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At the Large Hadron Collider, the vast amount of data from experiments demands
not only sophisticated algorithms but also substantial computational power for
efficient processing. This paper introduces hardware acceleration as an essential
advancement for high-energy physics data analysis, focusing specifically on the
application of High-Level Synthesis (HLS) to bridge the gap between complex
software algorithms and their hardware implementation. We will explore how
HLS facilitates the direct implementation of software algorithms into hardware
platforms such as FPGAs, enhancing processing speeds and enabling real-time
data analysis. This will be highlighted through the case study of a track-finding
algorithm for muon reconstruction with the CMS experiment, demonstrating
HLS’s role in translating computational tasks into high-speed, low-latency
hardware solutions for particle detection and reconstruction. Key techniques
in HLS, including parallel processing, pipelining, andmemory optimization, will be
discussed, illustrating how they contribute to the efficient acceleration of
algorithms in high-energy physics. We will also cover design methodologies
and iterative processes in HLS to optimize performance and resource utilization,
alongside a brief mention of additional techniques like algorithm approximation
and hardware/software co-design. In short, this paper will underscore the
potential of hardware acceleration in high-energy physics research,
emphasizing HLS as a powerful tool for physicists to enhance computational
efficiency and foster groundbreaking discoveries.

KEYWORDS

high-level synthesis (HLS), hardware acceleration, field-programmable gate arrays
(FPGAs), CMS experiment, track-finding algorithm, parallel processing and pipelining

1 Introduction

The Large Hadron Collider (LHC) at CERN represents the pinnacle of high-energy
physics (HEP) research, enabling scientists to probe the fundamental constituents of matter
and the forces governing their interactions. Experiments like the Compact Muon Solenoid
(CMS) generate an unprecedented volume of data, with collision events occurring at rates of
several billions per second (Evans and Bryant, 2008). This deluge of data necessitates not
only sophisticated algorithms for accurate particle detection and reconstruction but also
demands substantial computational resources to process the information in real time.

Traditional software-based data processing approaches, while flexible, often struggle to
meet the low-latency and high-throughput requirements of modern HEP experiments. The
latency constraints are particularly stringent in trigger systems, where rapid decision-
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making is crucial to determine which events are of interest and
should be recorded for further analysis (CMS Collaboration, 2020).
Hardware acceleration emerges as a vital solution to these
challenges, offering significant improvements in processing
speeds and enabling real-time data analysis.

In the context of the CMS experiment, fast and efficient particle
reconstruction is essential for having a reliable trigger system and for
the success of the physics program (Radburn-Smith, 2022).
Implementing track-finding algorithms directly into hardware
accelerators can drastically improve processing speeds and reduce
latency. Previous efforts have demonstrated the feasibility of using
FPGAs for real-time tracking in HEP experiments (Aad et al., 2021;
Aggleton et al., 2017). However, the manual translation of
algorithms into hardware description languages is time-
consuming and error-prone.

High-Level synthesis (HLS) has gained traction as a powerful
tool that bridges the gap between complex software algorithms and
their hardware implementations. HLS allows for the description of
hardware functionality using high-level programming languages like
C or C++, which are then synthesized into hardware description
languages suitable for implementation on Field-Programmable Gate
Arrays (FPGAs) or Application-Specific Integrated Circuits (ASICs)
(Nane et al., 2016). This approach significantly reduces development
time and makes hardware acceleration more accessible to software
engineers and physicists whomay not be experts in hardware design.

With HLS, we can directly implement sophisticated track-
finding algorithms into hardware, leveraging techniques such as
parallel processing and pipelining to optimize performance (see
Figure 1). Parallel processing allows multiple computations to occur
simultaneously, significantly increasing throughput (Nane et al.,
2016). Several studies at CERN have employed HLS to optimize
pipelining and memory usage. Pipelining enables overlapping of
operations, reducing the overall processing time per event, while
memory optimization techniques enhance performance by
minimizing access times and efficiently utilizing on-chip
resources (Husejko et al., 2015; Ghanathe et al., 2017).

This paper presents a comprehensive study on the application of
HLS for hardware acceleration in HEP data analysis. We focus on
the implementation of a track-finding algorithm for muon

reconstruction within the CMS experiment as a case study. Our
work demonstrates how HLS facilitates the translation of complex
computational tasks into high-speed, low-latency
hardware solutions.

