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Objective: Traditional gingival thickness (GT) assessment methods provide only

point measurements or simple classifications, lacking spatial distribution

information. This study aimed to develop a CBCT-based 3D visualization

system for gingival thickness using deep learning, providing a novel spatial

assessment tool for implant surgery planning.

Methods: CBCT and intraoral scanning (IOS) data from 50 patients with tooth

loss were collected to establish a standardized dataset. DeepLabV3+

architecture was employed for semantic segmentation of gingival and bone

tissues. A 3D visualization algorithm incorporating vertical scanning strategy,

triangular mesh construction, and gradient color mapping was innovatively

developed to transform 2D slices into continuous 3D surfaces.

Results: The semantic segmentation model achieved a mIoU of 85.92 ± 0.43%.

The 3D visualization system successfully constructed a comprehensive spatial

distribution model of gingival thickness, clearly demonstrating GT variations

from alveolar ridge to labial aspect through gradient coloration. The 3D model

enabled millimeter-precision quantification, supporting multi-angle and multi-

level GT assessment that overcame the limitations of traditional

2D measurements.

Conclusion: This system represents a methodological advancement from

qualitative to spatial quantitative GT assessment. The intuitive 3D visualization

serves as an innovative preoperative tool that identifies high-risk areas and

guides personalized surgical planning, enhancing predictability for aesthetic

and complex implant cases.
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1 Introduction

Gingival thickness (GT), which is regarded as an important

component of the periodontal phenotype, plays pivotal roles in

the health and function of teeth and dental implants (1). Besides,

the phenotypes of periodontal soft tissues, including GT, are

crucial for the outcomes of periodontal and implant therapy,

orthodontic treatment as well as prosthetic rehabilitation (2).

Accordingly, the assessment of such key component at all stages

of treatment planning and execution is essential to achieve

optimal clinical outcomes. Notably, a GT threshold of 1 mm was

established to differentiate between thin gingiva (<1 mm) and

thick gingiva (≥1 mm) at the 2017 World Symposium, while it

also emphasized that thin gingiva can bring about greater risk of

gingival recession (3).

The quality and stability of peri-implant soft tissues are

influenced by multiple critical factors, including implant position,

platform angulation, and gingival anatomical characteristics. In

particular, GT has a direct impact not only on the aesthetic

outcome but also on long-term survival of the implants. Thin

gingival phenotype is closely associated with an increased risk of

unfavorable surgical outcomes (4). Following tooth extraction,

significant morphological and histological changes occur in the

alveolar ridge. With the combination of the increased

dimensional requirements of peri-implant mucosa compared to

natural dentition and functions with fundamentally different

biological attachment mechanisms, these alteration creates unique

challenges for soft tissue management (5). Consequently,

accurate assessment of gingival thickness becomes critically

important in implant treatment planning, as it directly influences

both aesthetic outcomes and long-term implant stability in this

altered environment.

Over the years, various methods and tools have been developed

and utilized to assess GT (6). Among the quantitative methods,

transgingival probing (TGP), cone-beam computed tomography

(CBCT) (6) and ultrasonography (US) (7) are widely used.

Additionally, qualitative assessment of GT in clinical practice is

performed using the probe transparency method, and the gingiva is

classified as either thin or thick using a conventional periodontal

probe (PPB) or a specially designed color-coded probe (CCP) (1).

CBCT scanning has been widely adopted for hard tissue

imaging due to its superior diagnostic capabilities through three-

dimensional reconstructed images. One disadvantage of CBCT

imaging is its low soft tissue contrast resolution, which results

from scatter radiation produced by structures outside the field of

view (FOV) (8). This technical limitation makes it significantly

difficult to accurately identify the gingival boundaries within

CBCT datasets. To address this challenge, an approach utilizing

CBCT in conjunction with a lip retractor has been proposed as

an alternative methodology (9). Recently, a systematic evaluation

was conducted to assess the consistency of various methods,

including US, CBCT and TGP. The results demonstrated that

there was a correlation between CBCT measurements and the

histological gold standard, but the corresponding correlation of

CBCT exhibited the lowest among all quantitative measurement

methods (10, 11).

In recent years, the rapid development of intraoral scanning

(IOS) technology has provided new possibilities for soft tissue

assessment, and thereby high-precision digital reconstruction of

the surface of teeth and soft tissues can be realized (12).

Although CBCT can visualize internal structures, it is difficult to

distinguish the boundaries of different soft tissues. Previous

studies demonstrated that the combination of CBCT with IOS

technology can provide a non-invasive and efficient method for

soft tissue measurement, which can achieve a comprehensive

assessment of periodontal phenotypes (13). However, this process

requires lots of human resources, professional training, and

complicated and time-consuming operations, which makes it

difficult to be widely used in clinical practice. As an important

branch of artificial intelligence (AI), deep learning has made

significant breakthroughs in the field of medical image

processing (14). Compared with conventional image processing

methods, deep learning shows superiority in processing complex

medical images, which can automatically learn feature

representation through multi-layer neural networks rather than

dependent on manually designed feature extractors (15).

