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Where do di�erences in theory of
mind development come from?
An agent-based model of social
interaction and theory of mind

Chi-Lin Yu and Henry M. Wellman*

Department of Psychology, University of Michigan, Ann Arbor, MI, United States

Introduction: Where do individual di�erences in theory of mind (ToM)

development come from? This is an open-ended issue in developmental

psychology. Correlational research suggests social interaction as a cause.

However, causal experiments controlling children’s extended, real-life social

interactions are impractical and unethical, so the links between social interaction

and ToM remain only indirectly demonstrated. To shed light on how social

interaction, in di�erent degrees and forms, may influence ToM development, we

conducted computational experiments using agent-based modeling.

Methods: To begin with, we simulated agents (hypothetically, children) and

assigned them to 10 groups, where each group was manipulated to allow a

di�erent amount of social interaction, from 1 to 10. Within each group, agents

randomly roamed and encountered one another and then interacted. If these

interactions continued long enough, agents’ ToM probabilistically improved.

Results: As expected, results showed that the amount of social interaction strongly

influenced how fast agents developed ToM, where more social interaction led to

more rapid development. Given this confirmation of the assumed link, we more

focally explored how other factors—such as having a prior, established social

network or agents’ network centrality—could influence the social interaction-ToM

link. Then, we tested our model against real-world data from 84 deaf children and

showed that our modeling results could explain the social interaction-ToM link

observed in deaf children.

Discussion: These demonstrations illustrate how individual di�erences in ToM

development may emerge and o�er an explanation specifying a crucial

mechanism for how all humans achieve ToM—faster or with delay—through

processes of social interaction.

KEYWORDS

theory of mind, social interaction, cognitive development, social development, agent-

based modeling

Introduction

Theory of mind (ToM), the ability to understand others’ internal states, emerges early

in life and develops in childhood (Wellman, 2014). Although all humans develop ToM

(Yu and Wellman, 2022a), they do so at different paces. For example, children with autism

spectrum disorders and deaf and hard-of-hearing (DHH) children usually have delayed ToM

development (Peterson and Wellman, 2019; Yu et al., 2021b), whereas bilingual children

often develop ToMmore quickly than other children (Yu et al., 2021a). Evenwithin typically-

developing children, some develop ToM more quickly and some more slowly (Wellman

et al., 2001; Yu and Wellman, 2022b).
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Where do these differences come from? Researchers have

explored many factors that potentially contribute to ToM

individual differences, including neurobiological differences and

maturation (e.g., brain development), domain-general cognitive

skills (e.g., executive function; Devine and Hughes, 2014), domain-

specific linguistic experiences (e.g., meta-linguistic and social-

linguistic skills; Yu et al., 2021a), pretend play experience (e.g.,

Taylor and Carlson, 1997), early social conversations (e.g., mental

state talks; Ensor et al., 2014), parental mind-mindedness (e.g.,

Hughes et al., 2018), and more. Among all these factors, social

interaction with people, in particular, has been proposed to be

a crucial cause (Astington, 2001; Carpendale and Lewis, 2004).

For example, a meta-analysis summarizing 45 studies with 4996

children showed that the number of siblings is associated with

children’s ToM performance (Devine and Hughes, 2018)—children

having one or more siblings pass ToM tasks before children

with no siblings (see also Perner et al., 1994). Also, in a recent

comprehensive review of how children’s social tendencies can

shape ToM, Lane and Bowman (2021) argued that children’s

tendencies to attend to social information and engage in social

interaction play critical roles. These various studies argue that

more social interaction means increased opportunities to cognize

others and their internal states, thus enhancing ToM; in contrast,

less social interaction restricts such opportunities, thus delaying

ToM development.

Although all their findings are correlational in nature, based on

these studies, including longitudinal-predictive studies where early

social interactions predicted later ToM (e.g., Brink et al., 2015), it is

safe to assume that social interactive experiences causally influence

ToM development. However, past research does little to establish

what sorts of interaction conditions shape and illuminate this link.

We reasoned that manipulations within a casual experiment could

do so.

Hypothetically, consider a thought experiment with a ten-

group between-subject design. Young children with under-

developed ToM are randomly assigned to ten groups (i.e., 200

children per group). We then manipulate the amount of social

interaction experienced for each group. In Group 1, children are

allowed to interact with another child one time a day. In Group

2, children are allowed to interact two times a day; in Group 3,

they are allowed to interact three times a day, and so on. Then we

track each child’s ToM development every day to document how

long (e.g., how many days/years) each child takes to fully develop

his/her ToM. The expected result confirming a causal link from

social interaction to ToM would be that children in groups with

more social interaction (e.g., groups 7–10), on average, develop

faster than children in groups with less social interaction (e.g.,

groups 1–4). Assuming this experiment provides firm findings that

social interaction influences ToM development, it could then, more

importantly, inform us about how it does so.