We also discuss design methodologies and iterative processes in
HLS to optimize performance and resource utilization. The
importance of algorithm approximation is highlighted, where
trade-offs between precision and computational efficiency are
considered (Han et al., 2016). In addition, we show an
automated local pipeline for HLS module building, simulation,
and hardware implementation, demonstrating how automation
can streamline the development process and enhance efficiency.

This paper is organized as follows: Section 2 provides an
introduction to the CMS Level-1 trigger system and the software
tools utilized in this work; Section 3 describes the required steps to
use HLS for algorithm acceleration; Section 4 depicts the bases for an
automated workflow for prototyping, validation and integration;
Section 5 describes the obtained results. Finally, Section 6
summarizes our findings.

2 Experimental setup

2.1 The overlap muon track finder of the
CMS Level-1 trigger system

The CMS Level-1 trigger system will undergo a significant
upgrade to accommodate the increased luminosity and data rates
expected from the High-Luminosity LHC (HL-LHC) (CMS
Collaboration, 2020). The upgraded trigger system, also referred
as Phase-2 Level-1 trigger, is designed to handle up to 750 kHz of
event rate with a latency of approximately 12.5 μs. Our hardware
implementation integrates with this upgraded trigger system,
requiring compatibility with its stringent latency constraints and
data formats. A detailed description of the Phase-2 Level-1 trigger
system can be found in (CMS Collaboration, 2020).

The Phase-2 Level-1 trigger system comprises advanced
electronics, including state-of-the-art FPGAs and high-speed
optical links. The system employs the Advanced

FIGURE 1
The design process of high energy physics algorithms with HLS: software design, HLS refactoring, and hardware implementation.
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Telecommunications Computing Architecture (ATCA) standards,
providing high-density, high-throughput, and low-latency data
processing capabilities necessary for real-time event selection in
the HL-LHC environment. As a baseline, the Xilinx VU13P FPGA is
used, these FPGA offers a high number of logic cells, digital signal
processing (DSP) slices, and block RAMs, making them suitable for
the complex, high-throughput applications required in HEP
experiments. The VU13P features over three million logic cells,
12,288 DSP slices, and 360 Mb of UltraRAM, providing ample
resources for implementing deep pipelining and parallel processing
techniques inherent in HLS-optimized designs.

As a case study, the track finding algorithm for the overlap muon
track finder (OMTF) of the CMS experiment is used. The OMTF is
designed to reconstruct muon trajectories in the barrel-endcap
transition region of the detector (Zabolotny and Byszuk, 2016).
This region is extremely complex due to the inhomogeneous
magnetic field and the different geometric orientations of the
muon detectors: Drift Tubes (DT), Cathode Strip Chambers
(CSC), and Resistive Plate Chambers (RPC). The OMTF
algorithm tackles this challenge by evaluating how well the
detected hits, or stubs, correspond to expected patterns of muon
tracks with specific transverse momenta (pT ). The algorithm
matches the incoming detector stubs to a set of predefined
reference patterns. Each pattern represents the typical
configuration for a muon with a certain pT and charge
traversing the detector layers. By calculating a similarity score
between the observed stubs and these reference patterns, the
algorithm identifies the most probable track candidate, assigning
appropriate kinematic parameters to the muon.

Earlier implementations of the OMTF algorithm were realized
in VHDL (Zabolotny and Byszuk, 2016) and later using high-level
synthesis techniques (Zabołotny, 2019). Recent developments
incorporated the reconstruction of displaced muons (Leguina,
2023). Our implementation incorporates optimizations to reduce
latency and resource usage. By utilizing HLS, we achieve a modular
and maintainable design that can be easily adapted for future
upgrades and more complex detector conditions.

In the current foreseen scenario for the HL-LHC upgrade, the
OMTF system consists of 6 ATCA boards, three for each side of the
detector. Each board should process the information from a 120°

ϕ-sector of the detector and will receive up to 1,033 Gbps of
information from the muon detectors. For each clock cycle, the
algorithm can deliver up to nine muons, with a maximum
bandwidth of 450 Gbps (divided into 18 optical links) that will
be sent to later stages of the trigger. The whole OMTF reconstruction
has to be accommodate in a 2 microsecond latency budget.

