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Introduction: This study investigates the long-standing Research Topic of the
development of the space concept in children using a competitive, interactive,
online, zero-sumgame that required players, taking turnswith a computer player,
to use monochromatic electronic paint to complete coloring in places until an
entire 10 × 10 grid was filled.
Methods: Children were 4- to 5-year-olds (n = 26), 6- to 7-year-olds (n = 32),
8- to 10-year-olds (n= 52), as well as adults (n= 48). The total sample consisted
of 79 human and 79 machine players (N = 158). The human players colored
in places on the grid in yellow, and the machine player in green. While human
players could follow their own spatial heuristics, the machine system player was
programmed to randomly color in anywhere in the grid. Neighboring places
could visually merge into pathways or areas.
Results: Children explored the array somewhat less than adults, but both
explored it less than the machine, which randomly colored in places across the
entire array. Both children and adults as well as the machine players created one
large area and many smaller ones. Their one large area left a large swath of the
spatial array empty. This space was then filled in by themachine player at random
places, whichmerged into a slightly smaller large area ormany larger small areas.
Discussion: Hence, a similar outcome was achieved regardless of whether
spatial concepts or random spatial explorations were devised. The use of spatial
heuristics was demonstrated with correlational analyses, where long pathways
and short-distance moves were significantly correlated with the largest area, but
not in their machine opponents.

KEYWORDS

spatial abilities, spatial concepts, Euclidean and aggregate space, places and pathways

and areas, spatial exploration, human-machine interaction

Introduction

This study is an experiment that contributes to the gamification of children’s space
concept (Long et al., 2023). An interactive grid game was created to investigate children’s
concept of aggregate space (Lange-Küttner, 2009), where an area is conceived of as an
accumulation of places rather than a continuous expanse of Euclidean space. The concept
of aggregated places is also the basis of the spatial layout of many board games like chess or
Go. In the current study, children and adults played against a randomly behaving computer
in an online coloring-in game. This game was zero-sum insofar as each player could not
color in more than half of the places of the grid. It was interactive to the extent that the
players were taking turns, each one coloring in places with their own color. Finally, it could
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be competitive because if a player did not just randomly color
in individual places anywhere in the grid but was planning to
build a cluster of places that would perceptually merge into a
monochrome area, the other player could thwart that strategy
by coloring places and patches within that region. Although the
machine was programmed to only use a random strategy, the result
of the current study was that the outcome of the game between the
human and the machine players is structurally very similar insofar
as both created one large major cluster of places distinct frommany
smaller clusters. To analyze the spatial heuristics of children and
adults, we also measured the length of consecutively colored-in
adjacent places creating spatial pathways, as well as the average
distance between places and the average distance of the next move
to a place anywhere in the grid.

Sequences and areas

Piagetian theory asserts that Eucledian space concepts develop
from topological space concepts that are figurative, local, and
practical (Piaget, 1977). For instance, children argue that the
distance between A and B is reduced (and thus not conserved)
when an object C is placed between them, taking away space (Liben,
1982). But there are also experiments on children’s construction
of sequences and spatial fields (Piaget and Inhelder, 1948; Piaget
et al., 1948) that show that some wiggly spatial pathways develop
early and that only straight spatial pathways take some time to
develop (Flavell et al., 1991). Moreover, the spatial field also exerts
an influence (Lange-Küttner, 2024). When Piaget asked children to
connect two places A and B in a rectangular or circular array, at
Stage 1, from 2 1/2 years of age onward, children would already
sequence objects. The resulting lineup was not yet straight but
meandered, nor did the lineup successfully connect A and B. Such
sequences are called “threading” (Vinter et al., 2008).

At Stage 2, the connection between A and B is achieved,
but a curious spatial field effect occurs where array edges or
corners work as attractors (see also Hund and Plumert, 2005), or
an orthogonal bias occurs which is also known from children’s
drawing of geometric angles (Bremner, 1984; Perner et al., 1984).
Only at Stage 3 are A and B connected with a sequential lineup that
forms a straight line, even if it is a diagonal.

Proximity when sequencing objects also plays an important
role in the experiment on the conservation of areas (Piaget et al.,
1948), see Figure 1. A lack of area conservation shows when, in
their verbal response, children maintain that two areas are not the
same size because there are differences in how they are occupied by
figures in different configurations and numbers. The experiment
requires children to answer the question which cow would have
more greens to eat: the one whose farmer built terraced houses
on array A or the one whose farmer built his houses in a random
fashion dispersed across array A′? Children have no difficulty in
saying that the green is identical (area conservation) as long as the
houses are distributed in the same spatial pattern in both areas.
However, if the houses are lined up, children up to 5 1/2–6 years of
age notice the vast swathe of empty space and claim that the cow
on this array has more to eat. In support of the children’s view,
one could say that the attached adjacent houses on the array A

are of a different quality than the single houses on the array A′ as
they form a new object, namely, a “terrace.” Moreover, in practical
terms, in total, cows would need many shorter paths to surround
the single houses than a row of terraced houses. In Piagetian
theory, this would have been conceptualized as a practical grouping.
At Stage 2, the notion of area equality of the two meadows is
dependent on the number of houses as children’s area conservation
breaks down when numbers of houses increase and the more
the perceptual appearance of the two meadows diverges from
each other.