Especially in segmentation tasks, convolutional neural network

(CNN) architectures such as U-Net have exhibited excellent

performance in various medical image segmentation (16). It the

area of oral imaging, deep learning has been successfully applied

to clinical tasks such as tooth segmentation (17) and caries

detection. Nevertheless, the practical applications in the precise

identification of gingival soft tissues remain relatively limited.

Due to the blurred boundaries of soft tissues in CBCT images,

traditional manual or semi-automatic segmentation methods are

usually inefficient and easily affected by subjective factors. In

contrast, deep learning has the capabilities of powerful feature

extraction and pixel-level classification, which is expected to

overcome this technical difficulty and provide a promising

strategy for accurate segmentation of soft tissues in CBCT.

Meanwhile, some existing studies have demonstrated the

potential application value of deep learning in soft tissue

segmentation. For example, a Dense U-Net model achieving

93.43% accuracy in segmenting masseter and tongue muscles in

head MRI images through automatic feature representation

learning via multi-layer neural networks rather than relying on

manually designed feature extractors (18). Addtionally, a novel

AI-based method was proposed for gingival segmentation, but its

applicability is limited as it was only tested in an animal pilot

study using Yorkshire pig mandibles (19), and thereby further

validation in human subjects is still required to assess its

clinical generalizability.

To address these limitations, a deep learning-based method is

designed for precise gingival segmentation in human CBCT

images. As the intraoral scanner (IOS) data is used as the gold

standard, the proposed approach can improve the accuracy and

repeatability of gingival thickness (GT) measurements while

reducing the manual workload. Additionally, an innovative

gingival thickness visualization method is also developed to

transform the irregular curved gingival surface into a quantifiable

three-dimensional plane, which can provide the clinicians with

pre-implantation assessment and surgical planning.
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2 Materials and methods

2.1 Design of experiment

This retrospective study included 50 patients with

edentulous teeth who received treatment at the Department of

Implant Dentistry, Affiliated Stomatological Hospital of

Guangzhou Medical University within the period from

January 2023 to December 2023. The study protocol was

approved by the Ethics Committee of the Affiliated

Stomatological Hospital of Guangzhou Medical University

(Approval No.: LCYJ20250303004), and due to the

retrospective nature of this study, the requirement for written

informed consent was waived. This study was carried out in

strict accordance with the ethical principles outlined in the

Declaration of Helsinki (2024 version) issued by the World

Medical Association.

The inclusion criteria for this study are listed as follows: (1)

age within the range of 18–65 years; (2) requirement of

implant restoration treatment; (3) availability of complete

preoperative CBCT and IOS data. Exclusion criteria are also

listed as follows: (1) suffering from severe systemic diseases; (2)

poor oral hygiene; (3) presence of obvious artifacts or

distortions in CBCT or IOS data; (4) suffering from severe

periodontal disease. Figure 1 illustrates the schematic diagram

of research design process.

2.2 Data acquisition

Preoperative CBCT and digital IOS data were collected from

the patients. CBCT images were acquired using a Planmeca

ProMax 3D scanner (Planmeca Oy, Helsinki, Finland). All CBCT

images were acquired following the institution’s standardized

protocol. This protocol stipulated the use of cotton rolls to

separate the lip and cheek soft tissues from the gingiva, aiming

to prevent their overlap and thus ensure optimal image quality

for periodontal assessment. CBCT data were saved in DICOM

format. The scanning parameters were set as follows: voltage of

90 kV, current of 4 mA, scan time of 28 s, voxel size of 0.3 mm3,

and field of view (FOV) of 70 mm × 130 mm. Digital IOS was

conducted using a 3Shape TRIOS intraoral scanner (3Shape A/S,

Copenhagen, Denmark), and the acquired data were exported in

STL format for subsequent analysis.

2.3 Dataset construction

2.3.1 High-precision fusion of oral optical
scanning and CBCT

In this work, an innovative method was adopted through

converting the three-dimensional feature point detection issue

into a two-dimensional one to achieve the high-precision fusion

of CBCT and oral optical scanning data. The specific

FIGURE 1

Schematic diagram of research design process.
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implementation steps can be described as follows. First, two

accurate three-dimensional surface models were generated from

two imaging modalities of CBCT and oral optical scanning,

respectively. Subsequently, a series of two-dimensional projection

images was produced with an optimized angle interval od 2π/9.

Given the specific characteristics of oral structures, a feature

point extraction algorithm was employed to process these

projection images and identify key anatomical landmarks in the

oral cavity. The point extraction algorithm combined scale-

invariant feature transform (SIFT) and the Harris corner

detector, and the RANSAC algorithm was used for feature

matching and screening to accurately map these two-dimensional

feature points back to the three-dimensional coordinate system.

