efficiency and generalization capability. A well-performing model

typically demonstrates a smooth and steadily declining loss curve

on the training set, accompanied by a similarly stable or slightly

fluctuating validation loss curve.

Figure 4A shows the loss function curve of the LeNet-5 model

during training. Both the training loss and validation loss exhibit a

sharp decline during the initial 1–2 epochs, dropping rapidly from

a high starting point of approximately 60–70 down to a range of

10–15. However, after this initial descent, the loss values do not

continue to decrease significantly. Figure 4B illustrates the loss

function curve of the AlexNet model. As shown in the figure, the

validation loss initially decreases in tandem with the training loss

and reaches a relatively low point around epochs 2–3. Afterward,

it experiences slight fluctuations but gradually stabilizes at a level

close to the training loss. This suggests that no significant

overfitting or divergence occurred in the later stages of training,

indicating relatively stable learning behavior. Figure 4C displays

the loss curve of VGG-16. In this case, the training loss remains

slightly lower than the validation loss throughout the training

process. However, the gap between the two curves is not

substantial, suggesting that VGG-16 maintains a balanced

generalization ability. This implies that the model does not suffer

from pronounced overfitting or instability during training, and it

performs consistently across both training and validation

datasets. Figure 4D shows the loss trajectory of ResNet-50.

During the early training phase, both the training and validation

losses drop rapidly from an initial high value (approximately

4.75) to a range between 2.5 and 3.0. This indicates that the

model quickly learns low-level or general image features. In the

later training stages, the training loss remains slightly lower than

the validation loss, but the margin is narrow, which reflects good

model fitting and generalization performance on both datasets.

Figure 4E presents the loss curve of the Swin Transformer

model. Compared to other deep networks such as ResNet-50, the

Swin Transformer exhibits a relatively high validation loss

throughout training and fails to converge to a lower and stable

value. This trend suggests that the model faces challenges in

learning effectively from the current dataset, potentially due to

the limited sample size, insufficient tuning, or the architecture

being less compatible with the specific characteristics of panoramic

dental images. Figure 4F illustrates the loss curve of ConvNeXt.

In this case, the training loss consistently stays slightly below the

validation loss, with no pronounced divergence. This pattern

indicates that the model does not exhibit severe overfitting or

underfitting in the later training epochs. The overall trend suggests

TABLE 4 The performance of different segmentation in
tooth segmentation.

Segmentation
method

Dice
coefficient

Segmentation time
(s)

FCN 78.70 4.31

DeepLab v1 81.45 5.12

SegNet 88.71 5.08

U-Net 91.04 4.93

TABLE 3 The optimal hyperparameters of convolutional network used in
this article.

Network
model

Learning
rate

Optimizer Epoch Weight
decay

LeNet-5 0.01 RMSProp 15 5 × 10−5

AlexNet 0.0005 Adam 25 5 × 10−5

VGG-16 0.0008 Adadelta 22 1 × 10−4

ResNet-50 0.001 Adam 20 1 × 10−5

Swin Transformer 0.0003 AdamW 30 1 × 10−5

ConvNeXt 0.0015 Adagrad 18 1 × 10−4

TABLE 5 Performance indicators of different network models.

Network model MAE R
2 Accuracy

LeNet-5 3.85 0.682 0.609

AlexNet 3.65 0.741 0.663

VGG-16 4.13 0.722 0.723

ResNet-50 1.13 0.924 0.839

Swin Transformer 3.87 0.672 0.629

ConvNeXt 1.12 0.918 0.820

The bold values means the optimal value.
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that ConvNeXt achieves a well-balanced fit between the training

and validation sets, demonstrating strong learning stability and

generalization capability.

3.6 Standardized residual histogram and
normal P-P plot of standardized residuals

To evaluate the distribution of prediction errors and the

reliability of the regression model, this study employed two key

diagnostic tools: the Standardized Residual Histogram (SRH) and

the normal P–P plot of standardized residuals (26).

The standardized residual histogram visualizes the distribution

of residuals. A bell-shaped, symmetric histogram indicates that

residuals are approximately normally distributed, which supports

one of the core assumptions in linear regression models.

A skewed or multimodal distribution, however, might suggest

model misspecification, outliers, or non-linearity in the data.