This would be equivalent to a subjective grouping because
idiosyncratic factors are the basis of an argument for why the
two areas are different in size. However, after age 6, at Stage 3,
children are simply counting the number of houses on each array
and claim that the same space is left for both cows, showing
their grasp of an abstract, geometric concept of area based on
numerical computation.

Nevertheless, although proximity seems to play such a crucial
role in young children’s thinking, the Common Region Test
(CRT) shows that young children also seem to have a strategy
that isolates objects from each other. For instance, when asked
to allocate a region around objects that are closer together or
similar in appearance, up to 5 years of age, children would
allocate individual places to a shape rather than a region; see
Figure 2A. Only older children allocate a common region to pairs
of shapes that are closer to one another than to others, and
this spatial categorization strategy gradually increases with age
(Lange-Küttner, 2006). Using a common region as a grouping
principle (Palmer, 1992) greatly facilitates visual memory for places
(Lange-Küttner, 2010a,b).

Another impressive example of developmental change in spatial
grouping is children’s changing understanding of the grid; see
Figure 2B. Preschoolers would copy a grid as a wall that is
built “brick by brick” without intersecting spatial axes (Metzger,
1956, 2006). Also other researchers found that young children
up to the age of 5 prefer to segment spatially independent parts
(Stiles and Tada, 1996), which has been termed aggregate space
(Lange-Küttner, 2009). Children have no explanation for their
object–place encoding. Against the backdrop of the Piagetian
cow-in-the-meadow experiment on area conservation, one could
assume that when drawing object–place bindings in the CRT,
young children think action-based in terms of dynamic spatial
pathways: Shapes are surrounded with a pencil like the cows
would need to surround the randomly dispersed houses in the
meadow when grazing. It is known that young children initially
draw extremely action-based, hopping with a pencil like a rabbit
over the page and only post-hoc interpret these traces (Freeman
and Adi-Japha, 2008). Piaget (1977) always emphasized that
logical thinking would develop from this kind of practical, action-
based intelligence.

Interestingly, children who encode object–place units are better
at remembering individual shapes, while children who allocate
regions to matching objects are better at remembering locations
(Lange-Küttner, 2010a,b, 2013). Spatial binding of matching shapes
into common regions was especially important when children had
to remember newmemory sets with different spatial configurations.
In contrast, when they remembered always the same objects in
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FIGURE 1

Conservation of areas: available space on two meadows with terraced and detached houses (Piaget et al., 1948). Figure 1 of the experimental
apparatus is based on a screen capture from a documentary of the experimental sessions on area conservation in Jean Piaget’s lab in Geneva (Centre
Jean Piaget, https://www.youtube.com/watch?v=YahCRUx2z08, accessed on the 15th July 2025 © Archives Jean Piaget).

FIGURE 2

Two examples of aggregate space. (A) Common Region Test: Wertheimer array (upper left), object-place binding (upper right), object-region binding
(lower right), and unsystematic coders (lower left; Lange-Küttner, 2006, with permission of the British Psychological Society). (B) Copying of a grid by
preschoolers (Metzger, 1956, p. 541).

always the same places, spatial binding was not relevant, and
memory performance improved just through repetition (Lange-
Küttner and Küttner, 2015).

The current study investigates the binding of places into a
common region. This is different from binding matching objects
into common regions. It is known that objects and placeholders

help young children remember places (Lange-Küttner et al., 2023).
So the current task may appear simple because no figures or shapes
are involved, but it tests whether there is a change in the way areas
are produced from individual places.
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The current study

Coloring in a grid in an interactive game paradigm has been
used with adults before (Lange-Küttner and Beringer, 2023). The
human player colors places in green, while the machine colors the
places in yellow. If adjacent places were colored in, they merged
into an area. The interactive experiment was programmed as a
non-competitive game. Once a place in the grid was colored in,
it could not be colored in by the computer system and vice versa,
if the human had colored in a place, it became unavailable for
the computer system. Thus, unlike in a game like Go, where
regions can change hands, it was a zero-sum game where no
territorial gains could be made, nor was there a race to be first.
Instead, the grid game is an “alignment game,” where completing a
configuration is the main aim (Gobet et al., 2004), similar to puzzles
but more interactive.

It is known that the grid size is a crucial variable in grid
games, even for artificial intelligence as, for instance, the larger
and uniform 19 × 19 grid of Go is more difficult than an 8 × 8
chessboard (Silver et al., 2016). Hence, in a first pilot comparison,
a 10 × 10 children’s grid was smaller in size than the 20 × 20 grid
of the adults in order to equate task difficulty in terms of cognitive
load. Also, beginning players of Go often start with a smaller 9 × 9
or 13 × 13 grid (Matthews, 2003). The reason is that a larger grid
size offersmore possiblemoves1 that can and need to be considered.
A larger grid offers more degrees of freedom and lower spatial
constraints when selecting a place. A larger grid thus requires more
computing power if all the possibilities of potential moves are
explored, a cognitive process called “brute force” in comparison to
a “heuristic,” which consists of a simpler, more selective strategy
that is more economical in terms of computing power (Gobet et al.,
2004).