Besides, 55 potential dentition feature points were strictly

evaluated and 10 anatomical positions with the highest geometric

stability under different imaging environments were selected as

registration reference points. After calculating the initial rigid

transformation matrix on the basis of these feature points, the

iterative closest point (ICP) algorithm was used to refine the

registration on the local tooth surface area containing the feature

points, and then high-precision spatial registration of CBCT and

oral scan data can be obtained.

2.3.2 Data annotation method
After completing the registration, the external gingival contour

from the oral optical scanning was accurately projected into the

CBCT to generate the external boundary contour of the gingiva.

The dental arch curve in the cross-sectional image was selected

to obtain a dental arch cross-sectional image. The dental arch

cross-sectional image was cropped to extract the region of

interest containing the external boundary contour, which were

used as the raw data for annotation. After then, the clinical

experts manually annotated the tooth area to create an alveolar

bone mask. The outer boundary of alveolar bone mask formed

the boundary between the alveolar bone and the gingiva. The

region enclosed between the boundary line and the previously

projected gingival external contour line was defined as the

gingival mask. Eventually, a PNG image was exported in VOC

format, and different pixel values (1, 2, 0) were assigned to the

tooth area, gingival area and background, respectively.

2.3.3 Dataset construction
Based on the differences in the edentulous area, 20–50 cross-

sectional images were obtained from each patient. After the high-

precision fusion of CBCT and oral optical scanning of each

patient, a total of 1,435 data samples were collected using the

above data annotation method in Section 2.3.2. To ensure the

quality and consistency of the dataset, a systematic preprocessing

process was conducted for all cross-sectional images. First, all

images were adjusted to the resolution of 512 × 512 pixels to

ensure the standardization of input data dimensions.

Subsequently, the intensity normalization technique was used on

the basis of window width and window position adjustment to

map the pixel values of image within the range of [0,1], and

thereby the contrast of tooth-gingival interface was optimized. To

inhibit the specific low-frequency noise of CBCT, adaptive

histogram equalization was utilized to enhance the clarity of

tissue boundaries, and bilateral filtering technology was

integrated to retain the key anatomical boundaries while decrease

the noise interference. Eventually, in order to promote the

generalization ability of model, data augmentation strategies were

performed to effectively expand the diversity of training samples,

including random rotation (±15°), horizontal flipping, and slight

brightness/contrast adjustment (±10%). The training set,

validation set, and test set were divided in a ratio of 7:1:2 to

ensure the strict separation of data from different patients, and

then the data leakage that can affect the objectivity of model

evaluation was avoided.

2.4 Establishment of deep learning model

2.4.1 Network architecture

In this study, DeepLabV3+ (20) was adopted as the basic

architecture for semantic segmentation, and the network can

effectively extract the semantic information from the images

while maintaining high computational efficiency. The network

architecture was primarily composed of encoder and decoder.

The encoder used MobileNetV2 (21) as the backbone network,

while the decoder was used to fuse multi-scale features.

Particularly, the encoder used MobileNetV2 as the backbone

network, which was a lightweight deep CNN that utilized deep

separable convolution to significantly reduce the computational

parameters while maintaining a high feature extraction capability.

During the feature extraction process, the network first obtained

the features at two scales, i.e., shallow features with the

dimensions of [128, 128, 24] to retain detail information, and

backbone features with the dimensions of [30, 30, 320] to extract

high-level semantic information.

The core component of network is Atrous Spatial Pyramid

Pooling (ASPP) module, which used dilated convolutions with

different dilation rates to extract multi-scale contextual

information. The ASPP module was composed of five parallel

branches, including 1 × 1 standard convolution, 3 × 3 dilated

convolutions (dilation rates of 6, 12, and 18, respectively), and a

global average pooling branch. These branches captured

contextual information at various scales and then fused them to

provide a relatively comprehensive feature representation. In the

decoder part, the network upsampled the output of ASPP

module and fused it with the low-level features from the

encoder. Such design can effectively integrate the high-level

semantic information and low-level spatial details, leading to the

accurate segmentation results. Eventually, the features were

mapped to the number of target categories via 1 × 1 convolution

and upsampled to the original input resolution to generate the

final segmentation map.

2.4.2 Loss function
In present work, a composite loss function was used to

optimize network training. The combination of cross-entropy

loss and Dice loss was adopted to address the sample imbalance

issue between different categories.
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The cross-entropy loss function can be defined as follows

[Equation (1)]:

LCE ¼ �

XC

c¼1

yc log ( pc) (1)

where yc is the true label of category c, pc is the probability

predicted by the network for the category.

The Dice loss (22) can be expressed on the basis of the Dice

coefficient [Equation (2)], which was used to measure the overlap

between the predicted segmentation and the truth segmentation.