Our implementation ensures compliance with the system’s
timing budget and interfaces (CMS Collaboration, 2020). The
hardware modules are designed to meet the physical, power, and
thermal constraints of the CMS trigger crates, ensuring reliable
operation under the demanding conditions of the HL-LHC.

The dataset used for this study was generated using a trigger
emulator of the aforementioned algorithm written in C++ that
generates a test vector formatted in XML files consisting of a
small sample of 1,000 events, coming from a muon gun sample
with pairs of muons with a flat pT distribution between 1 and
100 GeV. These test vectors represent the digitized detector signals
and are structured to match the input specifications of the hardware

implementation. Using XML allows for a flexible and human-
readable format that facilitates debugging and verification processes.

2.2 Software tools

We employ AMD Vitis HLS version 2023.2 for converting the
high-level algorithm descriptions into hardware description
language (HDL) code suitable for FPGA implementation. Vitis
HLS allows for the synthesis of C, C++, and SystemC code into
Verilog or VHDL, facilitating rapid prototyping and optimization.
The tool supports various optimization directives, such as loop
unrolling, pipelining, and dataflow, which are essential for
enhancing performance and resource utilization in FPGA designs.

The use of HLS accelerates the development cycle by enabling
software engineers and physicists to design hardware accelerators
using familiar programming languages. It also allows for quick
iterations and testing of different optimization strategies to meet
the stringent performance requirements of the CMS Phase-2
trigger system.

In addition, scripting languages such as bash and tcl were
utilized for automating the build process, simulation, and
generating an automated local pipeline for HLS module building,
simulation, and hardware implementation. Python scripts were also
employed for data analysis, visualization, and further automation
tasks. The integration of these scripting languages streamlines the
development workflow and facilitates collaboration among
team members.

VHDL was used for lower-level hardware description and for
integrating the HLS-generated modules into the existing hardware
infrastructure. The use of VHDL allows for precise control over
hardware resources and timing, which is critical in matching the
performance requirements of the CMS Level-1 trigger system.

3 Algorithm acceleration using high-
level synthesis in high-frequency
applications

The adaptation of an algorithm for hardware acceleration using
high-level synthesis involves a thorough understanding of its main
components and how data flows through them. The algorithm must
be adapted to operate efficiently on FPGA hardware, which requires
consideration of data streaming, parallel processing, and pipelining.

3.1 Algorithm implementation

Figure 2 shows the main modules in the HLS implementation of
the OMTF algorithm, which receives input data from the multiple
muon subdetectors: DT, CSC and RPC. Each produces data in its
own specific format and frame structure. These data are transmitted
in a streamed fashion from various parts of the Level-1 trigger
system to the conversion modules of the algorithm.

To handle this heterogeneous and continuous stream of data, we
design HLS modules capable of processing streamed inputs using
the hls::stream library. This library provides FIFO-based data
streams that facilitate the handling of sequential data in a pipelined
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manner. The input converting modules continuously read incoming
data streams, process them in real-time, and ensure that no data is
lost due to buffer overflows or processing delays.

The design process of the OMTF system consists of several key
steps, with a focus on efficient data handling and processing in an
FPGA environment:

• Input converting modules: These modules handle data from
each subdetector using hls::stream objects to
efficiently manage streamed data. Each module parses
incoming data frames, extracts relevant hit information
(primitives), and converts the data into a unified format
that is compatible with the main processing module.
Additionally, they merge information from multiple
detector layers (DTs, CSCs, and RPCs) and ensure that
the data format matches the input structure required by the
main module. To minimize latency and maximize
throughput, directives such as #pragma HLS

PIPELINE and #pragma HLS DATAFLOW are used.
• Main processing module: This module receives the unified
data frame through custom input ports and implements the
core OMTF algorithm to infer pT based on the spatial
positions of detected primitives. In addition, the module
processes multiple “golden patterns” (Zabolotny and
Byszuk, 2016) in parallel, which represent the expected hit
configurations for muons with specific pT and charge. The
design leverages #pragma HLS UNROLL to unroll loops and
create multiple instances of the processing logic for parallel
computation. It also employs #pragma HLS ARRAY_

RESHAPE to ensure that array elements storing pattern
(PDF) weights and parameters are available simultaneously,
eliminating data dependencies and improving efficiency. A
more detailed description of this module can be found in
(Zabolotny and Byszuk, 2016).