In the current grid game, children and adults take turns with
the computer system (henceforth called the “machine”) to color in
each place in the grid in their own color. Coloring-in is a common
activity for children, with ∼12% of children’s books sold in the
United States being coloring and activity books, accounting for
more than 104 million units and amounting to more than U.S.
$230 million in annual revenue (Fitzpatrick andMcPherson, 2010).
Coloring-in is also supposed to relieve test anxiety in children
(Carsley et al., 2015), most likely because it is a familiar activity
that usually does not have achievement goals and is pre-structured
with outlines and contours. In fact, coloring-in objectively reduces
the stress hormone cortisol (Kline et al., 2020). Digitizing coloring-
in improves the appeal of drawing for children (Tokuhisa and
Kamiyama, 2010).

Strategic and random spatial strategies

Here we have made coloring-in somewhat more challenging.
We test whether and how children and adults create areas by
coloring in places in an online grid against a randomly behaving
computer system player. The computer system responded to each
move by a child or an adult by coloring in a random place in the
array in a visible but unpredictable way for the participants.

1 The term move is used here, even if no piece is moved like in chess, to

denote that a player is taking a turn.

That the coloring-in game was not competitive in the sense
that a player could gain more ground than the other player—as
each player could color in exactly 50% of the places—was not
mentioned to the participants. It was also not mentioned that the
machine, as the interactive game partner, would color in places
randomly—although players could, of course, quickly realize that
this was the case. As the aim of the game, it was only stated that
the grid should be completely colored-in at the end, taking turns
with the machine. However, should a player have a certain plan,
the randomly responding machine could potentially get in the way.
For instance, if human players had a plan to color in a green 3 × 3
square in the middle of the grid, the machine could randomly color
in one of these nine places in yellow, ruining this square shape.
In this sense, the game was competitive even if no territorial gain
could be made. In a previous study with adults, coloring in places
was sensitive to instructions (Lange-Küttner and Beringer, 2023).
Compared to no explicit instruction, adults would color in faster
if instructed to do so, resulting in smaller areas. They would also
create larger areas if instructed to do so. Their areas were in between
in size when instructed to create large areas fast. This showed that
adults’ playing behavior was flexible and adaptable.

A similar study was carried out by Falk (1981, cf. from Bar-
Hillel and Wagenaar, 1991), which we did not know of at the time
we created the task for the current study. Falk explicitly asked
participants to randomly color in 50 places of a 10 × 10 grid in
green vs. yellow. How many places bordered another place with a
different color (alternation rate) was counted. The alternation rate
in this coloring-in game and in card sequencing with 20 yellow
and 20 green cards that were to be sorted at random, was a rate
of 0.6 which is very close to selecting places and cards by a chance
of 0.5, given that there were two colors. Interestingly, the longer
a sequence of places, the less likely it was that adults created a
randomly emerging sequence (Kubovy and Gilden, 1991). Another
factor that may get in the way of adults’ notion of randomness
is that with rare exceptions, they were very good at remembering
a random sequence that they created in a previous session, with
correlations between 0.78 to 0.98 (see also Towse and Neil, 1998;
Treisman and Faulkner, 1987). Turing (1950) states that in a game,
including a random element in a learning machine would be wise
as it could be more useful than searching for an optimal solution
through a decision tree. There would be the additional advantage
that a random strategy makes keeping track of values unnecessary.
In fact, in chess, players appear to be bored by winning chess when
having a supreme long-termmemory for chessmoves and have now
embarked on a freestyle chess, where the pieces on the back row—
king, queen, and so on—start in a randomized position (Agini,
2025). There is even an inaugural Freestyle Chess Grand Slam tour
planned, with investors lined up.

In the current game, the computer randomly colors in places. In
principle, we expected that because children understand aggregate
space earlier than Euclidean space, the younger children would be
able to solve this task as well as the older children. But we had no
hypothesis on how they would react to the machine’s stochastic
behavior. In a pattern recognition task with stochastic feedback,
children’s accuracy was massively reduced (Hentschel et al., 2022,
2023; Lange-Küttner et al., 2012), and this lasted into adolescence,
albeit not to the same degree (Lange-Küttner et al., 2021). Would
children color in places in the same random way as the machine?
The ability to randomly generate items such as numbers or letters
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TABLE 1 Age group description.

Age group n M SD Range n (machine) N total

4–5 years 13 5; 1 7 months 4; 1–5; 9 13 26

6–7 years 16 7; 2 7 months 6; 1–7; 10 16 32

8–10 years 26 9; 5 9 months 8; 0–10; 8 26 52

Adults 24 26 9 years 17–47 years 24 48

Total N 158

The age of the children is reported in years; months.

is agreed to be an indicator of executive attention as it demands the
inhibition of “natural” sequences, such as the number line or the
alphabet, and increases in childhood (Towse andMcLachlan, 1999)
and decreases in dementia (Brugger et al., 1996). Thus, in light of
this earlier research, it could be assumed that children and adults
are unlikely to use the same random spatial strategy as the computer
in the coloring-in game. We would rather assume that they use a
heuristic to build a pathway out of a sequence of consecutive places
and merge places that they have colored in with their color into
monochrome areas. We thus measured (1) the size of clustered
places, (2) the sequence lengths that participants built by lining up
places, (3) the average distance between places, and (4) the average
distance of the next move. We use the term cluster for places and
area as the equivalent to clustered places of one color that produce
a monochrome area.