However, a thought experiment like this is impossible to

conduct because manipulating and controlling children’s extended,

real-life social interaction is not feasible as well as unethical:

How could researchers in good conscience recruit children for

such a study; what parent would allow their child to participate;

how could children’s social interactions be precisely controlled;

how could children’s ToM be measured over weeks and months

every single day given the limits of existing ToM assessments

(e.g., false belief tasks) and the fact that ToM grows slowly over

childhood (Wellman, 2014)? As a result, the links between social

interaction and ToM remain indirectly and patchily demonstrated

or investigated.

Here, we take a different approach: exploring social interaction-

ToM links via a precise thought experiment on computers.

Building upon the assumption that social interaction increases

ToM, we use computational modeling, in the form of agent-

based modeling (ABM), to demonstrate how social interaction,

in different degrees and forms, may influence ToM development.

ABMs are simulations where cognitive agents interact over time

and space under specified conditions. ABM offers opportunities

to do what is infeasible in the real world (Kennedy et al.,

2009; Madsen et al., 2019), such as the unethical/impractical

experiment mentioned earlier. As such, our ABM approach

offers a valuable complement to existing correlational data by

providing computational explorations that contribute to a more

comprehensive understanding of the relationship between social

interaction and ToM.

In our model, we set up a ten-group between-subject design,

where we simulated agents (i.e., children) with almost no prior

ToM competence and assigned them to ten groups. Each group was

manipulated to allow a different amount of social interaction, from

1 to 10, within a time interval (i.e., a tick of a computer clock; for

a child, e.g., an hour). Within each group, agents randomly roamed

and occasionally ran into one another, and when they did, they

interacted. If these interactions continued long enough, their ToM

probabilistically improved following a loosely Bayesian learning

formula, developing from near 0 (almost no ToM competence) to 1

(fully developed ToM). We tracked each agent’s ToM development

over time and howmuch time (i.e., howmany ticks; for a child, e.g.,

howmany hours and days) each agent needed to fully develop ToM.

More importantly, we tested several targeted manipulations

to show how social interaction may influence the pace of ToM

development. One manipulation was the sample size for a group

of agents, where we manipulated four sample sizes: 50, 100, 150,

and 200 agents. Another manipulation was whether agents began

with a prior, established, existing social network or not (Barabási

and Albert, 1999). Having no existing social network means that

agents did not know each other before the experiment (e.g., for

a child, the 1st day of a new school), so they would randomly

move around in an environment and interact with the agents

they encountered. In contrast, having an existing network means

that agents had connections with some other agents before the

experiment (e.g., for children, they already knew each other), so

they would interact preferentially with their known as opposed to

unknown neighbors. Further, we tested whether and how being

initially central to a network (e.g., for children, perhaps, being

popular or sought out) or not (e.g., perhaps, being shy) influenced

ToM increases via social interaction. We computed each individual

agent’s network centrality (Zaki et al., 2014) at the beginning

before they started their focal interactions. An agent who was

more central in a social network had more social connections and

thus more opportunities to engage in more social interaction than

peripheral agents with a low network centrality. These additional

manipulations also allowed us to test whether the links between
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social interaction and ToM are robust and how they function in

various contrasting contexts.

Simultaneously, our study enabled us to track the

developmental trajectory of each individual agent’s ToM over

time, thereby allowing us to assess the influence of their individual

variation in social interaction instances on corresponding ToM

competence within the group. This individual-focused analysis

provides an examination of how social interaction instances impact

ToM competence at a more nuanced level. Importantly, such

individual-focused data align with the format commonly employed

in correlational studies investigating social interaction-ToM links.

Because, in this form, our model captures individual variation,

we were able to compare our model results with empirical data

from a cohort of 84 young DHH children (Yu et al., 2021b). This

comparison aimed to ascertain the extent to which our model

can effectively explain real-world data, further illuminating the

capacity of our model to elucidate the social interaction-ToM links.

In sum, our model was essentially an extended version of an

optimal but unethical/impractical thought experiment described

earlier. Furthermore, because we conducted the interactions

computationally, we were able to repeat the various experimental

conditions 50 times each to assess the robustness of our results.

A screenshot of the crucial aspects of our model (written

in Netlogo programming language; Wilensky and Rand, 2015)

is presented in Figure 1. The model can be easily run using

Netlogo software: https://ccl.northwestern.edu/netlogo/. Overall,

our design, exploiting the assumption that social interaction

increases ToM, allows us to address questions such as: (1) How

does having vs. not having an existing network influence social

interaction and thereby ToM competence? (2) How does an agent’s

network centrality influence the pace of ToM development? (3)

Can our ABM realistically link to real-world data? The model,

the source code, and the simulated data we show in this study

are all available in Supporting Information. Readers can run our

model and experiment with it themselves to experience how social

interaction influences ToM development.

