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Background: Scientific evidence from in vitro studies comparing the mechanical

properties of dentures fabricated with computer-aided design-computer-aided

manufacturing (CAD-CAM) and conventional techniques is inconclusive. This

systematic review with meta-analysis was conducted to analyze the current

evidence comparing the mechanical properties of conventional and digitally

fabricated denture bases from in vitro studies.

Materials and methods: A systematic search was conducted in PubMed, Scopus,

and Medline for in vitro studies from inception until 16 January 2025. The review

had been registered with the International Prospective Register of Systematic

Reviews PROSPERO: CRD42024531425). A network meta-analysis compared

conventional and digitally fabricated denture bases’ flexural strength, hardness,

flexural modulus, elastic modulus, impact strength, fracture toughness, yield

point, and toughness. Risk of bias was assessed by using RoBDEMAT (RoB 2.0).

Results: 4,994 articles were identified, 966 duplicates were removed, 3,971 were

excluded by title and abstract screening, 57 were assessed by full-text reading,

and 42 were included in the quantitative synthesis. As per the sensitivity

analysis performed after excluding low-quality studies, the network meta-

analysis results indicate that milled digital denture bases exhibit higher flexural

strength [SMD= 2.13 (95% CI: 0.21, 4.05)] compared to 3D-printed digitally

fabricated denture bases. Bias incorporated from higher values from one study

diminishes the quality of evidence for impact strength and flexural modulus.

Conclusion: Milled digital denture bases exhibit superior flexural strength to

3D-printed and conventionally fabricated denture bases under laboratory

conditions. High-quality in vitro studies are recommended to provide

conclusive evidence for other mechanical properties.

Systematic Review Registration: PROSPERO CRD42024531425.
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1 Introduction

Complete removable dentures are used to rehabilitate edentulous

patients. In contrast to chrome-cobalt removable partial dentures

used to rehabilitate partial edentulism, complete dentures lack

retentive and stabilizing components that may be used to gain

retention and support from remaining abutments (1).

Consequently, the material and technique employed to fabricate

complete dentures are critical and influence the mechanical

properties and clinical performance. Complete dentures may be

fabricated using conventional or digital processing techniques.

The conventional technique utilizes polymethylmethacrylate

(PMMA) resin. PMMA entails low cost, acceptable aesthetics, ease

of repair, and handling characteristics (2). However, the

manufacturing process introduces internal stresses, polymerization

shrinkage, and dimensional variations, affecting accuracy and

retention (3). The CAD-CAM dentures manufacturing technique

simplifies the clinical and laboratory protocols with reduced

appointments and minimal dimensional variations (4).

The subtractive technique involves designing the prosthesis in

virtual CAD software. The chosen geometry is achieved by

machining following the digital model. A pre-polymerized resin

block is milled, followed by prefabricated or milled denture teeth

bonding (5). Additive manufacturing involves the layer-by-layer

build-up of the prosthesis, circumventing any limitations in the

geometrical design of the envisioned prosthesis. This method

reduces excess material consumption but is restrained by

technical limitations (6).

Manufacturing methods such as milling (Subtractive) and 3D

printing (Additive) influence the mechanical properties. The

milled (subtractive) method is fabricated from pre-polymerized

polymethyl methacrylate (PMMA) at high temperature and

pressure, promising minimal residual monomer, adequate

hygienic outcomes, and enhanced mechanical properties (7). In

contrast, the additive method utilizes photopolymerized resin,

heavily relying on the parameters used during printing and

subsequent curing procedures (8). Digital denture fabrication has

been associated with achieving fewer visits, appointments, and

manufacturing time, in addition to better mechanical properties

(9, 10). Denture bases are subjected to shear, compressive, and

tensile stresses during clinical function. Damage and dimensional

variations may be minimized by ensuring adequate hardness

(11). Plastic deformation and satisfactory functional performance

may be ensured by providing adequate flexural strength, impact

strength, and yield point (12, 13). Impact strength is influenced

by manufacturing method, stress concentration, material used,

thermal factors, specimen geometry, and position (14, 15).