Regarding the cluster size of places, we first predicted that
young children would also be able to create large clusters as they
are sensitive to practical, aggregate space while the machine could
not have aims as it was programmed to randomly color in places.
However, the younger age groups could also show an inclination
toward coloring in isolated places; thus, their pathway creation
was not for certain. Second, regarding the length of the place
sequences, we predicted that some pathways would emerge in all
human participants, while the machine could not form pathways
because of the programmed random coloring-in. Third, while the
average distance between places in the outcome of humans and
machine may be similar, the average distance to the next move
is expected be smaller in human players, because the machine,
with its fixed random strategy, would color in places across the
entire array. Thus, regarding intentionality and strategy, the fourth
hypothesis is that the machine-generated areas would be the
result of places that incidentally aggregate into areas, while the
child- and adult-generated areas would be intentional and thus
should significantly correlate with the pathways while they create a
cognitive map of the grid during the experiment (Bostelmann et al.,
2020; Herman, 1980).

Methods

Participants

A sample of N = 62 children from a lower middle-class area
in North London, United Kingdom, completed the task. Preschool
as well as primary school children were recruited as the task was
doable for all age groups. There were three age groups, 4- to 5-
year-olds, 6- to 7-year-olds, and 8- to 10-year-olds; see Table 1.

The sample was recruited via a teacher at the school by contacting
parents via email, which contained a link to the experiment. For
seven children, the wrong date of birth was provided online (actual
year instead of year of birth), which made allocating their data
to an age group impossible. Thus, their data sets were omitted
from analyses, resulting in a final sample size of 55. Children were
described by their parents as Asian (12.7%), Black (10.9%), mixed
(16.4%), and white (60%). There were 30 female (54.5%) and 25
male (45.5%) children. A sample of 22 mothers aged 21–46 years
volunteered to take part using an adult 20× 20 version of the grid.
However, these data are not included in the current report because
of the complexity of the statistical analysis. Instead, only the data
from a second group of a more gender-balanced sample of mainly
white adults (n = 24; 58.3% female) of about the same age range
who solved the task using the same 10 × 10 grid was included in
the current analyses. In the age group description in Table 1, the
machine players were considered participants because they were the
game partners for the participants. Thus, both the machine and the
human player groups constituted the between-subjects factor.

Material and apparatus

The experimental code is deposited onOSFDepository (https://
osf.io/tjgkn/). The coloring-in experiment could be run in a
browser window on any computer system. The places in the grid
could be clicked into with a mouse or tapped on with a finger on
tablets with a touch screen to turn them colorful. The place color of
the human participant was green, and the machine player, yellow;
see Figure 3.

Procedure

The experiment’s ethics proposal was approved by the
Ethics Committee of the Psychology department of the London
Metropolitan University, London, United Kingdom, where the
first author worked at the time. The experiment was run in
Cognition Lab, https://www.cognitionlab.com. Because of COVID-
19 restrictions, parents were given an individual link to the child
experiment by email through the school. If they felt like coloring in
places themselves, they could take part in the adult 20× 20 version
of the experiment.

They had to agree to the consent form online before they could
start with the experiment. If they declined, the experiment did not
go ahead. If parents or children pressed the escape button during
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FIGURE 3

Coloring in the 10 × 10 grid. Green = human (dark gray), yellow =

machine (light gray), and black = empty (not used).

the experiment or closed the browser, the experiment was also
aborted, and no data were saved. Parents supervised children to
complete the coloring-in task. The instructions were “Welcome to
the Grid Game! Please press the space bar to continue or tap on
the continue button! This is a coloring-in game with the computer.
YOU click into or tap on one place; the COMPUTER clicks into
another place. Please always wait until it is your turn. Keep going
until all the places are colored in.” Once a place was colored in, it
could not be used again. Parents read aloud the instructions on the
screen to the children and were advised to be present but not active.
Data from the completed sessions were stored on an European
Community server anonymously with a random number code and
without an Internet Protocol address.

Data generation

The raw data were downloaded as one Excel output file
from Cognition Lab and processed with R scripts accessible on
the OSF Depository ‘Coloring-In Places Game (Children-Adults)’
(https://osf.io/tjgkn/). Two PDF files per experimental session were
generated; see Figures 4A, B.

On each PDF, the human and machine players’ selected places
were visualized in figures that showed the numbered sequence
of the moves as well as the cluster sizes. The next step was to
average the trials per participant, human or machine, for import
into SPSS with another R script. Two Excel sheets were generated
with two further R scripts, one for the human players and one for
the machine players; see the OSF Depository (https://osf.io/tjgkn/).
We computed and analyzed (1) the eight largest area clusters

because this was the cutoff point where data were available for all
participants and (2) the longest sequence, as well as (3) the average

distance of all places and (4) the average distance of a move to the

next place anywhere. Places were counted as belonging to a cluster
when they had at least one side in common with another place of
the same color. Places of the same color touching at the corners
were not counted.

Places were counted toward a sequence (pathway) when (1)
they were colored in one after another and (2) they had one
side in common with the next colored-in place. For sequence
length, it did not matter whether the consecutive place was
added to the side, upward, or downward in direction as long as
one side of two consecutive places shared a boundary. Diagonal
sequences were not considered. SPSS data are accessible on the OSF
Depository (https://osf.io/tjgkn/).