Methods

Overall design

Our ABM was conducted in Netlogo (Wilensky and Rand,

2015), a language packaged with a programmable ABM

environment. The overall design of our specific ABM was a

ten-group between-subject experiment. We simulated identity-less

agents (hypothetically, children) and randomly assigned them into

ten experimental groups. Within each group, agents randomly

roamed and occasionally ran into one another; when they did, they

interacted. If these interactions accumulated sufficiently, their ToM

probabilistically improved. Importantly, each group controlled

each agent’s maximal amount of social interaction within a tick of

a computer clock (for a child, e.g., an hour). Groups 1–10 allowed

agents to interact 1–10 times per tick, respectively. We recorded

each agent’s ToM development over time (ToM competence) and

how much time (i.e., how many ticks of a computer clock; for

a child, e.g., how many hours and days) each agent needed to

fully develop their ToM. Using this model design, we explored

how different amounts of social interaction influenced the pace of

ToM development.

Sample size
To test whether the effects of social interaction manipulations

were robust for different numbers of agent-interactors, we

manipulated four different sample sizes in a group: 50, 100, 150, and

200 agents. Thus, the total sample sizes for experiments range from

500, 1,000, 1,500, to 2,000 (the sample size in a group ∗ 10 groups).

Network scenario
To explore hypothetically relevant factors, we manipulated

agents’ network history—whether agents began with an existing

social network or not. The existing network was the preferential

attachment network in the Netlogo library (Barabási and Albert,

1999). Having no existing social network meant that agents had no

links to one another before the experiment, so they would randomly

move around within a set environment (a grid of 40 ∗ 40 patches;

the environment size remains the same for all agent sample sizes)

and interact with whoever they encountered on that patch. To

illustrate, picture a fixed-size neighborhood where individuals can

roam freely and may run into others on the street (e.g., for a child,

the 1st day of a new school). In contrast, having an existing network

meant that agents had prior links to some other agents before the

experiment (e.g., for children, they know each other) so that they

would interact preferentially with their prior-linked “friends.”

These additional manipulations resulted in eight experimental

setups, one for each combination of the four sample sizes and two

network scenarios (4 ∗ 2). Note that these critical experimental

manipulations (i.e., ten amounts of social interaction, four sample

sizes, and two network scenarios) are shown at the top left panel of

our Netlogomodel (Figure 1) and are set before running the model.

Agents and interaction

In our ABM, each agent represents a child. Within Netlogo,

each agent can be defined to have “properties” that can take on

different values. Our agents had a property of ToM competence.

The initial ToM value was 0.0000001, meaning that the agent had

almost no ToM (at the beginning). A higher ToM value represents

better ToM competence, and the maximal ToM value is 1. An agent

with ToM= 1 means that it has fully developed ToM.

The agents roamed in the environment, and when two agents

moved into the exact same location (a patch representing one of

the patches within a grid of 40 ∗ 40 patches), this constituted

an interaction-encounter—they interacted with each other. Note

that in our ten-group between-subject experiment, each group

controlled each agent’s maximal amount of social interaction, 1–

10, within a tick of a computer clock. The length of each interaction

was simulated using a random number generator, which generates

a random number from a uniform distribution (range from 0 to

1.5). If the interaction length was bigger than 1 (the interaction

continued long enough), then the two agents’ ToM probabilistically

improved (see below). Having a threshold of 1 (with a full range of
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FIGURE 1

Our ABM built in Netlogo. The top left panel shows the focal experimental manipulations (e.g., ten di�erent amounts of social interaction, four

sample sizes, and two network scenarios). The bottom left panel shows the results of one example run as it proceeded over 4,290 ticks. The right

panel graphically illustrates the child agents (i.e., the red human symbols).

1.5) means that only 33% of such interactions are long enough to

be meaningful.

In addition, in the scenario where agents began with an existing

social network, each agent also had a second property of network

centrality computed based on eigenvector centrality (Zaki et al.,

2014). A high value means that an agent is more central in a social

network, so he/she would havemore connections and opportunities

to engage in more social interaction (e.g., have more neighbors to

interact with). Conversely, a low value means an agent does not

have many links with other agents and thus is less accessible and

has fewer opportunities to interact with other agents.

Development

After each interaction, and if the interaction continued long

enough to be meaningful, agents’ ToM probabilistically developed

via the following formula: Posterior ToM = Prior ToM ×

Interaction length× eThe other person
′s ToM .