The normal probability–probability (P–P) plot of standardized

residuals further tests the normality assumption by plotting the

cumulative distribution of the observed standardized residuals

against a theoretical normal distribution. If the residuals are

normally distributed, the points on the P–P plot should fall

closely along the 45-degree reference line.

The Standardized Residual Histogram and Normal P-P Plot

of Standardized Residual for different models are shown in

the Figure 5.

As shown in Figure 5, the residuals from all deep learning

models approximately follow a normal distribution. This is

evidenced by the standardized residual histograms, which exhibit

a bell-shaped curve, and the normal P-P plots, in which most of

the data points lie close to the diagonal reference line. These

visual assessments suggest that the residuals satisfy the

assumption of normality. Furthermore, based on the residual

statistics, although a few outliers are observed, the overall

standard deviation of the residuals remains relatively small. This

implies that prediction errors are generally limited in magnitude,

and the deep learning models are not significantly biased. Taken

together, the conformity of the residuals to a normal distribution,

the low dispersion, and the limited number of outliers validate

the appropriateness and robustness of the deep learning models

for dental age estimation tasks. These results support the

conclusion that the models exhibit good predictive performance

and reliability on the given dataset.

3.7 Evaluation of the optimal age estimation
model

The optimal age estimation models for the total sample, as well

as for the female and male subgroups, were identified. The

performance evaluation across different age ranges is detailed in

Tables 5–7. The residual value in the Tables 6–8 is the residual

between the true value and the predicted value.

According to Tables 6–8, it is evident that the optimal age

estimation models demonstrate varying levels of accuracy across

different age groups. The models exhibit relatively high accuracy

in the adolescent population aged between 5.00 and 15.99 years,

with the mean absolute error approaching approximately 1 year.

However, for individuals aged 16 years and above, the accuracy

of age estimation gradually declines. Specifically, the MAE values

for the total sample in the 4.00–11.99 age group are all under 1

year, indicating strong performance. Similarly, the MAE values

for the female subgroup in the 6.00–9.99 and 11.00–11.99 age

FIGURE 4

The loss function of different deep learning model. (A) LeNet-5; (B) AlexNet; (C) VGG-16; (D) ResNet-50; (E) Swin Transformer; (F) ConvNeXt.
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intervals are below 1 year. In the male subgroup, the model

achieved an MAE close to 1 year across the 5.00–15.99 age range.

These findings suggest that combining machine learning

techniques with Demirjian’s method yields promising results in

estimating dental age among children and adolescents in North

China—especially during early and middle childhood, where

predictive performance is particularly robust. However, the

model’s performance significantly declines when applied to

individuals over the age of 16.

Based on clinical observations and a review of relevant

literature, this performance trend can be attributed to the

developmental characteristics of the dentition. The age ranges

from 6 to 15 represents a crucial period for dental development,

during which the permanent dentition undergoes active eruption

and replacement. During this stage, the morphological

differentiation of tooth crowns and the calcification of roots follow

a relatively consistent and predictable pattern. Imaging features such

as dentin deposition and root canal closure undergo continuous

and discernible changes, which are well-suited for quantitative

feature extraction by machine learning algorithms.

In contrast, after the age of 15, tooth development slows, and

growth patterns become increasingly influenced by individual

variation, hormonal fluctuations during and after puberty, as well

as environmental and pathological factors. These elements

introduce greater heterogeneity and irregularity in dental

development, making it more challenging for algorithms to learn

FIGURE 5

The standardized residual histogram and normal P-P plot of standardized residual for different models. (A) LeNet-5; (B) AlexNet; (C) VGG-16;

(D) ResNet-50; (E) Swin Transformer; (F) ConvNeXt.

TABLE 6 The predictive performance of the total sample optimal age estimation model (ResNet-50).