Data analysis

We used analyses of variance using SPSS. We analyzed (a)
the cluster size to test the size of the area that was built
(human) or emerged (machine), (b) the length of sequences of
consecutively colored in adjacent places to test the length of the
pathways that were pursued, and (c) the average distance, and
the distance of the next move to assess the exploration. When
Mauchly’s test of sphericity was significant, the degrees of freedom
were adjusted according to the Greenhouse–Geisser correction.
Pairwise comparisons within the model were corrected using SPSS
according to the Bonferroni correction. Correlation heat maps were
produced using JASP.

Results

First, the presence of sex differences was screened using t-
tests for independent samples (two-sided). For this purpose, the
children’s age groups were collapsed. The cluster size was not
significantly different for boys and girls for any of the eight clusters,
ps > 0.459, nor was the average distance, t(53) = −0.24, p = 0.809,
or the distance of the next move, t(53) = 0.66, p = 0.509. The same
was true for the adult participants: The cluster sizes for any of the
eight clusters were not significantly different, ps > 0.074, nor was
the average distance, t(53) = 0.09, p = 0.926, or the distance of the
next move, t(53) = 0.61, p = 0.545. Thus, sex differences were not
further considered in the statistical analyses.

Cluster size (area)

The table with means, range, and SD can be found in
Supplementary Table S1. An 8 (cluster) × 2 (human/machine) ×
4 (age group) mixed analysis of variance (ANOVA) with repeated
measures of cluster size was conducted. The effects of age group,
F(3,158) = 2.36, p = 0.073, and the interaction of age by machine,
F(3,158) = 0.40, p= 0.754, were not significant.

Cluster size was significant as a main effect, F(1.19,158) = 691.27,
p < 0.001, with a large effect size of η

2
= 0.82. The cluster size

varied from M = 30.88 to M = 6.87 to M = 3.79 to M = 2.26
to M = 1.60 to M = 1.16 to M = 0.87 to M = 0.67. Note
that the last two clusters consist of isolated single places as the
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FIGURE 4

Graphic representation and data generation of coloring-in moves place by place. (A) Human player moves. (B) System player responses.

cluster size fell below 1. Pairwise comparisons within the model
demonstrated that all differences were highly significant, ps ≤ 0.001
(see Appendix Table A1), showing not only that the largest cluster
differed from the smaller ones but that the smaller cluster sizes
also differed from each other. The decrease in cluster size is logical
because as more places are colored in and integrated into self-
contained monochrome areas, less space is left for the remaining
clusters. This significant main effect of cluster size revealed the
strong spatial constraints that were generated by building areas
within the grid.

The eight cluster sizes had a two-way interaction with human
vs. machine responses, F(1.19,158) = 5.44, p = 0.016, η2

= 0.04 (see
Figure 5).

Post-hoc tests for independent samples of humans and machine
(two-tailed) showed that humans (M = 32.6) were at an advantage
against the system player (M = 28.4) with respect to the largest
cluster, t(156) = 2.35, p = 0.020, but it was the reverse for the
second, t(156) = −2.92, p = 0.004, and third smaller clusters t(156)
= −2.39, p = 0.018 (see Appendix Table A2). This result showed
that the human participants were able to build a larger area in
the grid under low spatial constraints. However, under high spatial

constraints caused by a large cluster already occupying a large
area, a human advantage did not materialize. On the contrary, the
system player built reliably larger small areas than humans in two
clusters out of the seven remaining ones. There was no significant
interaction of age with the human/machine factor, F(3.56,158) =

1.64, p = 0.173, nor was the three-way interaction with cluster
significant, p > 0.360.

Length of sequences of consecutively
colored-in adjacent places

The length of sequences of adjacent consecutive places, one
after another, side by side, was assessed to test for a coloring-
in strategy. A univariate 2 (human/machine) × 4 (age group)
mixed ANOVA was run with the longest place sequence length as
a dependent variable. There was a significant difference between
human and machine, F(1,158) = 74.44, p < 0.001, η

2
p = 0.33. The

length of spatial pathways was, on average, more than twice as
long (M = 5.34) than those of the machine (M = 1.90). The age
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FIGURE 5

Human advantage in the largest cluster, machine advantage in the smaller clusters. The error bars denote the 95% confidence interval. * = p < 0.05;
** = p < 0.01.

group effect was not significant, neither as a main effect, nor in
interaction with the machine, ps > 0.366. This showed that there
was no difference in pathway length between children and adults.

Average distance and distance of the next
move

Average distance
The average distance between all places of one player and the

distance of the next move were indicative of spatial exploration of
the grid. One could expect that because the machine was coloring
in randomly, the use of the spatial grid would be more extensive
than in humans. The univariate 2 (human/machine) × 4 (age
group) mixed ANOVA with average distance between places as
dependent variable showed a main effect of machine, F(1,158) =

13.25, p < 0.001, η
2
p = 0.08. On average, the distance between

colored places was M = 3.84 for the machine, and M = 3.67 for
the humans showing a small but significant average distance effect
for the machine compared to the humans. There was no significant
effect of age or interaction of age with the human/machine factor,
ps > 0.135 (see Figure 6A).