A recent meta-analysis has compared the mechanical properties

of denture bases fabricated with digital and conventional

techniques (16). However, only pairwise comparisons were

included. Network meta-analysis (NMA) augments conventional

pairwise meta-analysis, where only two interventions are

compared by combining manifold evidence sources derived from

a network of studies comparing multiple interventions. NMA

enables investigators to combine direct and indirect evidence to

establish comparative efficacy and acceptability across studies of

all denture base types. The purpose of this NMA was to compare

the flexural strength, hardness, flexural modulus, elastic modulus,

impact strength, fracture toughness, yield point, and toughness

between denture bases fabricated by conventional and digital

techniques. The null hypothesis was that no difference would be

found in flexural strength, hardness, flexural modulus, elastic

modulus, impact strength, fracture toughness, yield point, and

toughness between conventional and digital denture bases as

evaluated in in vitro studies.

2 Material and methods

2.1 Search strategy and inclusion criteria

A systematic review of in vitro studies compared the mechanical

properties of digitally and conventionally fabricated denture

bases. The protocol for the systematic review was registered with

the International Prospective Register of Systematic Reviews

[PROSPERO: (CRD42024531425)] and reported according to

the Preferred Reporting Items for Systematic Reviews and Meta-

Analysis (PRISMA) extension statement of NMA (17)

(Supplementary Tables 1, 2, available online). Relevant studies

were identified from 3 databases, PubMed, Scopus, and Medline,

from inception to 16 January 2025. In addition to three databases,

references from previous systematic reviews and grey literature

were thoroughly searched (Supplementary Table 3). In vitro studies

were included, and clinical comparisons, editorials, consensus or

clinical conferences, and case reports were excluded. The criteria

were based on the population, intervention, comparison, and

outcome (PICO) strategy.

2.1.1 Population
Complete denture bases were fabricated in the laboratory

using polymethylmethacrylate.

2.1.2 Intervention
Digital denture bases are fabricated either by milling or

3D printing.

2.1.3 Comparator

Complete denture bases fabricated by a conventional

technique, including compression molding, injection molding,

or autopolymerization.

2.1.4 Outcomes
Flexural strength, hardness, flexural modulus, elastic modulus,

impact strength, fracture toughness, yield point, and toughness.

2.2 Data extraction and quality assessment

Titles and abstracts were independently screened by two

reviewers (A.I.S., F.M.R.) for eligible studies, followed by full-text

reading. Ineligible studies were excluded, and the reasons for

exclusion were documented. The two reviewers extracted data
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independently and in duplicate into a data extraction form.

Disagreements and discrepancies were resolved by discussion

with a third reviewer (R.K.M.). The risk of bias within each

study was independently assessed by two reviewers (YHX,

BCTW) using RoBDEMAT (RoB 2.0) (18). Disagreements and

discrepancies were resolved by 2.1.2 discussion with a third

reviewer (R.K.M).

2.3 Data synthesis and statistical analysis

Standardized mean differences (SMD) and 95% confidence

intervals were used as summary statistics for continuous

outcomes. A standard pairwise meta-analysis was performed

using a random-effects (DerSimonian and Laird) model for

direct comparisons (19). If a direct comparison was based on

two or more studies, heterogeneity among trials was assessed by

considering the I2 statistics (20). To synthesize the available

evidence by combining direct and indirect evidence from

different studies, a random-effects NMA was applied (21–23).

The probability of each denture type being the best was

estimated by constructing rankograms and their surface area

under the cumulative ranking (SUCRA). (24, 25). A comparison-

adjusted funnel plot was used to examine the publication bias.

Local inconsistency in the network was assessed using node-

splitting models, which compare direct and indirect evidence for

specific treatment comparisons (26). Sensitivity analysis by

excluding low-quality studies was performed. Studies that

reported ’Sufficiently Reported’ or “Adequate” for more than

80% of applicable criteria in the RoBDEMAT (RoB 2.0)

framework were classified as “low risk of bias”, and the

remaining studies were classified as “high risk of bias”.

A statistical software program (Stata version 15.0; StataCorp) was

used for statistical analysis and graph generation (24).