This structured approach ensures that the OMTF system
efficiently processes data while optimizing FPGA resources and

maintaining the necessary throughput for real-time applications
that was described in Section 2.

Throughout the design process, we continuously verify the
functionality and performance of each module using C++ test
benches and HLS simulations. This iterative approach allowed us
to identify bottlenecks and optimize the design before synthesizing it
onto the FPGA hardware. In this work the DT converter and the
processor modules are taken as an example to illustrate the applied
high-level synthesis techniques.

3.2 Optimization techniques

Optimization was a critical aspect of our implementation to
meet the stringent performance requirements of the CMS Level-1
trigger system. Several techniques were applied, focusing on parallel
processing, pipelining, and memory optimization, each tailored to
the specific needs of different modules within the algorithm.

3.2.1 Parallel processing and memory optimization
Parallel processing was primarily employed in the main

processing module, where the evaluation of patterns is inherently
parallelizable. Each pattern represents a potential muon trajectory
with a specific pT and charge. To process all patterns
simultaneously, we unroll loops that iterate over the patterns
using the #pragma HLS UNROLL directive. By fully unrolling
these loops, separate processing elements for each pattern were
instantiated, allowing the module to compare incoming primitives
against all patterns in a single clock cycle, significantly reducing
latency as shown in Section 5.

Additionally, arrays containing pattern weights and parameters
were reshaped using the #pragma HLS ARRAY_RESHAPE

directive with the “complete” option, ensuring that all array
elements were accessible in parallel without causing memory
access conflicts. Constant data, such as pattern weights, were
stored in read-only memory blocks, mapped to on-chip block
RAMs or UltraRAMs using the #pragma HLS RESOURCE

FIGURE 2
Schematic block diagram of the components of the OMTF algorithm. Data from each subdetector interface flows through various modules to the
Global Muon Trigger (GMT) interface. This work considers the DT converter and themain processormodules as an example to illustrate the applied high-
level synthesis techniques.
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directive. Array partitioning through the #pragma HLS ARRAY_

PARTITION directive enabled multiple simultaneous read accesses,
further optimizing memory access.

In the input converting modules, parallel processing was also
applied by designing separate modules for each muon subdetector.
Each module operates independently, handling its specific data
stream and merging results into a unified data frame for the
main module, ensuring seamless integration.

As shown in Figure 3, the individualized pattern weights allow
full parallelization of the pattern processors, significantly reducing
the overall latency of the system.

3.2.2 Pipelining
Pipelining was a crucial optimization technique applied to the

input converting modules. Taking the DT converting module as an
example, the DT module processes data frames representing muon
trigger primitives, or stubs. Each event consists of nine data frames,
each 64 bits wide. Traditionally, these frames would be deserialized,
combined, and processed together, introducing latency and
increasing resource usage. To counter this, we use the hls::

stream library to process primitives as they arrived, enabling a
pipelined approach.

The pipeline in the DT module consists of several stages:

1. Streaming input read: Primitives are read from the hls::

stream input one at a time.
2. Quality and position filtering: Apply detector-specific quality

criteria to filter out spurious hits and ensure the hit positions
are within range for muon candidates.

3. Coordinate conversion: Use DSP units for local coordinate
computations, applying fixed-point arithmetic to maintain
precision while optimizing resources.

4. Data packing: Once all nine primitives are processed, the
converted data is packed into the expected input format for
the main processing module.

To further enhance the efficiency of the DTmodule pipeline, the
#pragma HLS DATAFLOW directive was used. This directive
allowed different stages of the pipeline (e.g., reading, filtering,
conversion, and packing) to operate concurrently, rather than
sequentially. By enabling parallel execution of the pipeline stages,
we minimize the overall latency of the data processing, ensuring that
each primitive is processed as soon as it arrives, without waiting for
the entire event to be collected.