Age range Number of samples True value Predicted value Residual MAE

3.00–3.99 7 3.00 ± 0.00 4.25 ± 0.00 −1.25 ± 0.00 1.2500

4.00–4.99 32 4.00 ± 0.00 4.67 ± 0.31 −0.67 ± 0.31 0.6666

5.00–5.99 143 5.00 ± 0.00 5.81 ± 1.95 −0.81 ± 1.95 0.9351

6.00–6.99 196 6.00 ± 0.00 6.67 ± 1.57 −0.67 ± 1.57 0.9038

7.00–7.99 260 7.00 ± 0.00 7.16 ± 0.84 −0.16 ± 0.84 0.5471

8.00–8.99 471 8.00 ± 0.00 8.24 ± 0.87 −0.24 ± 0.87 0.6236

9.00–9.99 236 9.00 ± 0.00 9.30 ± 1.25 −0.30 ± 1.25 0.8802

10.00–10.99 421 10.00 ± 0.00 10.27 ± 1.40 −0.27 ± 1.40 0.9226

11.00–11.99 316 11.00 ± 0.00 11.25 ± 1.10 −0.25 ± 1.10 0.8104

12.00–12.99 375 12.00 ± 0.00 12.47 ± 1.55 −0.47 ± 1.55 1.1396

13.00–13.99 216 13.00 ± 0.00 13.16 ± 1.39 −0.16 ± 1.39 1.1277

14.00–14.99 212 14.00 ± 0.00 14.16 ± 1.52 −0.16 ± 1.52 1.1590

15.00–15.99 172 15.00 ± 0.00 15.12 ± 1.70 −0.12 ± 1.70 1.3214

16.00–16.99 161 16.00 ± 0.00 15.54 ± 1.74 0.46 ± 1.74 1.4765

17.00–17.99 140 17.00 ± 0.00 15.87 ± 2.18 1.13 ± 2.18 2.0089

18.00–18.99 132 18.00 ± 0.00 17.16 ± 2.06 0.84 ± 2.06 1.6634

19.00–19.99 126 19.00 ± 0.00 17.49 ± 2.05 1.51 ± 2.05 1.7900

20.00–20.99 96 20.00 ± 0.00 18.69 ± 1.34 1.31 ± 1.34 1.3106

21.00–21.99 62 21.00 ± 0.00 19.79 ± 1.28 1.21 ± 1.28 1.2161

22.00–22.99 15 22.00 ± 0.00 19.91 ± 1.44 2.09 ± 1.44 1.6182

23.00–23.99 1 23.00 ± 0.00 21.50 ± 0.00 1.50 ± 0.00 1.5000

Li et al. 10.3389/fdmed.2025.1618246

Frontiers in Dental Medicine 08 frontiersin.org

https://doi.org/10.3389/fdmed.2025.1618246
https://www.frontiersin.org/journals/dental-medicine
https://www.frontiersin.org/


stable predictive patterns. Consequently, the model’s performance

in older adolescents and adults is less reliable.

3.8 Evaluation of the optimal age estimation
model

To visually demonstrate the effect, features with shapes of

(416, 416, 32) were extracted from the ResNet-50 and

ConvNeXt for visualization. The visualization results are

shown in Figure 6.

In Figure 6, the left column (A) displays the original panoramic

dental images, the column (B) presents the corresponding model-

generated attention heatmaps of ResNet-50 and the column (C)

presents the attention heatmaps of ConvNeXt. The patients in

the first to fourth rows are aged 8, 11, 15, and 20, respectively.

As illustrated in Figure 6, the model primarily focuses on the

dental arch, capturing key features such as apical closure and

occlusal surface wear. In children’s patients, particularly those

under the age of 10, the ResNet-50 pays closer attention to areas

of permanent tooth eruption, root development, and deciduous

tooth resorption. Observing from column C, the ConvNeXt

TABLE 7 The predictive performance of the female sample optimal age estimation model (ResNet-50).