3 Results

A total of 4,994 articles were identified, of which 966 duplicates

were removed, and 3,971 were excluded by screening the titles and

abstracts. A total of 57 articles were assessed by full-text reading;

46 articles (27–71 were selected in the qualitative synthesis, and 4

articles 27, 33, 44, 69 were excluded as quantitative data were not

obtained for analysis on the relevant outcomes. 42 articles

(7, 27–67) were included in the quantitative synthesis. The

preferred reporting items for systematic reviews and meta-analyses

(PRISMA) flow diagram is depicted in Figure 1; Supplementary

Table 4 shows the characteristics of the studies included. The

quality assessment of each study using the RoBDEMAT

assessment tool is provided in Supplementary Table 5. Milled

digital denture bases (MIL), 3D-printed digital denture bases

(TDP), conventional compression molded denture bases (CCM),

conventional injection molded denture bases (CCI), and traditional

auto-polymerized denture bases (CCA) were compared.

For flexural strength, 35 in vitro studies comparing five

interventions were included in the NMA as seen in Figure 2A.

MIL demonstrated higher flexural strength than TDP

[SMD = 1.62 (95% CI: 0.48, 2.76)] P < 0.05 and CCI [SMD = 2.03

(95% CI: 0.50, 3.56)] P < 0.05. Supplementary Table 6

summarizes the SMD and the ranking of the interventions, while

Figure 2B shows the SUCRA ranking curves for each

intervention in the network. MIL ranked the highest, followed by

CCM, CCA, TDP, and CCI. The results of the pairwise meta-

analysis are depicted in the forest plot as seen in Supplementary

Figure 1. The network and pairwise estimates for all the

interventions are summarized in Table 1. Based on the

comparison-adjusted forest plots, publication bias could be

detected as seen in Supplementary Figure 2. Based on the global

inconsistency test (p = 0.12), no significant inconsistency was

detected. Sensitivity analysis, excluding low-quality studies, was

performed. MIL demonstrated significantly higher flexural

strength than TDP (SMD = 2.13 [95% CI: 0.21, 4.05). The results

of the sensitivity analysis are available in Supplementary Table 7.

For hardness, 16 in vitro studies comparing four interventions

were included in the NMA, as seen in Figure 3A. MIL

demonstrated higher hardness than CCI [SMD = 4.06 (95% CI:

0.51, 7.62)] P < 0.05 and TDP [SMD = 2.87 (95% CI: 0.14, 5.60)]

P < 0.05. Supplementary Table 8 summarizes the SMD and the

ranking of the interventions, while Figure 3B shows the SUCRA

ranking curves for each intervention in the network. MIL ranked

the highest, followed by CCM, TDP, and CCI. The results of the

pairwise meta-analysis are depicted in the forest plot as seen in

Supplementary Figure 3. The network and pairwise estimates for

all the interventions are summarized in Table 2. Based on the

comparison-adjusted forest plots, publication bias could be

detected as seen in Supplementary Figure 4. Based on the global

inconsistency test (p = 0.052), no significant inconsistency was

detected. Sensitivity analysis, excluding low-quality studies,

revealed no significant differences. The results of the sensitivity

analysis are available in Supplementary Table 9.

For impact strength, 8 in vitro studies comparing five

interventions were included in the NMA, as seen in Figure 4A.

CCA demonstrated higher impact strength when compared with

CCM [SMD = 8.88 (95% CI: 1.17, 16.59)] P = 0.024 and TDP

[SMD = 10.25 (95% CI: 2.56, 17.93)] P < 0.05. CCI demonstrated

higher impact strength when compared with TDP [SMD = 6.25

(95% CI: 0.11, 12.38)], P < 0.05. Supplementary Table 10

summarizes the SMD and the ranking of the interventions, while

Figure 4B shows the SUCRA ranking curves for each

intervention in the network. CCA ranked the highest, followed

by CCI, MIL, CCM, and TDP. The results of the pairwise meta-

analysis are depicted in the forest plot as seen in Supplementary

Figure 5. The network and pairwise estimates for all the

interventions are summarized in Table 3. Based on the

comparison-adjusted forest plots, publication bias could be

detected in Supplementary Figure 6. Based on the global

inconsistency test (p = 0.42), no significant inconsistency was

detected. Sensitivity analysis, excluding low-quality studies, was

performed. CCA demonstrated significantly higher impact

strength than TDP (SMD = 10.29 [95% CI: 1.15, 19.44). The

results of the sensitivity analysis are available in Supplementary

Table 11.
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For elastic modulus, seven in vitro studies comparing five

interventions were included in the NMA as seen in Figure 5A.