LDice ¼ 1�
2
PN

i piyiPN
i p2i þ

PN
i y2i

(2)

where pi is the predicted probability, yi is the true label.

The total loss function [Equation (3)] can be described as follows:

Ltotal ¼ aLCE þ bLDice (3)

where α and β are the weighting coefficients that balance the two

loss components.

Additionally, to further address the sample imbalance issue

between different categories, the category weights were obtained

by assigning different loss weights to each category, which allows

the network to pay attention to the categories with fewer samples.

2.4.3 Training parameters

The training strategy followed a staged approach, including a

freezing training phase and an unfreezing training phase. In the

freezing training phase, the parameters of backbone network were

frozen, and only the other parts were trained, which was favorable

for preventing the pre-trained weights from excessive modification

during the initial phase. Stochastic gradient descent (SGD) (23) was

used as the optimizer. In order to avoid overfitting, a momentum

parameter was set as 0.9 and a weight decay was set as 1 × 10−4.

The initial learning rate was set as 7 × 10−3, while the minimum

learning rate was 0.01 times the initial learning rate, and the

learning rate decay followed a cosine annealing strategy. During the

freezing training phase, the batch size was 8, whereas during the

unfreezing training phase, the batch size was reduced to 4 to

accommodate the relatively complex training. The freezing training

phase was conducted for 50 epochs, and the total number of

training epochs reached 200. The downsampling factor of network

was set as 16 to balance segmentation accuracy and computational

efficiency. The learning rate was adjusted using an adaptive strategy

on the basis of the batch size [Equation (4)].

lradjusted ¼ min (max (batch size=nbs� lrinit, lrmin), lrmax) (4)

where nbs is the reference batch size of 16, lrinit is the initial learning

rate, lrmin and lrmax are the lower and upper limits of learning

rate, respectively.

2.5 Evaluation metrics

Aiming at comprehensively assessing the performance of

model, a variety of evaluation metrics were applied. The Mean

Intersection over Union (mIoU) was the primary evaluation

metric, and thereby the IoU value of each category was

calculated average. IoU was identified as follows.

IoU ¼
TP

TPþ FPþ FN
(5)

where TP, FP and FN represent true positives, false positives, and

false negatives, respectively.

Meanwhile, the Precision was used to evaluate the accuracy of

model [Equation (6)].

Precision ¼
TP

TPþ FP
(6)

The Recall was used to evaluate the completeness of model

[Equation (7)].

Recall ¼
TP

TPþ FN
(7)

Besides, the F1 score [Equation (8)] was calculated, which was the

harmonic mean of Precision and Recall.

F1 ¼
2� Precision� Recall

Precisionþ Recall
(8)

The performance of model was evaluated on the validation set

every 5 training rounds to monitor the training progress and

avoid overfitting. This evaluation was conducted with the same

input size and batch size to ensure the consistency and

comparability of results, and the evaluation results were also

recorded in the loss history for subsequent analysis

and visualization.

2.6 Gt measurement and visualization
workflow

2.6.1 Image processing method
The image processing workflow started with the color analysis

of the semantic segmentation resultant image, and the key

structures in the oral cavity were identified by separating the

BGR (blue-green-red) color channels. As the gingival tissue

appeared red, the tooth surface was pre-marked as green, and the

precise color thresholds were adopted (red area: R > 75, G < 30,

B < 30; green area: G > 75, R < 30, B < 30) to create binary masks

corresponding to these two tissues, respectively. Subsequently, the

green mask was converted to an 8-bit single-channel image, and

the morphological closing operation was employed to smooth
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edges and fill small holes. The contours can be detected, while the

largest area was selected as the main boundary of tooth surface.

The processing process excluded the boundary points with y

coordinate of 0 and resolved the problem of duplicate x

coordinate, in which the points with the smallest y value was

retained). Finally, all valid contour points were sorted by x

coordinate to generated a continuous boundary line. During the

thickness measurement process, each position along the image

width was scanned pixel by pixel. For each x coordinate, the

nearest boundary point was identified as the starting position,

and then the contiguous red pixels were counted along the

specified direction (upward or downward). The measurement

process followed the intelligent decision logic: once entering the

red area, it continued to count until it exited, thereby accurately

capturing the complete GT. In order to reduce measurement

noise and random fluctuations, the raw thickness data was

processed by one-dimensional Gaussian filter, and the degree of

smoothing was controlled by the adjustable sigma parameter.

After processing, the system annotated the green contour

points (represented by small yellow dots) on the original image,

and vertical lines were drawn to determine the GT at each

location. Meanwhile, a thickness distribution graph was used to

demonstrate the lateral variation of GT. All results were saved as

high-resolution images for subsequent analysis.