Age range Number of samples True value Predicted value Residual MAE

3.00–3.99 5 3.00 ± 0.00 5.22 ± 0.00 −2.22 ± 0.00 2.2200

4.00–4.99 21 4.00 ± 0.00 6.50 ± 2.21 −2.50 ± 2.21 2.4975

5.00–5.99 78 5.00 ± 0.00 6.82 ± 2.33 −1.82 ± 2.33 1.8226

6.00–6.99 117 6.00 ± 0.00 6.92 ± 1.50 −0.92 ± 1.50 0.9670

7.00–7.99 139 7.00 ± 0.00 7.13 ± 0.49 −0.13 ± 0.49 0.3618

8.00–8.99 238 8.00 ± 0.00 8.20 ± 0.77 −0.20 ± 0.77 0.5864

9.00–9.99 129 9.00 ± 0.00 9.54 ± 1.61 −0.54 ± 1.61 0.9619

10.00–10.99 264 10.00 ± 0.00 10.47 ± 1.51 −0.47 ± 1.51 1.0107

11.00–11.99 169 11.00 ± 0.00 11.66 ± 1.22 −0.66 ± 1.22 0.9887

12.00–12.99 221 12.00 ± 0.00 12.46 ± 1.79 −0.46 ± 1.79 1.3938

13.00–13.99 129 13.00 ± 0.00 13.68 ± 1.44 −0.68 ± 1.44 1.4048

14.00–14.99 96 14.00 ± 0.00 14.51 ± 1.55 −0.51 ± 1.55 1.4750

15.00–15.99 102 15.00 ± 0.00 15.28 ± 1.46 −0.28 ± 1.46 1.3165

16.00–16.99 87 16.00 ± 0.00 15.43 ± 1.33 0.57 ± 1.33 1.1094

17.00–17.99 85 17.00 ± 0.00 15.63 ± 1.75 1.37 ± 1.75 1.6894

18.00–18.99 89 18.00 ± 0.00 16.89 ± 1.89 1.11 ± 1.89 1.5605

19.00–19.99 64 19.00 ± 0.00 16.45 ± 2.01 2.55 ± 2.01 2.6138

20.00–20.99 28 20.00 ± 0.00 17.98 ± 1.82 2.02 ± 1.82 2.0200

21.00–21.99 26 21.00 ± 0.00 19.02 ± 1.10 1.88 ± 1.10 1.9134

22.00–22.99 10 22.00 ± 0.00 20.18 ± 1.31 1.82 ± 1.31 1.8617

TABLE 8 The predictive performance of the male sample optimal age estimation model (ConvNeXt).

Age range Number of samples True value Predicted value Residual MAE

3.00–3.99 2 3.00 ± 0.00 5.22 ± 0.00 −2.22 ± 0.00 2.2200

4.00–4.99 11 4.00 ± 0.00 5.42 ± 0.10 −1.42 ± 0.10 1.4212

5.00–5.99 65 5.00 ± 0.00 5.53 ± 0.34 −0.53 ± 0.34 0.5393

6.00–6.99 79 6.00 ± 0.00 6.88 ± 1.83 −0.88 ± 1.83 1.1239

7.00–7.99 121 7.00 ± 0.00 7.37 ± 0.82 −0.37 ± 0.82 0.6075

8.00–8.99 233 8.00 ± 0.00 8.21 ± 0.64 −0.21 ± 0.64 0.5507

9.00–9.99 107 9.00 ± 0.00 9.19 ± 0.81 −0.19 ± 0.81 0.7343

10.00–10.99 157 10.00 ± 0.00 10.12 ± 0.88 −0.12 ± 0.88 0.6903

11.00–11.99 147 11.00 ± 0.00 11.35 ± 1.22 −0.35 ± 1.22 1.0379

12.00–12.99 154 12.00 ± 0.00 12.46 ± 1.21 −0.46 ± 1.21 1.0107

13.00–13.99 87 13.00 ± 0.00 12.80 ± 0.75 0.19 ± 0.75 0.5561

14.00–14.99 116 14.00 ± 0.00 13.92 ± 0.97 0.07 ± 0.97 0.7000

15.00–15.99 70 15.00 ± 0.00 14.28 ± 1.56 0.71 ± 1.56 1.3713

16.00–16.99 74 16.00 ± 0.00 15.27 ± 1.73 0.72 ± 1.73 1.6517

17.00–17.99 55 17.00 ± 0.00 16.81 ± 1.38 0.18 ± 1.38 1.2642

18.00–18.99 43 18.00 ± 0.00 18.09 ± 1.17 −0.09 ± 1.17 0.9928

19.00–19.99 62 19.00 ± 0.00 17.83 ± 2.03 1.16 ± 2.03 1.4387

20.00–20.99 68 20.00 ± 0.00 18.74 ± 0.93 1.25 ± 0.93 1.2541

20.00–20.99 36 21.00 ± 0.00 19.37 ± 1.36 1.63 ± 1.36 1.5217

21.00–21.99 5 22.00 ± 0.00 20.16 ± 1.23 1.84 ± 1.23 1.7638

23.00–23.99 1 23.00 ± 0.00 21.46 ± 0.00 1.54 ± 0.00 1.5385
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focuses on the left posterior teeth and anterior mandible. These

visualization results highlight the deep learning models strong

biological interpretability and its ability to effectively distinguish

age-related dental characteristics.