MIL demonstrated higher elastic modulus than TDP [SMD = 5.54

(95% CI: 0.75, 10.)] P < 0.05, and CCM demonstrated higher

elastic modulus than TDP [SMD = 5.16 (95% CI: 0.39, 9.92)]

P = 0.034. Supplementary Table 12 summarizes the SMD and the

ranking of the interventions, while Figure 5B shows the SUCRA

ranking curves for each intervention in the network. CCI ranked

the highest, followed by MIL, CCM, CCA, and TDP. The results

of the pairwise meta-analysis are depicted in the forest plot as

seen in Supplementary Figure 7. The network and pairwise

estimates for all the interventions are summarized in Table 4.

Based on the comparison-adjusted forest plots, publication bias

could be detected in Supplementary Figure 8. Based on the

global inconsistency test (p = 0.93), no significant inconsistency

was detected. Sensitivity analysis, excluding low-quality studies,

revealed no significant differences. The results of the sensitivity

analysis are available in Supplementary Table 13.

For flexural modulus, 12 in vitro studies comparing five

interventions were included in the NMA as seen in Figure 6A. In

the primary analysis, none of the interventions demonstrated

significant results. Supplementary Table 14 summarizes the SMD

and the ranking of the interventions, while Figure 6B shows the

SUCRA ranking curves for each intervention in the network.

CCA ranked the highest, followed by MIL, CCM, TDP, and CCI.

The results of the pairwise meta-analysis are depicted in the

forest plot as seen in Supplementary Figure 9. The network and

pairwise estimates for all the interventions are summarized in

Supplementary Table 15. Based on the comparison-adjusted

forest plots, publication bias could be detected in Supplementary

Figure 10. Based on the global inconsistency test (p = 0.95), no

significant inconsistency was detected. Sensitivity analysis,

excluding low-quality studies, was performed. CCI demonstrated

significantly higher flexural modulus when compared with MIL

[SMD = 3.54 (95% CI: 0.97, 6.12)] P < 0.05, TDP [SMD = 4.38

(95% CI: 1.47, 7.28)] and CCM [SMD = 2.69 (95% CI: 0.14,

5.24)] P < 0.05. The results of the sensitivity analysis are available

in Supplementary Table 16.

None of the interventions demonstrated significant results for

fracture toughness or yield point. Only two articles contributed

FIGURE 1

PRISMA flow diagram summarising the study selection process for eligible trials.
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to the included data for strain at the yield point and toughness. The

network plots, SUCRA ranking curves, forest plots, and funnel

plots are provided in Supplementary Figures 11–22. SMD,

ranking of interventions, network, and pairwise estimates are

provided in Supplementary Tables 17–24. Sensitivity analysis was

not performed for fracture toughness, yield point, strain at yield

point, and toughness because there was only one trial after

excluding all low-quality studies.

Node-splitting analysis was performed to assess local

inconsistency in the network as depicted in Supplementary

FIGURE 2

(A) Network plot for flexural strength. CCM, conventional compression moulding; CCI, conventional injection moulding; CCA, conventional

autopolymerisation; MIL, CAD-CAM milled; TDP, three-dimensional printed. (B) SUCRA ranking curve for flexural strength.
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Tables 2529. Significant local inconsistency was not identified for

any of the important findings in the primary and sensitivity

analyses, indicating no significant inconsistency between direct

and indirect evidence across the network. The PRISMA checklist

for this review is provided as Supplementary Table 30.