By applying both the #pragma HLS PIPELINE and
#pragma HLS DATAFLOW directives, we ensure that each
operation could process new data every clock cycle, allowing
continuous data flow without waiting for the entire event to be
read, thus reducing latency.

The pipelining technique has been applied in the DT module to
demonstrate its effectiveness. By processing each primitive
individually as it arrived, and using the #pragma HLS

DATAFLOW directive to allow concurrent execution of pipeline
stages, we avoid the latency and resource demands associated
with traditional deserialization and collective processing of data
frames. The pipeline stages described above enabled continuous
processing, achieving high throughput withminimal delay, as shown
in Figure 4. We achieve significant reductions in latency (factor 2.43,

FIGURE 3
Scheme of the units forming the main processor. The individualized pattern weights make full parallelization of the pattern processors available,
reducing the overall latency. Each pattern processor, then processes information from each detector layer available (layer processor).
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see Section 5) while ensuring that data could be processed
continuously and efficiently within the CMS Level-1 trigger
system’s stringent timing constraints.

3.2.3 Pause points
Throughout the development process, we implement pause

points to verify the correctness and performance of the algorithm
at various stages. These pause points are strategically placed after
each implementation step to ensure that any issues could be
identified and addressed promptly, preventing the propagation of
errors to subsequent stages.

This structured approach to validation made us realize the
potential for creating a pipeline where automatic verification
could be applied at each step. The concept of continuously

verifying the design at each stage naturally evolved into the idea
of integrating automation throughout the entire
development process.

4 Rapid prototyping workflow through
automation scripting

To manage the complexity of the development process and
ensure efficient verification, we implement a custom local building
and verification pipeline, see Figure 5. This pipeline automates the
compilation, testing, synthesis, and simulation steps, integrating
them into a cohesive workflow that streamlines the development of
the hardware-accelerated algorithm.

FIGURE 4
Pipeline design of the DTmodule converter, utilizing a streamed interface inferred by the hls::stream class. The functions are executed in parallel
following the HLS DATAFLOW paradigm, ensuring efficient data processing and throughput.

FIGURE 5
HLS build pipeline overview. The process begins with test vector generation in the algorithm emulator software. Next, the HLS modules are tested
and synthesized. Following this, the board framework is built, and the top file along with the block design, including all HLS modules, is generated and
implemented. Finally, after generating the bitstream, the design is tested on the target hardware.
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The validation of each step of the pipeline is crucial to ensure
that the hardware-accelerated implementation of the track-finding
algorithm functions correctly and mirrors the expected behavior of
its software counterpart. The validation process involves several
key steps:

1. Functional equivalence testing: We perform comprehensive
tests to compare the outputs of the hardware-implemented
algorithm with those of the software version using identical
input data from the CMS experiment. This ensures that the
logic and computational integrity of the algorithm are
preserved during the translation from software to hardware.

2. Bit-true verification: Utilizing co-simulation features provided
by HLS tools, we verify that the hardware design operates
correctly at the bit level. This involves checking that the
numerical computations and data handling in the FPGA
match the software algorithm’s precision and accuracy.

3. Iterative refinement and debugging: Any discrepancies or
unexpected behaviors observed during the validation steps
of the pipeline are addressed through iterative refinement.
This process involves debugging the hardware design,
adjusting optimization directives in HLS, and re-validating
until the hardware implementation consistently produces the
correct results.

Successful validation is achieved when the hardware
implementation:

• Produces output data that matches the software algorithm’s
results within error margins below 5%.

• Operates correctly at the required high frequencies without
data loss or corruption.

• Meets the performance targets for processing speed and
latency improvements.

• Integrates seamlessly into the existing data processing
infrastructure, facilitated by the automated
prototyping workflow.

4.1 C simulation and unit testing

After designing all the modules, we initiate the C simulation
phase to evaluate their behavior. To automate this process, we
implement a cmake target system that first compiles all the
necessary libraries and source files. Cmake scripts are used to
define build targets, manage dependencies, and configure the
build environment.

We develop a unit testing system to verify each module
individually. The testing process involves the following steps:

1. Extraction of test events: We extract XML files from the
emulator’s algorithm simulation containing the expected test
events, inputs, and outputs for each module across a number
of events.