4 Discussion

Dental age estimation is a key technology widely used in

various fields such as forensic medicine, clinical medicine,

archaeology, and identification of minors (27, 28). The

traditional method of inferring tooth age mainly relies on

experienced dental experts to make judgments by observing the

development and wear of teeth (29). However, this method is not

only time-consuming, but also subjective, which may lead to

biases in judgments between different experts. The traditional

machine learning based dental age estimation method has

improved the automation level to a certain extent, but its feature

extraction process relies on manual experience and is difficult to

fully explore the deep level information of the data. Adolescents

in North China may be influenced by various factors such as

genetics, environment, and dietary habits during tooth

development, which may result in differences in the speed and

morphological characteristics of tooth growth compared to

adolescents in other regions (30). Therefore, using universal

methods for inferring tooth age may not be well adapted to the

specific growth patterns of adolescents in North China, while

deep learning can extract tooth age features suitable for North

China adolescents through large-scale regional data training,

improving prediction accuracy.

The application of deep learning algorithms in the field of age

estimation has become increasingly prevalent in recent years. This

article proposes a deep learning-based model for automatically

inferring tooth age and validates it on a collected dataset,

demonstrating the significant importance and advantages of deep

learning in the field of dental age estimation. This study

conducted extensive training and validation of six deep learning

architectures on a large-scale dental panoramic image dataset for

automatic dental age estimation. The experimental results

revealed marked differences in model performance across various

evaluation metrics, including accuracy, stability, and convergence

speed. Based on the Mean Absolute Error metrics evaluated on

the training dataset, ResNet-50 demonstrated the best overall

performance for both the total sample and the female subgroup,

while ConvNeXt outperformed the other models in the male

subgroup. These findings indicate the robustness and adaptability

of different network architectures to varying population

characteristics. Compared with traditional methods of dental age

estimation—such as those based on manual scoring systems like

Demirjian’s method, which involve complex and time-consuming

calculations and score conversions—deep learning models offer

substantial advantages. Moreover, deep learning algorithms

exhibit superior adaptability to data from diverse populations.

This is particularly beneficial when handling datasets

characterized by complex, nonlinear relationships, especially in

the context of large-scale, population-based dental studies (31).

As presented in the literature (32), the author used convolutional

neural networks to diagnose dental age in 5,898 panoramic x-ray

images. The results showed that compared to traditional

methods, convolutional neural networks not only achieved

FIGURE 6

Grad CAM visualization results of optimal deep learning models. (A) Original CT; (B) Heatmaps of ResNet-50; (C) Heatmaps of ConvNeXt.
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satisfactory results, but also had faster inference speed, eliminating

the need for additional learning from experts.

Although deep neural networks have significantly improved the

overall accuracy of dental age estimation in this study, their

predictive performance remains limited for older adolescents and

adults aged 16 years and above. A noticeable tendency toward

systematic underestimation and higher prediction errors was

observed in this age group. This limitation is primarily attributed to

the biological characteristics of dental development—specifically, the

completion of crown and root formation, leading to reduced

morphological variation and lower distinguishability in dental

radiographs. Consequently, deep learning models struggle to extract

informative features from these relatively static developmental

stages. Moreover, the performance of models like ResNet-50 and

ConvNeXt in this study heavily relies on the availability of large-

scale, high-quality dental image datasets. Therefore, in the future,

expanding the sample size for high-age and edge cases, improving

the representativeness of the dataset, and optimizing data

augmentation strategies are essential to enhance the generalizability

and robustness of age estimation models in future applications.

In addition, due to current data access and regulatory restrictions,

external datasets cannot be independently validated. However,

considering the importance of evaluating the robustness of models

for different populations, this study is actively seeking cooperation

with other regions to establish a more heterogeneous, multi center

dataset. In future work, this study will prioritize external validation

of multi-ethnic and geographically diverse groups to ensure the

wider applicability and fairness of the model.
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