This formula augments some prior ToM value into an increased

posterior value and is loosely based on a Bayesian learning

framework: Posterior ToM ∝ Prior ToM × Data. Gopnik and

Wellman (2012) elaborate on how Bayesian learning formulations

can account for ToM learning and development. For our model,

however, our formulation is simply a way to increment an

agent’s ToM maturity (from almost 0% up to 100%), given that

they interact and interact with another agent with its own level

of ToM maturity. Thus, in our formula, we parametrized the

Data component in a loosely Bayesian learning framework as

(1) interaction length and (2) the other person’s ToM. Having

interaction length in the formula means that if an agent interacts

longer (under the case that such interactions are long enough to

pass the cutoff of 1), he/she presumably accumulates more data

and experience, leading to more ToM learning. On top of that, the

formula also considers the other agent’s ToM. Previous studies have

suggested that interacting with a child with more advanced ToM

competence (e.g., an older child) helps children learn more about

mental states than interacting with a child with less developed ToM

competence (e.g., a young child). For example, young children with

frequent social interaction with an older sibling develop ToM faster

(Dunn et al., 1991; Ruffman et al., 1998). Our formula incorporates

these empirical findings by parametrizing the other person’s ToM—

interacting with those agents who have “higher” ToM facilitates

ToM learning for the present agent himself/herself.

In two illustrative examples, if an agent has a prior ToM

of 0.01 and encounters another agent with a ToM of 0.01 with

an interaction time of 1.5, his/her posterior ToM after such an

interaction would be 0.01 × 1.5 × e0.01 = 0.0151, indicating an

improvement of ToM from 0.01 to 0.0151. Or, if an agent has a

prior ToM of 0.01 and encounters another agent with a ToM of 0.5

with an interaction time of 1.25, his/her posterior ToM after such

an interaction would be 0.01× 1.25× e0.5 = 0.0206, indicating an

improvement of ToM from 0.01 to 0.0206.

Results

To reiterate, we began by exploiting and establishing the

assumption that different amounts of social interaction influence
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the pace of ToM development within our model. Then we

addressed three questions: (1) How does having vs. not having

an existing network influence social interaction and thereby ToM

competence? (2) How does an agent’s network centrality influence

the pace of ToM development? (3) Can our ABM realistically link

to real-world data?

Di�erent amounts of social interaction
influence the pace of ToM development

In our model, we recorded how much time each individual

agent (e.g., child) took to fully develop its ToM. Then, we

aggregated the data from each group to indicate how much

time, on average, an agent needed to fully develop its ToM (or

how much time an average agent needed to fully develop its

ToM). This demonstrated, as a baseline, how different amounts

of social interaction between groups (i.e., each group allowed

a different amount of social interaction) influence the pace of

ToM development.

In a one-way between-group analysis of variance (ANOVA),

the independent variable was the per-group different amounts of

social interaction (1 to 10); the dependent variable was the average

time an agent in each group needed to fully develop ToM. We

repeated the model 50 times for each of the 10 amounts of social

interaction, so that there were 500 observations for the one-way

ANOVA. This format was used in eight planned one-way between-

group ANOVAs, one for each combination of the four sample sizes

and two network scenarios.

As evident in Figure 2, there were significant differences

between the ten groups, differences that held across four sample

sizes and two network scenarios—F(9,490) values range from 7,484

to 48,591, all p-values < 0.001. On average, agents in groups that

allowed more social interaction developed significantly faster than

agents in groups with less social interaction—as clear in Figure 2 on

average, an agent in group 1 required the most time to fully develop

his/her ToM, and an agent in group 10 required the least time.

In addition, we tracked, within a group, the percentage (0

to 100%) of agents who had fully developed their ToM as time

accumulated. For this, we used a similar analysis format in eight

planned one-way between-group ANOVAs across four sample sizes

and two network scenarios. The per-group different amounts of

social interaction (1 to 10) were the independent variable. The total

time a group of agents needed for all of them to fully develop

ToM (i.e., to achieve 100%) was the dependent variable. Again, we

repeated the model 50 times, so the total observations were 500 in

each ANOVA.

Just as for the first analysis, and as apparent in Figure 3, there

were significant differences between the ten groups, and the effects

held across four different sample sizes and two network scenarios—

F(9,490) values range from 4,872 to 17,481, all p-values < 0.001.

Groups allowing more social interaction achieved 100% (all the

agents fully developed ToM) faster than groups allowing less social

interaction; group 1 required themost time for all the agents to fully

develop mature ToM, and group 10 required the least.

Moreover, in addition to manipulating social interaction at

the group level across 10 amounts, we assessed variations among

individual agents within their respective groups. Within each

group, we observed individual differences, with some agents

engaging in a higher number of social interaction instances within

a given time window, while others participate in fewer instances.