2.6.2 Data processing and integration
During the data processing, a single image was first processed.

The GT value was extracted from each x coordinate position, and

the corresponding slice number was recorded. These raw

measurement data were organized into a structured table, which

contained key information such as image name, slice number, x

coordinate, GT as well as measurement direction. When multiple

images were processed, the resultant slices were sorted in natural

order based on the filenames to ensure the correct slice sequence,

and then the data of all individual images were merged into a

unified dataset, which can comprehensively reflect the three-

dimensional thickness distribution of the entire gingival area.

The merged dataset was saved in CSV format.

With regards to visualization, the system generated various

figures to present the data features at different levels: the

thickness distribution scatter plot showing the relationship

between the slice number, x coordinate and thickness within the

entire dataset, and thereby the color of the points was mapped to

the GT for the formation of an intuitive heatmap effect.

3 Results

3.1 Performance of deep learning models

In order to clarify the stability of DeeplabV3+ model training

and the reproducibility of results, three repeated model training

experimental results demonstrate similar trends in loss reduction

and mIoU increase (Figure 2). It can be found that the

DeepLabV3+ model exhibits excellent performance in oral tissue

segmentation with an average IoU of 85.92 ± 0.43% (Table 1). It

should be noted that the model can perform well in bone tissue

segmentation (mIoU of 89.83 ± 0.28%, average recall of

96.06 ± 0.32%), while the gingival segmentation shows inferior

performance (IoU of 76.99 ± 0.66%) but it still maintains good

FIGURE 2

Training curves ofDeepLabV3+ model: (a) training and validation loss curves for three experimental groups; (b) mean Intersection over Union (mIoU)

curves on the training dataset for three experimental groups.

Yang et al. 10.3389/fdmed.2025.1635155

Frontiers in Dental Medicine 06 frontiersin.org

https://doi.org/10.3389/fdmed.2025.1635155
https://www.frontiersin.org/journals/dental-medicine
https://www.frontiersin.org/


accuracy. Such discrepancy may reflect that bone tissue has clearer

boundary features in the image, whereas the gingiva has a lower

contrast with surrounding soft tissues, leading to the increased

difficulty of segmentation. The high accuracy of model on the

background category (97.19 ± 0.38%) can further verify its

robustness in complex oral environments.

Figure 3 illustrates the segmentation results of CBCT scans.

The upper row shows the original CBCT image slices, and the

lower row shows the corresponding segmentation results. The red

area represents the gingival, and the green area represents the

bone tissue. It is apparent that in some CBCT images, the

gingival and lip soft tissues are difficult to be directly

distinguished. The deep learning-based segmentation algorithm

can still effectively identify these structures, which may be

achieved by learning the complex spatial correlations and

features of tissue boundary. Nevertheless, due to the intrinsic

black box feature of deep learning model, it is still difficult to

fully elaborate the exact segmentation mechanism.

Figure 4 presents the confusion matrix of model with the best

performance. After confirming the stability of method, the best

results can be achieved for detailed analysis. The confusion

matrix analysis (Figure 4) further validates the classification

performance of model. In the background category, a correct

classification rate reaches 92.5% with only 7.2% being

misclassified as gingiva and 0.3% being misclassified as alveolar

bone. The performance of gingiva segmentation is also highly

reliable, reaching an accuracy of 88.3% with 3.5% being

misclassified as background and 8.2% being misclassified as

alveolar bone. The alveolar bone segmentation exhibits the

highest accuracy of 96.2% with only 0.4% and 3.4% being

misclassified as background and gingiva, respectively, which is

consistent with the IoU evaluation, indicating that the model has

excellent performance in bone tissue recognition. Besides, it also

reflects the relative challenge in distinguishing the gingiva from

other tissues (especially bone tissue).

3.2 Measurement and visualization of GT

Figure 5 presents the calculation results of GT through the slice

case. These results were obtained using the method described in

Section 2.7.2 and visualized using Matplotlib. As shown in

Figure 5, it is evident that the yellow points mark the boundary

contour line between the gingiva and the tooth surface, which is

the key reference line extracted from the edge of green area

(tooth surface). Based on this contour, the program performs

thickness measurement in the direction of the external contour

of gingiva at each x-coordinate position, and the blue area

represents the valid calculation range of GT. The algorithm

begins with the contour points and then intelligently tracks the

continuous red pixels (GT) until the non-gingival area can be

detected, and thus the GT values are accurately quantified at

different positions. After smoothing by Gaussian filtering, the

measured data exhibit the characteristics of smooth transition,

FIGURE 3

Segmentation results using DeepLabV3+ model: (a) original CBCT cross-sectional image of the dental arch; (b) segmentation results using DeepLabV3

+, where red color represents gingiva and green color represents alveolar bone.

TABLE 1 Segmentation performance of DeeplabV3+.