4 Discussion

The null hypothesis that no differences would be found in the

mechanical properties of conventional and digitally fabricated

denture bases was rejected. The highest bending stress expressed

in a material at the moment of fracture is termed flexural

strength (68). Denture bases may fail due to flexure exhibited

during mastication. High flexural strength prevents catastrophic

fatigue failure (69–71). Flexural strength is conventionally

measured by a 3-point test evaluating denture bases’ resistance

and stiffness (72–74). As per the NMA results, MIL

demonstrated significantly higher flexural strength than TDP and

CCI. No significant differences were observed between other

denture base types. Ranking of the denture bases per the SUCRA

ranking curve corroborates this result, with MIL being ranked as

the highest. Pairwise results confirm this finding. Individual

pairwise comparisons have indicated more significant differences

between denture base types. However, a combination of direct

and indirect evidence with the NMA corroborates the evidence

that MIL demonstrates a higher flexural strength than TDP. This

finding aligns with previous research where 3D-printed materials

have demonstrated lower flexural strength (45, 75).

Reinforcement of 3D-printed filler resins has been suggested to

improve strength (76–78). However, this effort may prove

counterintuitive as fillers may detrimentally affect the flexural

strength if proper concentrations are not maintained (44). The

printing orientation influences the flexural strength, with a

horizontal printing orientation at 300 demonstrating the highest

flexural strength (79, 80). A Lesser thickness of layers has been

associated with higher flexural strength (81). The platform’s

printing position also impacts the flexural strength (82). The type

of photoinitiator used for curing, post-curing time, temperature,

post-curing rinse, and curing method influence the flexural

strength (83–85). Consequently, controlling the composition and

printing parameters is critical to circumvent the negative

consequences of reduced flexural strength in 3-D printed dentures.

Hardness is measured by the resistance to localized plastic

deformation induced by mechanical indentation (75). Higher

hardness values reduce microbial adhesion and provide color

stability to the denture base (86). As per the NMA results, MIL

demonstrated significantly higher values for hardness than TDP

and CCI. Ranking of the denture bases per the SUCRA ranking

curve corroborates this result, with MIL being ranked the

highest. Pairwise meta-analysis results are concordant. Previous

meta-analysis, which summarized only the direct evidence, did

not establish the superior hardness of milled dentures, finding no

significant differences among all denture types (16). The higher

hardness of MIL may be attributed to higher processing

temperature and pressure, which diminishes the residual

monomer and plasticity (87). Hence, MIL denture bases will

exhibit reduced susceptibility to localized plastic deformation by

abrasion or indentation. Further, milled dentures have been

shown to be more stable to changes in color and hardness after

prolonged exposure to denture cleansers (88). The longevity of

3-D printed and conventional dentures may also be diminished

due to mechanical insults leading to plaque retention and

subsequent pigmentations.

Elastic modulus is defined as the stiffness of a material and can

be calculated as the ratio of elastic stress to elastic strain (12). As

per the NMA results, both MIL and CCM demonstrated

significantly higher values for elastic modulus than TDP.

Ranking of the denture bases per the SUCRA ranking curve

ranks CCI as the highest, followed by MIL. This is corroborated

by the pairwise results where only CCI demonstrated

significantly higher elastic modulus than MIL. MIL demonstrated

significantly higher elastic modulus than CCA and TDP.

A previous meta-analysis, which summarized only the direct

evidence, did not establish the superior elastic modulus of milled

dentures compared to conventional dentures (16). Considering

that there was only one study directly comparing CCI vs. MIL,

the results comparing these entities may be affected by significant

bias. A combination of direct and indirect evidence with the

NMA supports the evidence that MIL has significantly higher

elastic modulus when compared with TDP. Consequently, MIL

denture bases may be more resistant to permanent deformation

and wear when exposed to masticatory stress.

The energy needed to fracture a denture base under an impact,

like accidentally dropping a denture, is defined as the impact

strength (89). As per the NMA results, CCA demonstrated a

higher value for impact strength when compared with CCM and

TDP. CCI also indicated a higher value for impact strength when

compared to TDP. Pairwise results indicate both CCI and CCA

demonstrated significantly higher impact strength than CCM and

TDP. However, the results are significantly impacted by values

from one study.