Average distance of the next move
While the average distance between places was a general

measure of the distance between colored-in places of a player, the
distance of the next consecutive move to anywhere in the array
was more indicative of reaching out within the spatial array. The
univariate 2 (human/machine) × 4 (age group) mixed ANOVA
with distance of the next move places as dependent variable showed
a main effect of machine, F(1,158) = 268.26, p < 0.001, with a

medium effect size of η
2
p = 0.64. On average, the machine made

moves that were approximately five places away from the previous
move, M = 4.98, showing more exploration of the grid than the
humans who colored in places approximately three places away
from the previous one, M = 2.92. The effect of age group did not
reach significance, F(3,158) = 2.27, p= 0.083, η2

p =0.04, nor was the
spatial exploration of the human/machine factor interacting with
the age of the human players, p= 0.251 (see Figure 6B).

Are the strategies of place sequencing and
area building related?

To be sure that in humans, but not in the machine, the strategy
of coloring-in consecutive places into a sequence contributed to
area building, correlations were separately computed for machine
and human responses. The Supplementary Table S2 (children)
and Supplementary Table S3 (child machine opponent), as well
as Supplementary Table S4 (adults) and Supplementary Table S5
(adult machine opponent) show the Pearson correlations, p-values,
and visualization of the distributions (please view at 200%).
Children’s age groups were collapsed because there were no
significant age group differences for either area or sequence length.
The longer pathway and the shorter next move were correlated
in children, r = −0.68, but not in the child machine opponent,
r =−0.09.

In Figure 7, the correlations of the cluster with pathway length
(max. sequence) and array exploration (next move) are visualized

numerically with the strength of the p-value in color. For children,
the most striking difference to be found in the comparison of
Figure 7A and Figure 7B is that pathway and next move show

significant correlations with the clusters, but not in the child
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FIGURE 6

Machine advantage in average distance of next move (grid
exploration). (A) Average distance. (B) Distance of the next move.
The bars denote the confidence interval. The distance of the next
move is significantly farther away for the machine than for humans.
Age e�ects were not significant.

machine opponent. The shorter pathway length of the machine has
close to zero correlations with the clusters, and the correlations of

the next move are clearly smaller in size compared to the children.

In particular, the shorter distance of the next move in human
children is highly correlated with the largest cluster, r =−0.60, but

not as much in the child machine opponent, r =−0.15.
However, it is noticeable that there is a systematic difference

in positive and negative correlations. In children and the machine
opponent, all clusters were negatively correlated to the largest
cluster, and positively with each other; see Figures 7A, B. However,
the pathway (maximum sequence) was only positively correlated
with the largest cluster in human children, r = 0.32, showing
that creating a longer place sequence contributed to building the
largest cluster, but not in the child machine, r = 0.04. The shorter
pathways were negatively correlated with the much smaller clusters
(<10 places).

In adults, most of the associations of the clusters with
the maximum sequence and the next move showed similar
correlational patterns as in children, see Figures 8A, B. Again,
the smaller clusters were negatively correlated with the largest

cluster but positively correlated with each other. And again, longer
sequences were positively correlated with the largest cluster in
human adults but not in themachine opponent, indicating a human
strategy. Likewise, pathways and next move were significantly
correlated in humans, r = −0.68, but not as much in the machine
opponent, r =−0.20.

Regarding the machine, near-zero correlations occurred
between cluster 2, that is, the first cluster in which the machine had
created a larger cluster than the humans, and the smaller clusters 5,
6, and 7. However, this should not be overinterpreted because when
comparing it to the cluster correlations of the children’s machine
opponent in Figure 7B, the correlations of cluster 2 are also smaller
as visible by the lighter color.

A real difference to the correlations of the children, however,
was that in both, the human adults and their machine opponent,
the next move was pronouncedly negatively associated with the
largest cluster, not just in the human players. We remember that
for the whole sample, the machine made moves that were, on
average, approximately five places away from the previous move,
while humans colored in three places away from the previous one.
There was a trend for an age group, p < 0.083, which was not
further explored, but it could be that the age effect did not reach
significance because there were four age groups. When comparing
the collapsed age groups of children with adults in a univariate 2
(human/machine) × 2 (age group) mixed ANOVA with distance
of the next move as dependent variable and children/adults as
between-subjects factor, indeed a significant interaction of age by
machine showed, F(1,158) = 4.10, p < 0.045, η2

p = 0.03, in addition
to the highly significant main effect of the machine exploring
further in the array, F(1,158) = 217.93, p < 0.001, η2

p = 0.59.
Post-hoc t-tests (two-tailed) of the interaction showed that the

two machine opponents carried out exactly the same average next
move,Ms = 5.0, t(77) = 0.17, p= 0.865, while children explored less
(M = 2.79) than adults (M = 3.30), t(77) =−2.16, p= 0.034.

Discussion

Children are not always systematic in their spatial
categorization of regions, especially not those with special
educational needs such as autism and attention-deficit
hyperactivity disorder (Lange-Küttner and Kochhar, 2020).
They initially construct just object–place units (Lange-Küttner,
2006; Metzger, 1956; Stiles and Tada, 1996), a strategy which is
based on an aggregate space concept (Lange-Küttner, 2009), and
only later attribute regions to objects that match in some way
(Lange-Küttner, 2006). The current study investigates the binding
of places into a common region. This is different from binding
matching objects into common regions as it involves creating
areas without considering objects. As such, it is perhaps similar
to the board game Settlers of Catan, where areas are created by
each player (Guhe and Lascarides, 2014) and it also does not have
a necessity to consider for existing boundaries (Veracini, 2013).
Likewise, in the game Monopoly, streets (and thus pathways)
can be traded without consideration of objects (Maulyda et al.,
2020). Whether objects in a region match or not is often a
matter of contention, if not war (Flanagan and Jakobsson, 2023).
Nevertheless, understanding and computing area is a core subject
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FIGURE 7

Children’s correlations between clusters, pathway length, and distance of the next move. (A) Children. (B) Child machine opponent.