By simultaneously recording ToM levels, our ABM recorded every

step of the process at all time points in terms of each individual

agent’s ToM competence and the number of social interaction

instances they were involved in. This enabled us to explore

whether and how individual agents who engaged in a greater

number of social interaction instances demonstrated higher levels

of ToM competence.

In this test of the per-group association between social

interaction instances and ToM competence, as our focus was on the

individual agent’s social interaction instances and corresponding

ToM competence, we set the between-group manipulation of social

interaction = 1. Furthermore, we specifically targeted all time

points where at least 10 percent, but not all agents, had achieved

full ToM development. This ensured a sufficient range of variation

to explore the associations, as having all agents with fully developed

ToM would eliminate any variability in their ToM competence.

Given the iterative nature of our model (50 repetitions) and the

abundance of time points, we established empirical distributions of

Pearson r correlation coefficients for each sample size and network

scenario. Figure 4 illustrates these r-distributions for all four sample

sizes and two network scenarios.

A consistently positive correlation was observed between social

interaction instances and ToM competence, where the median

values of the r-distributions were positive, ranging from 0.23

to 0.51, for all four sample sizes and two network scenarios

(Figure 4; the dashed red lines indicate the median values of the

r-distributions). Furthermore, we calculated the probabilities of the

correlations being positive—they ranged from 95 to 99% across all

four sample sizes and two network scenarios (most values in all

distributions were positioned well to the right/positive side of the

dashed green lines in Figure 4 which indicates r = 0).

Supplementary Figure S1 in our Supporting Information

further demonstrates that positive correlations are not limited to

the between-group manipulation of social interaction = 1 but

are observed across all ten amounts. The median values of the

r-distributions were all positive, ranging from 0.21 to 0.54, across

all four sample sizes, two network scenarios, and ten amounts of

between-group social interaction manipulations. Similarly, the

probabilities of positive correlations between social interaction

instances and ToM competence ranged from 93 to 99%. Overall,

these findings suggest that engaging in more social interaction

instances is associated with greater ToM competence. Again, this

effect holds true across various sample sizes and network scenarios,

providing robust evidence for the relationship.

How does having vs. not having an existing
network influence social interaction and
thereby ToM competence?

Based on the baseline results in the previous section, we more

focally examined the influence of other social-interaction factors

on ToM development. First, we examined the difference between
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FIGURE 2

The average time needed for an agent to fully develop ToM across four sample sizes, two network scenarios, and ten di�erent amounts of social

interaction. Note that the simulations of the experiment for each situation were run for 50 repetitions. The boxplots depicted the distributions of the

50 repetitions. (A) Without an existing network. (B) With an existing network.

having an existing network vs. not having an existing network.

As detailed in our Methods, having no existing network meant

that agents had no links to one another before the simulation,

so they would randomly move around within a set environment

and interact with whoever they encountered. Having an existing

network meant that agents had prior links to some other agents

before the simulation so that they would have their linked “friends”

to interact with. This setup leads to substantial differences in terms

of the likelihood of agents having an interaction—having neighbors

nearby would be much more likely to trigger interactions than

roaming freely on the street.

As clear in Figures 2, 3, our results demonstrated that beginning

with an existing network substantially facilitated the pace of ToM

development. We further used a one-way ANOVA to evidence

the results more clearly (note that a simple t-test could be used,

but for consistency purposes, we chose the same ANOVA setup

as before). In such ANOVAs, the independent variable was the

two network scenarios (beginning with an existing network vs. not

beginning with an existing network), and the dependent variable

was the average time an agent in each group needed to fully

develop ToM. We repeated the model 50 times for each network

scenario so that there were 100 observations for the one-way

ANOVA. This format resulted in forty planned one-way between-

group ANOVAs, one for each combination of the four sample sizes

and ten different amounts of social interaction. As evident in, for

example, Figure 2, there were significant differences between the

two network scenarios, differences that held across four sample

sizes and ten different amounts of social interaction—F(1,98) values

range from 13,689 to 39,469, all p-values < 0.001. On average,

agents who began with an existing network developed much faster

than agents who began without an existing network.

How does an agent’s network centrality
influence the pace of ToM development?

In the scenario where agents (e.g., children) began with an

existing social network, we computed network centrality of each

agent at the beginning before they started interacting (Zaki et al.,

2014). This allowed us to test, within each group, whether different

levels of network centrality influence how much time agents

need to fully develop ToM. Because here we focused on each

individual agent’s network centrality and its developmental pace to

demonstrate the relevant effects of network centrality, we set the

between-group manipulation of social interaction= 1.