Flexural modulus is the ability of a material to resist bending or

breaking under stress (90). In the primary analysis, none of the

TABLE 1 League table showing the network and pairwise results for flexural strength.

CCA NA −2.93 (−4.23, −1.63)* NA 1.54 (0.53, 2.56)*

1.35 (−3.41, 6.11) CCI −1.94 (−1.05, −2.83)* −0.82 (−2.08, 0.44) −1.67 (−3.10, −0.24)*

−0.68 (−5.25, 3.89) −2.03 (−3.56, −0.50)* MIL 0.96 (1.59, 0.32)* 1.24 (0.42, 2.05)*

0.94 (−3.70, 5.59) −0.41 (−2.03, 1.22) 1.62 (0.48, 2.76)* TDP −1.19 (−1.92, −0.45)*

0.02 (−4.55, 4.59) −1.33 (−2.86, 0.21) 0.70 (−0.37, 1.77) −0.92 (−2.02, 0.18) CCM

CCM, conventional compression moulding; CCI, conventional injection moulding; CCA, conventional autopolymerisation; MIL, CAD-CAM milled; TDP, three-dimensional printed.

The bold fonts depict different groups.

*Indicates P < 0.05, Network results are denoted in italics.
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FIGURE 3

(A) Network plot for hardness. (B) SUCRA ranking curve for hardness. CCM, conventional compression moulding; CCI, conventional injection

moulding; MIL, CAD-CAM milled; TDP, three-dimensional printed.
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interventions demonstrated significant results. However, sensitivity

analysis excluding low quality studies indicate that CCI

demonstrated significantly higher flexural modulus when

compared with MIL, TDP and CCM. These results should be

interpreted with caution, as the exclusion of low-quality studies

that have included CCI as an intervention has caused the results

to be significantly impacted by the values from one study.

Although the polymerization shrinkage of conventional acrylic-

based denture bases is extensively documented and understood,

material-related complications and failures of 3D-printed denture

bases are significant and poorly understood (16). The printer-type,

object topology, and post-print curing may overcome the initial

printing accuracy of 3D-printed resins (91). It is interesting to

note the significant number of fractures of denture bases in a

clinical study, even though the manufacturer’s instructions in

fabrication and curing were thoroughly followed (92). The failure

has been attributed to malalignment of the current ISO standards

for newly introduced digitally fabricated denture base materials in

comparison with conventional materials (53).

Structural flaws facilitate crack propagation and debonding

during testing, contributing to a combination of adhesive and

cohesive failure mechanisms in conventional and additively

manufactured denture base resins. In a recent study comparing the

physical properties of traditional teeth attached to a heat-cured

denture base material compared to additively manufactured tooth-

coloured materials attached to denture base-coloured

materials,96% of both groups met the ISO 19736 standard for

adhesive failure (<33%). The conventional group showed 5%

adhesive and 95% mixed failure after thermocycling, likely due to

voids at the bonding site caused by air entrapment or residual

monomers. The additively manufactured group experienced 20%

cohesive failure within the denture base resin, attributed to the

strong interfacial adhesion resulting from its unified fabrication

method. The remaining 80% showed mixed failure, possibly from

porosities between printed layers and micropores formed under

load (93). Porosity within the denture base may significantly

influence the mechanical behaviour of the resin, including bond

strength (94). Alternative techniques, such as microwave curing,

may present challenges in achieving uniform polymerization,

despite providing advantages in quicker curing times (95).

Porosities in denture bases may further decrease the strength of

the resin, leading to fracture. Subsequently, the long-term

performance of the denture base may be impacted by the

accumulation of debris, including plaque and calculus (96). To

mitigate the impact of reduced strength, rubber-based polymers

may be incorporated to enhance impact strength. This results in

enhanced ability to absorb energy and fortify the resin (73).