Frontiers inDevelopmental Psychology 10 frontiersin.org

https://doi.org/10.3389/fdpys.2025.1596481
https://www.frontiersin.org/journals/developmental-psychology
https://www.frontiersin.org
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FIGURE 8

Adults’ correlations between clusters, pathway length, and distance of the next move. (A) Adults. (B) Machine Opponent.
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in the teaching of geometry for a long time (Jones and Tzekaki,
2016; Luchins and Luchins, 1947), and it is assumed that a natural
geometry already belongs to infants’ core knowledge (Spelke,
2011). These basic geometric intuitions are already present in
animals and can give rise to more abstract representations of area
(Spelke and Lee, 2012). While much of this research is based on
perception (Izard et al., 2022; Odic et al., 2013), the current study
uses a constructive and interactive task. An especially important
feature of this new task is that while the computer system, as
the interaction partner, had no choice but to randomly select an
empty place, children could have selected to color in places either
randomly or with a strategy.

The first hypothesis, that young children would also be able
to create large clusters as they are sensitive to practical, aggregate
space could be confirmed. The study clearly showed that they
were able and motivated to build large areas in a grid coloring-in
game against a randomly behaving computer system. Like adults,
children between 4 and 10 years created one large area and several
smaller ones. The younger age groups could also have shown an
inclination toward coloring in isolated places because theoretically,
it would have been possible to either color-in randomly like
the computer, or to construct several clusters of the same size.
However, a large primary area was larger when colored in by human
participants, children and adults, while the smaller clusters were
larger when colored in by the machine. Nevertheless, both humans
and the machine produced one large area and multiple smaller
clusters. The six smaller clusters were a logical consequence of one
large area that imposed strong spatial restraints, with an effect size
of 0.83. The one large area built by the machine was an antagonist
result of the human strategy: As the human player creates one large
area, it leaves the rest of the array to the machine, which would
consequently have the other area to itself.

This result is very much in accordance with the reasoning of
preoperational children who were thinking in action-based spatial
pathways rather than about areas in geometric terms and argued
that cows have more to eat when grazing on a large empty meadow
than on a meadow that is occupied by several houses dispersed in
this area (Piaget et al., 1948). The dispersed houses would need
several walk-arounds while a row of terraced houses would just be
one entity. Likewise, if the humans would not have embarked on
building a large area, the machine could not have had the large
empty swathe of the remaining space at its disposal to build an
area matching in size, just by chance, without a concept, just with
randomly coloring in places. An area can emerge from randomly
filled-in places or as a result of intentionally planned clusters.

The advantage of the humans for the largest cluster was
the first indicator that they were following a strategy, and thus,
we tested several other parameters to prove that humans were
actually following a strategy in this coloring-in game. The second
hypothesis predicted that sequences of places forming pathways
would emerge in all human participants, while the machine could
not form pathways because of the programmed random coloring-
in. Also, the second hypothesis was confirmed as both children and
adults built on average sequences that were twice as long as those
of the machine player who created only very short occasional ones
connecting just about two places.

Also, the third hypothesis was confirmed, namely, that the
average distance between places made by humans and the machine

may be similar, but the average distance to the next move would be
larger in the machine opponents. Indeed, the difference in average
distance of the machine and of human adults was significant but
with a very small effect size of 0.06–0.08. In contrast, the average
distance of the next consecutive move following coloring-in a
place showed a much larger effect size of 0.79. Humans colored-
in about three places farther away while the next move of the
machine was approximately five places away. This result showed
that spatial exploration in humans was much more limited, if
not inhibited.

That both children and adults showed less spatial exploration
and created longer pathways clearly indicates that spatial heuristics
were used. How these spatial heuristics were functioning was
analyzed by looking at the contingencies between area, spatial
pathways (place sequence length), and spatial exploration. The
fourth hypothesis that the areas that the machine generates would
be the result of places that incidentally aggregated into areas,
while the areas that the children and adults generate would be
intentional, could be confirmed as the places that clustered into
areas significantly correlated with spatial exploration and pathways.

With respect to children, the pattern of correlations between
cluster size, spatial exploration, and next move showed very clear
differences from themachine. In children, their pathway length and
next move were correlated with all the clusters whatever their size,
while the machine showed no, or systematically lower correlations
between clusters, pathway length, and spatial exploration. This
indicates that the children monitored the clusters that they had
created to plan their next move, while the machine clusters
necessarily emerged randomly.