2. Creation of test targets: For each module, a test target is created
within the cmake system. These targets utilize a test template
that is customized for each module by substituting placeholder
names with the actual module names.

3. General Testing Library: A general testing library developed in
C++ is used to facilitate testing. This library consists of two
main components:
• CLIUtility module: Responsible for processing input
arguments of each test, reading the XML events, and
managing command-line interfaces.

• IModule library: Contains a Module_IModule file for each
module, which receives the XML events and converts them
into the expected input formats required by the module. It
includes testing functions such as input conversion, output
conversion (from C++ data types to arbitrary-precision
types used in HLS), module execution, result comparison,
and logging. Additionally, the IModule library includes a
threshold-based verification system. A parameterized
threshold is provided for each module to account for
acceptable discrepancies in the output, arising from fixed-
point arithmetic and hardware constraints. The results are
verified by comparing them against the expected outputs
within this threshold.

4. Running the tests: The tests are executed, with each module
being fed by the corresponding inputs and producing outputs
that are compared against the expected results from the
XML files.

5. Recording results: Test results are stored in a JSON file that
records the events passed, events failed, and their respective
inputs and outputs. This detailed record facilitates debugging
and further analysis.

4.2 HLS synthesis and co-simulation

Once the unit tests are passed, the synthesis of the HLS modules
is performed. Figure 6 shows the detailed parts of the HLS synthesis
step. The pipeline includes: 1) Synthesis: Using the cmake system
and tcl scripts, the HLS synthesis process is automated for each
module. If any error is detected during synthesis, the pipeline stops,
and the developer is prompted to refactor the code to resolve the
issues. 2) Co-simulation: For each module, co-simulation is
performed using the passed events from the JSON files as inputs.
A co-simulation template is used to generate the necessary test
benches and scripts. The co-simulation compares the C++
simulation results with the RTL simulation results to verify that
the synthesized hardware matches the expected behavior.

4.3 Integration

Following the successful synthesis and verification of the HLS
modules, the next critical step in the development pipeline is the
integration of the algorithm into the hardware framework and the
generation of the FPGA bitstream. This process involves combining
our custom HLS design with existing hardware frameworks used at
CERN, configuring communication protocols, and automating the
build process through scripting.

At CERN, several hardware frameworks are employed to
facilitate communication between FPGA boards and manage
essential system functions. These frameworks provide
standardized interfaces, communication protocols, and
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infrastructure components necessary for the operation of the boards.
Key features of the hardware framework include:

• Communication protocols: Defines the methods for data
exchange between boards, including the number of high-
speed transceivers (e.g., Multi-Gigabit Transceivers or
MGTs) used for high-throughput data links.

• Control registers: Sets up registers accessible from the
processor system (e.g., embedded ARM cores), allowing for
configuration, monitoring, and control of the FPGA logic.

• Infrastructure components: Includes clock management, reset
logic, and other essential services required for stable operation.

We begin by building the hardware framework, ensuring that it
is correctly configured to meet the requirements of our application.

This involves selecting the appropriate number of transceivers,
setting up control interfaces, and integrating any necessary
communication protocols.

4.4 Integration of HLS design

Once the hardware framework is established, we proceed to
integrate our synthesized HLS modules into the design. Figure 7
shows the project building process. This process is automated using
tcl scripting within Vivado, enabling us to build the entire block
design and manage connections efficiently.

1. Importing HLS IP cores: The HLS synthesis process generates IP
cores for each module, which are added to the Vivado IP

FIGURE 6
Overview of the HLS synthesis and export process. The pipeline begins by setting common synthesis parameters such as FPGA part, clock period,
and simulation/export options. A tcl script is generated to automate the process, which includes compiling themodule sources, applying parameters, and
targeting the design for synthesis. Co-simulation is performed along with the flow execution, and the IP, along with a token, is exported. The token
ensures the IP is not rebuilt if the process is repeated. After a timing check and extraction, the IP is added to the catalog.

FIGURE 7
Vivado project build flow. The process starts with either framework cores or HLSmodule tokens. The framework is then built, followed by adding the
payload and constructing the block design (BD). The top-level design is generated, and the complete design is implemented. Tokens are used to avoid
rebuilding modules unnecessarily. IPs are pulled from the IP catalog and supported by the algorithm tcl library, streamlining integration into the project.
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repository. These IP cores encapsulate the functionality of our
algorithm modules and are ready for integration into the
block design.