Performance Mean Gingiva Bone Background

IoU 85.92 ± 0.43 76.99 ± 0.66 89.83 ± 0.28 90.95 ± 0.54

Recall 92.56 ± 0.20 88.21 ± 0.39 96.06 ± 0.32 93.41 ± 0.89

Precicion 92.87 ± 0.26 85.82 ± 0.98 93.26 ± 0.23 97.19 ± 0.38
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and random fluctuations at the edge is eliminated. The yellow

points accurately mark the boundary contour line between the

gingiva and the tooth surface (green area). The algorithm

measures the GT from these contour points, and then the light

blue effective calculation area is generated. It is obvious that the

GT on both sides of the tooth is slightly different. The gingiva in

the central area is thinner than that in the edge area. The dark

red area at the bottom represents the GT, which clearly shows its

boundary with the tooth. Based on this thickness information,

the thickness results of all CBCT slices of patient are integrated

for further three-dimensional reconstruction.

Figure 6 illustrates the complete workflow and effectiveness of

three-dimensional reconstruction of GT. As shown in Figure 6a,

the three-dimensional reconstruction results demonstrate the

spatial distribution characteristics of GT, and a gradient color

mapping from blue (thinner area) to green, yellow and red

(thicker area) is used to map the variations in thickness. The

three-dimensional surface shows obvious anatomical features,

suggesting that the GT is varied regularly at different tooth

positions. Specifically, the right area exhibits overall yellow-red

tones, indicating that the palatal GT is larger. The central area is

mainly green, indicating moderate thickness, while blue color

appears from the alveolar ridge to the labial side, representing

relatively thin GT. The mesh structure of model surface clearly

displays the continuous surface generated by the triangulation

algorithm, and thereby the subtle changes and transition areas of

GT are successfully captured. The present three-dimensional

visualization technology overcomes the limitations of traditional

two-dimensional measurement, which can provide clinicians with

a powerful tool for comprehensive assessment of gingival

phenotype. It converts the gingival phenotype from overall

consideration at the patient level to quantitative evaluation at the

millimeter level. This method can not only guide the formulation

of personalized treatment plans, but also holds important value

in enhancing the aesthetic restoration effects and reducing the

postoperative complications. Notably, it can provide clinicians

FIGURE 5

Gt calculation method.

FIGURE 4

Confusion matrix of DeepLabV3+ model.
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with additional risk warnings during the actual execution of

operation, such as the position that is more prone to perforation

during flap elevation, the selection of tension-relieving sites after

bone grafting and the mucosal relaxation.

4 Discussion

In this study, an innovative deep learning method was

proposed for CBCT to evaluate GT and three-dimensional

morphology in edentulous areas. By integrating the gingival

surface morphology data captured by IOS technology and the

bone edge contours precisely marked by clinicians on CBCT

images, a comprehensive three-dimensional model of gingival

soft tissue in the edentulous area was successfully established.

The DeeplabV3 + deep learning algorithm was used to achieve

high-precision segmentation of gingival tissue, and a special GT

calculation method and innovative visualization algorithm were

developed to obtain an intuitive three-dimensional visualization

of GT.

Generally, the conventional gingival assessment methods

mainly focus on simple qualitative classification of gingival

phenotypes (such as thin or thick), which is difficult to meet the

demands of contemporary precise dental treatment (24). This is

critical in implant surgeries, especially when complex bone

grafting procedures are involved, the thickness of each specific

position of gingiva has significant impacts on the design of

surgical plan (25). For instance, the difference in GT between the

alveolar ridge crest and the buccal side may determine the

selection of incision site, whereas the GT at the membrane-

gingival junction can affect the selection of relaxation and

tension-reducing approaches. Traditional methods cannot

provide such spatially precise thickness distribution information,

resulting in clinicians often relying on experience-based

judgment, and the surgical risks and uncertainties are

significantly increased. As reported, the integration of CBCT with

IOS has represented a significant advancement in non-invasive

periodontal assessment, enabling precise measurement of palatal

mucosal thickness (26). It can be found that digital technologies

have promote the comprehensive analysis of the periodontal

phenotype in the maxillary anterior region (27), which can

provide detailed evaluations of GT, bone thickness and

keratinized gingival width with strong aesthetic correlations.

However, despite these advancements, limitations remain,

including variability in soft tissue imaging accuracy depending

on operator expertise, potential image distortion in CBCT, and

FIGURE 6

Three-dimensional visualization analysis of GT: (a) three-dimensional model exhibition: the X-axis represents the alveolar bone circumference from

the buccal to the lingual sides, the Y-axis represents the mesiodistal distance from the patient’s left to right side, and the Z-axis reflects the GT values.

The color gradient represents the variations in issue thickness. (b) Segmentation results of consecutive cross-sectional slices using DeeplabV3+ deep

learning algorithm: red and green markings show the identified boundaries of tissues. (c) Corresponding original CT cross-sectional scan images,

showing the alveolar bone and surrounding soft tissue structures.
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limited accessibility or cost-effectiveness in routine clinical settings.