The printing orientation of 3D-printed denture bases plays a

crucial role in determining their mechanical properties. Optimal

orientation influences strength, accuracy, time, and material

wastage. A 45° printing orientation has improved accuracy and

structural stability (97). A horizontal (0°) orientation offers the

highest flexural strength. A vertical (90°) orientation provides

improved flexural strength and microhardness (98). Enhanced

surface quality and smoothness may result from orientations less

than 45° by reducing support structures and minimal post-

processing (99). The printing orientation affects both material

consumption and printing time. Increased material use and time

is associated with a vertical (90°) orientations as compared to

horizontal orientations. Printing orientation for denture bases

influences the properties and should be aligned to the

requirements of the prosthesis and printer capabilities.

Milled denture bases offer several advantages due to the strong

bonding between the teeth and the denture base. These include

faster production, improved material properties such as reduced

roughness and porosity, increased flexural and impact strength,

enhanced hardness, better retention, and the convenience of

quick replacement using patients’ stored digital records. However,

drawbacks include increased tooth wear and challenges

maintaining the occlusal vertical dimension. Alternatively,

technologies that allow separate fabrication of denture base resins

(DBRs) and prefabricated teeth enable using materials with

superior physico-chemical properties. Despite the benefits, CAD-

CAM milling has notable downsides, such as significant material

waste and wear of milling burs. This has led to growing interest

in 3D printing as a more cost-effective alternative. However,

current limitations of 3D-printed dentures—such as lower

mechanical strength, inferior optical and aesthetic qualities, and

reduced retention—make them less appealing. Continued

development in 3D printing technology is needed to overcome

these challenges and provide a viable alternative to traditional

and milled dentures (100–103).

The authors acknowledge that frequentist network meta-analysis

involves statistical assumptions, such as underlying distributions and

variability across studies, which are standard in clinical evidence

synthesis. The authors also recognize that these assumptions may

not fully align with the characteristics of in vitro studies, which are

often more deterministic and conducted under highly controlled

conditions. The intent of this study is not to infer clinical

probabilities or predictive outcomes, but rather to apply NMA as a

comparative synthesis tool to examine relative intervention effects

across the available in vitro evidence. Confidence intervals and

ranking probabilities should be interpreted cautiously in this

context, and our findings are exploratory, mechanistic, and not

directly translatable to clinical decision-making.

The clinical impact of these findings is delineated below.

A recent systematic review of clinical outcomes shows that digital

dentures have comparable clinical properties to conventional

ones (104). 3D printed dentures have demonstrated superior

tissue adaptation and force distribution compared to traditional

dentures (105, 106). Superior precision in fit has been observed

TABLE 2 League table showing the network and pairwise results for
hardness.

CCI −2.74 (−6.31,

0.82)

−2.53 (−7.43,

2.37)

−5.99 (−10.28,

−1.70)*

−4.06 (−7.62, −0.51)* MIL 2.91 (1.35, 4.47)* 0.42 (−1.18, 2.01)

−1.19 (−4.92, 2.54) 2.87 (0.14, 5.60)* TDP −2.26 (−3.60, −0.92)*

−3.07 (−6.71, 0.57) 0.99 (−1.73, 3.72) −1.88 (−4.58,

0.83)

CCM

CCM, conventional compression moulding; CCI, conventional injection moulding; MIL,

CAD-CAM milled; TDP, three-dimensional printed.

The bold fonts depict different groups.

*Indicates P < 0.05, network results are denoted in italics.
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FIGURE 4

(A) Network plot for impact strength. CCM, conventional compression moulding; CCI, conventional injection moulding; CCA, conventional

autopolymerisation; MIL, CAD-CAM milled; TDP, three-dimensional printed. (B) SUCRA ranking curve for impact strength.

TABLE 3 League table showing the network and pairwise results for impact strength.