We explored the per-group association between levels of

network centrality and the time an individual agent needed to

fully develop ToM. We did this across four sample sizes. Figure 5A

shows an example scatter plot for the correlations. As clear, there

was a negative correlation between network centrality and the time

needed—higher centrality was associated with less time to fully

develop ToM—and this effect held across four sample sizes.
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FIGURE 3

The percentage of agents with fully developed ToM over time, across four sample sizes, two network scenarios, and ten di�erent amounts of social

interaction. The X-axis shows the total time, and the y-axis shows the percentage of agents with fully developed ToM. Note that the simulations of

the experiment for each situation were run for 50 repetitions. The shaded areas indicate the standard deviations computed based on those 50

repetitions. (A) Without an existing network. (B) With an existing network.

Again, we repeated the model 50 times, so there was an

empirical distribution of Pearson r correlation coefficients for each

sample size. These empirical distributions helped better estimate

if such a negative correlation was significant. Figure 5B shows the

r-distributions for all four sample sizes. As clear in Figure 5B, all

negative correlations were significant at a p< 0.001 level: the 99.9%

quantile of these r-distributions were lower than 0 (r values at the

99.9% quantile = −0.39, −0.42, −0.45, and −0.39 for sample sizes

= 50, 100, 150, and 200 respectively).

In Supplementary Figure S2 in our Supporting Information, we

further show that the negative correlations were not only significant

under the between-group manipulation of social interaction = 1,

but also across all ten amounts of social interaction (the 99.9%

quantiles of all the r-distributions were lower than 0; the r values

at the 99.9% quantile ranges from −0.27 to −0.52). These negative

correlations demonstrate that agents who were more central in

a social network developed ToM faster than those who were

not central.

Can our ABM realistically link to real-world
data?

By looking at the individual-level associations between social

interaction instances as a predictor and ToM competence as an

outcome (e.g., Figure 4), it is possible to establish a connection

between our ABMand real-world data. This is because, in this form,

our ABM data align with the reporting format commonly found

in existing studies, where a variable of interest is employed as a

predictor (in this case, social interaction indexed via somemeasure)

and ToM competence is assessed as an outcome (measured via, e.g.,

false-belief task performance or ToM Scale score).

While many studies capture social interaction via a brief

snapshot (e.g., a child’s social interaction instances during

a half-hour time sample at preschool), we reasoned that a

measure that indexed cumulative interactions over months or

years would be more informative and better aligned with our

ABM. To this end, we turned to data from DHH children

born to hearing parents, specifically focusing on those who

received early hearing provisions such as cochlear implants or

advanced hearing aids. Prior DHH research has shown that

ToM development as measured in kindergarten varies according

to the timing of provisions in earlier childhood of children’s

hearing devices, with earlier provision meaning more months

of hearing by kindergarten age and thus indexing greater

accumulation of interactive hearing experiences and language

ability (e.g., Yu et al., 2021b). This influence is found to

surpass the effects of chronological age and other factors within

these DHH samples. Thus, the data from DHH children are

especially informative because DHH children demonstrate huge

variabilities in both their ToM and their language abilities, unlike
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FIGURE 4

The relationship between individual agents’ social interaction instances and ToM competence at time points with at least 10 percent, but not full, ToM

development across four sample sizes (given the between-group manipulation of social interaction = 1). (A, B) Depict the r-distributions of

correlation for scenarios without and with an existing network, respectively. The dashed red lines indicate the median values of the r-distributions (all

> 0). The dashed green lines indicate r = 0. Most values in all distributions were located to the right of the dashed green lines, indicating a high

probability of positive correlation for each distribution. (A) Without an existing network. (B) With an existing network.

typically developing children whose chronological age serves as the

greatest determinant (a proxy for all unobserved and unmeasured

processes) for ToM development. These variabilities in DHH

children allow a clearer differentiation and exploration of potential

causal relations in that their social-conversational interaction

experiences are manifested in their language ability (Yu et al.,

2021b).

Building on this background, we utilized data from a sample

of 84 young DHH children (average chronological age = 4.64

years) with hearing parents, sourced from Yu et al. (2021b). In

our analysis, we focused on two variables to parallel the two

variables—social interaction and ToM competence—in our ABM.

For social interaction, we used language abilities (measured by

raw scores obtained from the Peabody Picture Vocabulary Test;

Dunn and Dunn, 1997). In Yu et al. (2021b), accumulated months

since providing hearing devices demonstrably influenced language

ability, which then, in turn, influenced ToM. Thus, language

competence serves as an empirically validated proxy for earlier

conversational-communicative interaction experiences. Note that

there are other types of social interactions across development

that do not involve hearing and language (e.g., playing non-

verbally with parents; gesturing), but for young DHH children,

a focus on language and language-based interactions is sensible.

This is because, in the case of young DHH children with

hearing parents, their hearing parents (their main source of social

interaction experiences) do not sign and instead prefer to and

are encouraged to speak to their children. Clinicians encourage

this to ensure that the children use their hearing provisions (e.g.,

their cochlear implants, which at first can be annoyingly noisy

and require effortful continued use to provide auditory benefits).