2. Automated block design creation: Tcl scripts are used to
instantiate the HLS IP cores and other necessary blocks
within the Vivado block design environment. The scripts
handle the placement of modules, configure parameters, and
establish connections between blocks.

3. Connecting modules: The scripts read the expected ports of
both the hardware framework and the HLS payload modules,
wiring them accordingly. This includes connecting data paths,
control signals, and clock domains as required.

After assembling the block design, a top-level HDL file is
generated to serve as the entry point for synthesis and
implementation. The top-level file defines the interface of the
FPGA design, including all input and output ports, and ensures
that all modules are correctly interconnected.

• Tcl scripting for top file generation: We utilize tcl scripts to
automate the generation of the top-level file. The scripts parse the
port definitions from the hardware framework and the HLS
modules, ensuring that all connections are accurately represented.

• Interface definitions: The top-level file specifies the physical
interfaces, such as high-speed transceivers, GPIOs, and clock
inputs, aligning them with the FPGA’s pins and the board’s
connectors.

With the block design and top-level file prepared, we proceed to
the synthesis and implementation stages:

1. Synthesis: The combined design is synthesized to convert the
RTL code into a gate-level netlist. This process involves
optimizing the logic, mapping the design to the FPGA’s
resources, and ensuring that timing constraints are met.

2. Implementation: The synthesized netlist undergoes placement and
routing to assign the logic elements to specific locations on the
FPGA and establish physical connections. This step is critical for
meeting timing requirements and optimizing performance.

To achieve optimal performance and ensure the design meets
the operational requirements, we apply specific constraints during
the implementation:

• Physical constraints: Tcl scripts are used to generate a
constraints file (.xdc) that specifies the placement of
critical logic elements. This is particularly important when
the FPGA is heavily utilized, or when certain paths require
minimized propagation delays.

• Timing constraints: We define timing constraints to guide the
synthesis and implementation tools in meeting the desired
clock frequencies and setup/hold times.

• Resource utilization constraints: Limits are set on the usage of
FPGA resources such as LUTs, BRAMs, and DSP slices to
prevent over-utilization and ensure reliable operation.

The final step in the pipeline is the generation of the
FPGA bitstream:

1. Bitstream file creation: The implementation process produces a
bitstream file (.bit) that encapsulates the configured
FPGA design.

2. Verification: Before deploying the bitstream, we perform a final
verification step to ensure that all constraints are met and that
there are no critical warnings or errors.

3. Deployment: The bitstream is then ready to be loaded onto the
FPGA for hardware testing and deployment within the CMS
Level-1 trigger system.

With the bitstream fully generated, the development pipeline
concludes, and the design is ready for deployment and hardware
testing. This comprehensive and automated pipeline—from
algorithm preparation to bitstream generation—ensures that
the hardware-accelerated algorithm is efficiently developed,
thoroughly tested, and optimally implemented for operation
within the CMS Level-1 trigger system. The automation of the
hardware integration process and the application of the
constrains, maximizes the performance and reliability of the
FPGA implementation, meeting the rigorous demands of
HEP data processing at the High-Luminosity Large
Hadron Collider.

4.5 From local automation to future CI/CD
integration

The entire hardware integration and bitstream generation
process is automated within our build pipeline using tcl scripting
and the capabilities of Vivado. This automation ensures consistency,
reduces the potential for human error, and accelerates the
development cycle.

It is important to note that the pipeline described above is
developed for local development purposes. This setup allows
individual developers or small teams to efficiently test and iterate
on the design within their own development environments. The
local pipeline provides the flexibility to make rapid changes, test new
ideas, and perform detailed debugging without the overhead of a
larger, more complex system.

To support repository management, scalability, and
collaboration across larger teams, integrating this local pipeline
into a Continuous Integration/Continuous Deployment (CI/CD)
system is essential. CI/CD systems automate the building, testing,
and deployment processes, ensuring that code changes are
consistently integrated and validated.

• Consistency: CI/CD pipelines enforce consistent build and test
procedures across all developers, reducing integration issues
and ensuring that the codebase remains stable.