CCA NA NA 6.49 (5.08, 7.90)* 16.97 (13.53, 20.41)*

4.00 (−5.46, 13.46) CCI 2.60 (−4.64, 9.84) 9.22 (7.47, 10.97)* 1.95 (1.07, 2.83)*

6.75 (−2.22, 15.72) 2.75 (−3.00, 8.51) MIL 4.28 (3.35, 5.21)* 2.31 (−0.47, 5.09)

10.25 (2.56, 17.93)* 6.25 (0.11, 12.38)* 3.49 (−1.94, 8.93) TDP −0.81 (−3.55, 1.93)

8.88 (1.17, 16.59)* 4.88 (−1.07, 10.83) 2.13 (−2.90, 7.16) −1.36 (−4.91, 2.19) CCM

CCM, conventional compression moulding; CCI, conventional injection moulding; CCA, conventional autopolymerisation; MIL, CAD-CAM milled; TDP, three-dimensional printed.

The bold fonts depict different groups.

*Indicates P < 0.05, network results are denoted in italics.
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FIGURE 5

(A) Network plot for elastic modulus. CCM, conventional compression moulding; CCI, conventional injection moulding; CCA, conventional

autopolymerisation; MIL, CAD-CAM milled; TDP, three-dimensional printed. (B) SUCRA ranking curve for elastic modulus.

TABLE 4 League table showing the network and pairwise results for elastic modulus.

CCA NA −1.10 (−1.80, −0.41)* NA −0.48 (−1.37, 0.41)

−3.80 (−16.03, 8.43) CCI 3.99 (3.11, 4.88)* NA 1.77 (1.17, 2.37)*

−0.85 (−9.75, 8.06) 2.95 (−5.95, 11.86) MIL 3.57 (0.99, 6.15)* 0.65 (−1.40, 2.69)

4.69 (−4.96, 14.34) 8.49 (−1.15, 18.14) 5.54 (0.75, 10.33)* TDP −4.66 (−7.72, −1.61)*

−0.46 (−9.37, 8.44) 3.34 (−5.56, 12.24) 0.38 (−3.88, 4.64) −5.16 (−9.92, −0.39)* CCM

CCM, conventional compression moulding; CCI, conventional injection moulding; CCA, conventional autopolymerisation; MIL, CAD-CAM milled; TDP, three-dimensional printed.

The bold fonts depict different groups.

*Indicates P < 0.05, network results are denoted in italics.
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for digitally fabricated dentures compared to conventional

dentures. However, clinical efficiency for different dentures does

not seem to have significant differences (107). Digitally fabricated

dentures have also been found to be more time-efficient,

requiring fewer appointments, chairside and lab time (108).

The fabrication costs of 3D-printed dentures have been

reported to be between 200 and 400 USD. The overall

fabrication costs of conventional dentures may seem lower

when compared to digitally fabricated dentures; however,

despite high initial costs, milled dentures may result in long-

FIGURE 6

(A) Network plot for flexural modulus. CCM, conventional compression moulding; CCI, conventional injection moulding; CCA, conventional

autopolymerisation; MIL, CAD-CAM milled; TDP, three-dimensional printed. (B) SUCRA ranking curve for flexural modulus.
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term savings due to reduced maintenance requirements.

Conventional dentures may require the most time for

fabrication, considering multiple appointments, try-ins, lab

work, and adjustments. Printing for 3D-printed dentures can

be completed in 1–2 h; however, the fabrication procedure

involves processing and curing times that increase the overall

time required (8, 109). Milled dentures can be fabricated more

quickly than conventional dentures but may require more time

than 3D-printed dentures (101, 110–112).

This section summarizes the limitations of the current review.

Insufficient data was identified to provide meaningful conclusions

regarding a few outcomes. Bias incorporated from higher values

from one study diminishes the quality of evidence for impact

strength. More trials comparing the impact strength between

conventional and digital dentures are required to study this

property further. Most of the included studies have not been

performed and reported sufficiently on essential parameters like

sample size and standardization of materials. Higher-quality

studies are needed to establish recommendations.

5 Conclusion

Based on high-quality evidence, milled digital denture bases

exhibit superior flexural strength to 3D-printed and conventionally

fabricated denture bases under laboratory conditions. The data on

superior mechanical properties must be validated clinically by

high-quality, randomized, controlled clinical trials. Higher-quality

studies are required to summarize the evidence for the remaining

properties. Studies with a higher sample size and standardized

protocols are needed to generate high-quality evidence.
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