Because language-based interactions are emphasized, language

competence serves as a reasonable proxy for their accumulated

social interactions. For ToM, we used the level of ToM competence

assessed using theWellman and Liu’s (2004) ToMScale. In this way,

these real-world data provide a meaningful basis for investigating

the relationship between social interaction and ToM competence.

To examine how well our ABM aligns with these DHH real-

world data, we focused on the ABM results involving 100 agents, as

it closely matched the sample size of 84 DHH children in the real-

world dataset. For the sake of simplicity, we specifically considered

ABM results where the between-group manipulation of social

interaction = 1. To effectively capture the relationship between

social interaction instances and ToM competence in our ABM, we

randomly selected a representative ABM result that had a median

r value from our aforementioned analysis in Figure 4 (i.e., one data

point from the dashed red line in the N = 100 panel of Figure 4B).

Then we trained a power 2 polynomial regression model to learn

the underlying relationship between social interaction instances
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and ToM competence within this selected, representative ABM

data point.

Then we fit the ABM-trained polynomial regression model

to our DHH data, generating model-predicted ToM competence

values for the DHH children, which could be compared to

the actual ToM competence values for the DHH children, as

reported in Yu et al. (2021b). The results revealed a significant

positive correlation between the model-predicted and actual ToM

competence (r = 0.26, p < 0.05), indicating a reasonable alignment

between our ABM and the real-world DHH data.

In fact, the effect was found not only in the between-

group manipulation of social interaction = 1. Consistent patterns

were observed across all ten amounts of the between-group

manipulation of social interaction, with correlations ranging

from 0.21 to 0.27 (all ps < 0.05). These findings confirm the

correspondence between our ABM and the real-world DHH data.

Discussion

A real-life experimental test of hypothesized causal links

between social interaction and theory of mind (ToM) is neither

ethically nor practically possible. To shed light on these links, we

explored them and the potential mechanisms underlying these links

with simulated agents (e.g., children) and interaction-situations via

agent-based modeling (ABM).

We began with a baseline assumption resulting from prior

correlational and longitudinal-predictive research that social

interaction causally influences ToM development, and then first

explored within our model how different amounts of social

interaction influence the pace of ToM development. Our results

showed that more social interactions indeed facilitated the pace

of ToM development. This effect was evident, across two network

scenarios and four sample sizes, when considering both the average

developmental pace across individual agents (Figure 2) and the

collective developmental pace of entire agent groups (Figure 3).

Also, the findings equally highlight the importance of cumulative

social interaction instances, where increased engagement in social

interactions was associated with higher levels of ToM competence

at any given time point of the ABM simulations (Figure 4).

Having confirmed the expected link between social interaction

and ToM in our model, we examined more focal questions

and factors via three questions. First, how does having vs. not

having an existing network influence social interaction and thereby

ToM competence? Our findings illustrated that beginning within

a prior, established network substantially impacted how quickly

agents achieved ToM competence (Figures 2, 3). This result

sensibly reflects real-world interactions where it is arguably more

challenging to randomly roam among and interact with other

unknown children on the street than hanging out with friends and

acquaintances. This effect—an advantage for presence as opposed

to absence of an established network—was robustly observed across

four sample sizes and ten distinct amounts of social interaction.

Similarly, for a second question—How does an agent’s network

centrality influence the pace of ToM development?—We showed

that when agents commenced with an existing social network,

the extent of network centrality influenced the pace of ToM

development (Figure 5). By implication, in real-life central/popular

agents (i.e., children) with more connections grow their ToM

faster than peripheral agents with fewer connections. This result

offers a computational explanation for correlational findings in the

literature on peer popularity and ToM (e.g., Slaughter et al., 2015).

This effect too—the benefit of network centrality—was robustly

observed across four sample sizes and ten distinct amounts of social

interaction (Supplementary Figure S2).

These results led to our third research question: Can our

ABM realistically link to real-world data? Our model’s outcomes

indeed aligned with empirical real-world findings from deaf and

hard-of-hearing (DHH) children, where increased language-based

social interactions, enabled by earlier rather than later provision

cochlear implants and advanced hearing aids influenced language

competence which in turn led to enhanced ToM development.

Via these exemplary findings, our model, despite being an

indirect computational simulation, helpfully illuminates the real-

world influences of social interactions on ToM development

more generally.