• Scalability: As the team grows, a CI/CD system can handle
multiple developers working concurrently, managing merges,
and detecting conflicts early.

• Automated Testing: Automated tests can be run on every
commit or pull request, ensuring that new changes do not
introduce regressions.

• Traceability and documentation: CI/CD systems provide logs
and reports for each build and test cycle, aiding in traceability
and compliance with development standards.
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• Deployment automation: Streamlines the process of deploying
updates to hardware in the field, reducing manual intervention
and potential errors.

By integrating the local development pipeline into a CI/CD
system, we can leverage tools such as GitLab CI/CD, Jenkins, or
Travis CI to automate the entire workflow. This integration ensures
that the development process is scalable, maintainable, and aligned
with best practices for software and hardware development.

5 Experimental results

This document presents a comparative analysis of the HLS-
based implementation of the Overlap Muon Track Finder (OMTF)
algorithm on an older Virtex-7 XC7VX690T FPGA versus a new
implementation on the Virtex UltraScale+ XCVU13P FPGA. The
new implementation incorporates significant architectural
improvements and includes additional logic due to the
requirements of the Phase-II upgrade, which represent an
increase in the volume and complexity of data processed.
Moreover, the new implementation includes extrapolation logic
leveraging DSPs for multiplication operations Leguina (2023).
The comparison is summarized in Table 1.

The reductions in latency and resource usage, alongside the ability
to handle more data, mark significant advancements in the algorithm’s
design. Despite handlingmore data, the new implementation achieves a
real-time latency improvement by a factor of:

GainFactor � 337.5ns Virtex − 7( )
139ns VirtexUltraScale+( ) ≈ 2.43

This demonstrates the substantial advantage of the newer FPGA
architecture combined with enhanced algorithm design.

6 Discussion

The results are expected to demonstrate that hardware
acceleration using High-Level Synthesis (HLS) significantly
improves processing speeds by 2.25 and reduces latency by factor
2.43 in a high-frequency application such as the muon track-finding
algorithm of the CMS Level-1 trigger system. The successful

implementation confirms that HLS is an effective tool for
translating complex algorithms into efficient hardware designs
suitable for real-time applications in HEP. The performance
gains validate the optimization techniques applied, such as
parallel processing and pipelining, highlighting their impact on
enhancing computational efficiency without sacrificing accuracy.

The advancements achieved through this work have substantial
implications for HEP research. By enabling real-time data processing
with improved accuracy, researchers can explore new physics
phenomena that require rapid and precise measurements, such as the
detection of rare particles or events occurring at high luminosities. The
adoption of hardware acceleration expands the capabilities of trigger
systems, potentially leading to more effective data collection strategies
and enhancing the overall scientific output of experiments like CMS.

The methodologies developed in this study demonstrate
scalability to other algorithms and detector systems within HEP.
Future work may involve extending the use of HLS and hardware
acceleration to additional components of the trigger system or other
experiments facing similar computational challenges. Exploring
hardware/software co-design approaches and integrating machine
learning algorithms into hardware accelerators are promising
directions. Continued development of HLS tools and techniques
will further simplify the design process, making hardware
acceleration more accessible to a broader range of researchers.

This study highlights the transformative potential of hardware
acceleration in HEP, showcasing how high-level synthesis can
effectively bridge the gap between complex software algorithms and
hardware implementation. By harnessing HLS, we achieve significant
improvements in processing speed and latency reduction for the muon
track-finding algorithm in the CMS experiment. The successful
application of these techniques not only enhances current data
analysis capabilities but also sets the stage for future innovations,
enabling physicists to tackle increasingly complex challenges and
drive groundbreaking discoveries in the field.
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TABLE 1 Comparison of key metrics for HLS implementations.

Parameter Zabołotny (2019) Our work

Device XC7VX690T XCVU13P

Frequency (MHz) 160 360

Latency (cycles) 54 50

Latency (ns) 337.5 139

LUT 123,964 (28.6%) 204,300 (11.8%)

FF 112,240 (12.9%) 198,022 (5.7%)

BRAM 720 (24.5%) 274 (10.2%)

DSP - 204 (1.7%)
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