Therefore, in present work, the proposed three-dimensional

assessment system has achieved the first accurate quantification

and visualization of GT in the entire edentulous area, allowing

clinicians to formulate more precise surgical strategies according

to the individual GT distribution characteristics of EACH

patient. Especially in the aesthetic area and complex cases, this

precise assessment can significantly improve the predictability

and aesthetic effect of surgery.

Compared to previous pilot animal study, the present work

demonstrates significant improvement in both technical

methodology and clinical application. Meanwhile, a U-Net

architecture was used to validate the feasibility of AI-assisted

gingival assessment in a limited sample of porcine models, and

then a correlation coefficient between virtual and clinical

measurements can be determined as of r = 0.9656 and a mean

difference reached 0.066 ± 0.223 mm (19). In present work, the

DeepLabV3+ (28) architecture with its Atrous Spatial Pyramid

Pooling (ASPP) module is utilized to achieve more precise

segmentation of the complex anatomical boundaries in the

human oral cavity. It should be noted that the average accuracy

achieved in this study can be determined 92.87 ± 0.26%, which is

slightly lower than the result reported in the existing literature.

This is derived from fundamental differences in evaluation

methodology. In the present study, a comprehensive pixel-wise

assessment strategy is adopted to obtain fine-grained

quantification across the entire image region, whereas only 43

preselected discrete measurement points were assessed in

previous study (19, 28). These points are usually selected at

anatomical locations with clear boundaries and easy

identification, and thereby the inertial bias is inevitably

introduced. In terms of image fusion, the semi-automated

CloudCompare software was employed to align CBCT with

intraoral scans (29). In contrast, a novel approach is designed to

transform the three-dimensional feature point detection into a

two-dimensional issue. With the combination of Scale-Invariant

Feature Transform (SIFT) and the Harris corner detector, the

method can select the 10 anatomical positions with the highest

geometric stability from 55 potential dental feature points as

alignment reference points, leading to the improved spatial

alignment accuracy.

The DeepLabV3+ architecture used in this work demonstrate

outstanding performance in the semantic segmentation task of

oral images. Based on MobileNetV2, the lightweight backbone

network can effectively balance the computing resource

requirements and segmentation accuracy, enabling the system to

operate efficiently on standard computing devices. The ASPP

module establish multi-scale perception capabilities using dilated

convolution with various dilation rates, which is essential for oral

tissue recognition, as the boundary between gingiva and teeth

has scale diversity and complex morphological changes. The

experimental results demonstrate that the algorithm can

accurately distinguish between gingival tissue and tooth surface,

and thereby high stability can be maintained even under blurred

tissue boundaries, which is of great significance in clinical

applications (30).

The introduction of the combined loss function can effectively

address the issue of category imbalance in oral images, while the

unbalanced proportion of gingiva and teeth in the image is often

detected, but it is difficult for the traditional single loss function

to simultaneously take into account both accuracy and recall rate.

The proposed training strategy following a staged approach can

further facilitate the performance of model. In the freezing

training phase, the pre-training weights are protected, and in the

unfreezing training phase, the parameters of network are fine-

tuned to avoid overfitting while maximizing the capability of

model to extract oral features. The above evaluation metrics

show that the algorithm can obtain high segmentation accuracy

on the test dataset, which provides a solid foundation for

subsequent GT measurements.

The proposed GT technology begins with color analysis, and

precise color thresholding is applied to separate the gingival and

tooth tissues. Meanwhile, with the combination of morphological

processing technology, tissue boundaries can be identified. This

strategy fully utilizes the inherent features of oral tissues to

improve measurement accuracy. Unlike the existing simple image-

based algorithms (31), this novel method integrates multi-level

image processing technology to realize a fully automated

transformation from raw image to precise thickness values. The

core innovation of algorithm can be ascribed to its vertical

scanning strategy and intelligent judgment logic, which conducts

pixel-by-pixel analysis of the variation of GT along tooth surface.

This logic specifically designs an accurate method for gingival area

recognition, i.e., continuously scanning along the predetermined

direction from the starting point of the tooth-gingival boundary,

intelligently detecting the entry and exit points of gingival area,

and precisely capturing the complete thickness. Compared with

traditional methods, this pixel-level measurement approach with

the resolution of 0.1 mm can capture subtle variation in GT,

which can provide more detailed information for clinical

evaluation. Furthermore, the introduction of Gaussian filtering can

effectively reduce measurement noise and random fluctuations,

ensuring the continuity and reliability of thickness data while

retaining clinically relevant thickness change patterns. In contrast

to commercial US thickness measurement, this algorithm can

theoretically achieve single-pixel level measurement precision, and

thus the accuracy is remarkably enhanced.