As noted in our introduction, considerable research documents

associations between indexes of children’s social interaction on

their ToM development. For example, studies have reported

that young children’s conversational environments and exchanges

relate to their ToM competence; more conversational exchanges

presumably increase children’s opportunities to learn about

their conversational partners’ mental states, leading to positive

associations with ToM development (De Rosnay and Hughes,

2006). Studies have also consistently shown that larger social

contexts of family and peers (e.g., the number of siblings or

schoolmates) as well as broader social-interactive features (e.g.,

parental talk and especially mental states talk) positively relate

to ToM development (Devine and Hughes, 2018). Longitudinally,

early infant/toddler social interactive experiences predict enhanced

ToM in preschool (e.g., Brink et al., 2015). Other studies have

focused on children’s personality and temperament; for instance, a

higher tendency to approach social situations and engage in social

interactions positively enhances ToMdevelopment (Wellman et al.,

2011; Lane and Bowman, 2021).

By hypothesis, all these findings show that social interaction

provides opportunities to engage in learning about other people’s

mental states, thus facilitating ToM development. Results from

our ABM provide complementary support to these correlational

findings and illuminate how the links between social interaction

and ToM might work. Just as correlational studies offer

only indirect and partial support, our computational modeling

approach, because of its computational rather than real-life

nature, also only provides indirect and partial support and

instead focuses more on how the links may entail. Fortunately,

considering the collective evidence from both correlational studies

and computational modeling results provides a more complete

picture of the complex relationship between social interaction and

ToM development.

Intriguingly, our data suggest that the link between social

interaction and ToM development may well not be linear. That

is, increasing the amount of social interaction from 1 to 2 and

increasing the amount from 9 to 10 had different effects. As shown

by the flattening slopes in Figure 2, for example, increasing the

amount of social interaction from 1 to 2 had a large effect on

the pace of ToM development (the needed time to achieve ToM
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The relationship between network centrality and the time an individual agent needed to fully develop ToM across four di�erent sample sizes (given

the between-group manipulation of social interaction = 1). (A) Shows the scatter plots with correlation analyses of an example run. (B) Shows the

r-distributions. The dashed lines indicate the 99.9% quantile of these r-distributions (r values at the 99.9% quantile = −0.39, −0.42, −0.45, and −0.39

for sample sizes = 50, 100, 150, and 200 respectively). (A) An example scatter plot. (B) Correlation coe�cient’s distributions.

maturity was almost halved), whereas increasing the amount of

social interaction from 9 to 10 had an almost negligible effect.

At first glance, this finding might seem to contradict

existing studies because the literature on the social correlates

of ToM apparently demonstrates linear relationships between

social interaction and ToM development (Devine and Hughes,

2018). But, these studies are based almost exclusively on

linear regression analyses, so the apparent linearity may be

due to the constraints and assumptions of linear regression.

Indeed, recent developmental research has challenged this linear

approach to understanding social causation in child development

because social factors often have complex and unpredictable

interactions with developmental outcomes (Hertzman and Boyce,

2010). Our findings support this view by providing a clear

pattern of non-linear effects. In our results, although having

more social interaction is generally beneficial, it is even more

beneficial early on for agents who begin with relatively limited

social interaction.

One might argue our model is remarkably unlike real life.

For example, no child would only have one interaction per

day and be isolated for the rest of the day; children interact

not only with similar children but with adult parents and

caregivers; interaction partners’ ages, same or different, would

matter; and there are undoubtedly many other hidden factors

which require future research to offer alternative or complementary

explanations. We use our model only to show, in principle,

how social interaction influences ToM development. Here, it

is helpful that this modeling approach provides data that help

explain the findings observed in DHH children. Nonetheless,

our work is a simplified first step in modeling how social

interaction may impact ToM development and the ways it may

do so.

Our model is simplistic in one other important fashion. We

made little attempt to computationally model how ToM develops

step-by-step, with early steps providing the building blocks for

generating later insights. We computed ToM progression only as

going from almost 0 to 1 (1 as 100% maturity) and incremented

ToM only via a simplified formula in a loosely Bayesian learning

framework; that is, a prior level of ToM was increased given the

length of an interaction with another agent and that other agent’s

own ToM maturity. Uncovering the computational processes

underlying the building of ToM understandings is being tackled

in other computational research, such as that using Bayesian

learning models (Gopnik and Wellman, 2012; Baker et al., 2017),

neural networks (Berthiaume et al., 2013), and reinforcement

learning models (Jara-Ettinger, 2019). Combining ABMs and

other computational learning models seems an exciting future

direction. The current initial ABM of ToM development helps

show how future research of this more complex sort would

be feasible.
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In conclusion, the present study contributes to our

understanding of ToM development through the perspective

of computational agent-based modeling. Our demonstrations

empirically show how social interaction can account for differences

in the pace of ToM development and illuminate various social

interaction-ToM links. Our study not only helps show how

differences in ToM development may emerge but also offers a

parsimonious explanation to specify a crucial mechanism for

how all humans may develop and achieve ToM—faster or with

delay—through processes of social interaction.
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