It should be noted that the algorithm resolves a variety of

technical issues. First, it addresses the issue of boundary

discontinuity through the morphological closing operations to

smooth edges and fill small holes. Moreover, these technical

innovations enable the algorithm to handle various complex oral

anatomical structures, which provide reliable measurements even

in cases of blurred boundaries, uneven lighting or abnormal

gingival morphology, indicating strong adaptability and robustness.

Nevertheless, merely obtaining GT data is insufficient to effectively

guide clinical decision-making. In fact, converting the complex

three-dimensional thickness data into intuitive and comprehensible

visual representation is essential for the value of clinical

applications. The multi-level visualization method developed in

this study can provide robust support for the interpretation and

application of GT data. In single-image visualization, boundary
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point annotations and vertical lines show the intuitive depiction of

the measurement process, allowing clinicians to directly evaluate

the variation in thickness on the original image. Additionally, the

thickness distribution map can provide a global view of lateral

changes to identify the potential abnormal areas.

Besides, the visualization method of multi-image data

integration is particularly innovative. The three-dimensional

thickness distribution scatter plot integrates the slice number, x

coordinate and thickness into an intuitive heat map, and the

visualization of the three-dimensional structure of the entire

gingival area can be achieved, which holds significant value in

clinical evaluation. The single-slice line graph and multi-slice

comparison graph demonstrate the thickness change pattern in

different anatomical positions, allowing clinicians to quickly

identify abnormalities in specific areas or conduct comparative

analysis between different sites. These visualization tools not only

improve the efficiency of data interpretation, but also promote

the accuracy of clinical decision-making. The calculation and

output of statistical summaries further enhance the possibility of

quantitative analysis, which provides an objective basis for

evidence-based diagnosis and treatment plans. This multi-

dimensional and multi-scale visualization method can convert

complex measurement data into intuitive visual representations

and significantly improve the feasibility of clinical applications,

which also provides rich data basis for subsequent study.

Despite the remarkable achievements of this study, there are still

some limitations. The existing thickness measurement is mainly

based on two-dimensional images, which may not fully capture the

three-dimensional morphology of gingiva. Accordingly, the

combination of three-dimensional reconstruction technology will

be an important direction for the future development, and

comprehensive three-dimensional data can be achieved via CT or

optical scanning. Meanwhile, although the DeepLabV3+

architecture shows excellent performance, it still has limitations in

capturing the long-range dependencies of complex oral anatomical

structures. The introduction of Transformer-based segmentation

algorithms (such as SegFormer) will be an important technical

breakthrough in the future. Owing to its self-attention mechanism,

the Transformer can effectively establish relationships between

long-distance pixels in the image, which is important for

understanding the overall structure of oral tissues. Especially for

subtle structures such as the gingival margin, the Transformer

architecture may provide more accurate segmentation results.

Additionally, the hybrid models can reduce computational

overhead while maintaining accuracy, which makes it suitable for

real-time applications in clinical environments.

In terms of three-dimensional reconstruction, the two-

dimensional thickness analysis in this study can provide valuable

information, but it is insufficient to fully characterize the three-

dimensional morphology of gingiva. The development of dedicated

three-dimensional surface reconstruction tools will remarkably

enhance the clinical value of data. Specifically, a continuous three-

dimensional surface can be constructed by integrating adjacent slice

data, and a direct triangulation method can be unitized to create

connecting surfaces between slices. Meanwhile, Laplace smoothing

algorithm can be applied to generate smooth natural surfaces. The

comprehensive three-dimensional reconstruction process should

include a few steps such as preprocessing, triangulated mesh

construction, surface smoothing, and color mapping, and

eventually an interactive three-dimensional model is established,

which allows clinicians to observe the gingival morphology and

thickness distribution from any angle.

A key future direction is to advance from single-tissue

segmentation to the differentiation of keratinized gingiva from

alveolar mucosa, a distinction critical for comprehensive

periodontal phenotype assessment and surgical planning. Given

the challenge of low contrast resolution between these tissues on

CBCT, we propose developing a multi-class semantic

segmentation model that leverages a multi-modal data fusion

strategy. This approach will integrate CBCT’s internal anatomical

data with the high-resolution surface color and texture from IOS.

Such fusion is expected to enable precise identification of the

mucogingival junction, evolving our system into a comprehensive

tool for soft tissue phenotype analysis and enhancing

predictability in advanced mucogingival surgeries.

5 Conclusion

In this study, a deep learning-based three-dimensional gingival

thickness assessment system for edentulous areas was successfully

developed. With the combination of the intraoral scanning (IOS)

cone-beam computed tomography (CBCT) data, and the

DeeplabV3+ segmentation algorithm, a methodological

breakthrough can be achieved, which realized the transition from

traditional qualitative classification of gingival phenotype to

position-specific quantitative assessment. As expected, the precise

three-dimensional visualization model of gingival thickness

produced by this system can provide an intuitive preoperative

assessment tool for clinicians.
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