Surprisingly, this strong difference between human and
machine players was not apparent in adults and their machine
opponents. There were only significant correlations between
clusters and the average distance in human adults but not in
the machine. However, both the adults and the machine showed
significant correlations between clusters and spatial exploration as
per distance of the next consecutive move. Further investigation
showed that here the only age difference between adults and
children could be found. There was a small but significant
difference between children, with 2.8 places away for the next move,
and adults, showing a greater distance of 3.3 places away for the
nextmove. Thus, adults showed somewhatmore spatial exploration
than children, which may be an indicator of more machine-
like exploration in adults. This on average half-place difference
may have been contributing to similar-sized correlations between
area and next move in adults and their machine opponents.
Further research needs to test the hypothesis of an inhibited
spatial exploration of humans compared to the unrestrained spatial
exploration of a machine.

To recap the machine strategy, the average distance between
places was not very different in the humans and the machine, but
the machine showed a highly significant advantage in reaching
out across the array. The machine with its random coloring-in
code expanded its coloring of places significantly further than
humans in consecutive moves, both in the 10 × 10 grid and in
the pilot study in an especially pronounced way in the larger 20
× 20 grid: The machine colored in places at double the distance
compared to humans. Regarding adults, for psychologists believing
in evolution (Silverman et al., 2007), rewards in spatial exploration
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(Meder et al., 2021) may be seen as more important rather than
intellectual progress of spatial concepts from topological aggregate
to Euclidean space. However, the maps for geographical areas
needed for such exploration did improve over the centuries (Black,
2000). In developmental psychology, initially the development of
the ability to use maps as indicators in reality was investigated
(Downs and Liben, 1990; Liben and Downs, 2001), but more
recent research investigated how the drawing of maps develops in
children (Swienton et al., 2023). These authors showed that even
6–14-year-olds rarely used scales, legends, or arrows for the north
direction, showing a lack of Euclidean information, but instead
compensated with a mix of written labels or descriptive words on
their maps. Thus, it is even more impressive that area building
using aggregates of places did not differ in children and adults in
this task.

It may be not only that computers beat humans in all kinds
of board games (Purves, 2019) but also that machines work
more similarly to adults’ minds than to children’s minds. Turing
(1950) suggested building machines that would function like
children’s minds as they are constantly learning. He assumed that
a computer successfully mimicking a child would use reasoning
and decision-making at various developmental stages, instead of
being conditioned with punishments and rewards. However, the
background to Turing’s suggestion may have been the much more
limited computing power that machines had at his time.

There were limitations in the pilot research as we used a
large grid for adults and a smaller grid for children. It is a
common problem in developmental psychology how to equate task
difficulty between age groups (Lange-Küttner, 2012): Increasing
task difficulty for older age groups makes performance not directly
comparable anymore, but using the same task may create ceiling
effects in the older age groups. In the pilot study to the current
research, it was originally assumed that there was no qualitative
difference between grids of different sizes, and we followed board
game practice to let children interact with a smaller board. The
pilot showed that it was not possible to just divide the adults’ scores
by 4 (100 vs. 400 places) because (1) the adjusted score, when the
20 × 20 grid was used, underestimated adults’ clusters by about
half a place; (2) place sequences were about the double length in
the 20 × 20 grid compared to the 10 × 10 grid and thus the grid
size adjustment division factor of 4 would have actually shrunk
the adult scores below the children’s scores; (3) there was also a
very large effect of the grid size on the average distance, which
was double in the larger grid; and (4) a most striking result was
that adults would make a next move at a comparable distance in
either grid, while the machine opponents reached out farther and
twice as far. Thus, these grid size effects were interesting, but the
comparison also showed that no one-factor equation solution was
possible; hence, the children and adults were compared here on the
same-sized grid.

Neuropsychological insights and future
directions

The discussion of this report should also include future research
perspectives. Thus, this section considers some research studies that

could give cues about the likely neuropsychological basis of the
interactive game that revealed the construction of pathways and
areas as participants navigated the two-dimensional grid. There are
some developmental studies about the neuropsychological basis of
spatial pathways in children and adults (e.g., Benear et al., 2022;
Bohbot et al., 2012; Bostelmann et al., 2020; Botdorf et al., 2022;
DeMaster et al., 2013) that need to be considered in some detail.

Many spatial tasks use objects or other cues as landmarks and
then investigate whether these are used, ignored, or do not make
a difference (e.g., Iaria et al., 2003; Lange-Küttner et al., 2023).
Different from adults, young children often use landmarks for
orientation (e.g., Bohbot et al., 2012), and it is assumed that spatial
layout learning without spatial cues needs development until at
least age 10 (Lange-Küttner, 2024; Leplow et al., 2003). A life-
span study with twelve age groups from ages 6 to 89 showed that
adolescents between 13 and 15 years were the fastest (but not
the most accurate) in distance judgments of three objects toward
oneself, the most accurate were young adults in their twenties,
while the best allocentric estimations between objects in the field
were made by adults in their 30s (Ruggiero et al., 2016). Thus,
this study showed that the development of spatial judgments can
be very protracted. Indeed, empty fields without boundaries like
oceans are the hardest for spatial memory, but spatial boundaries
that constitute even just a simple frame delimit the memory search
space and improve spatial memory (Lange-Küttner, 2013).

The most common neuropsychological brain substrates found
in navigation are the subcortical hippocampus and caudate nucleus,
as well as the medial prefrontal cortex (e.g., Benear et al., 2022;
Dahmani and Bohbot, 2015). Developmental differences were also
found in regions in the posterior parietal cortex, the anterior
prefrontal cortex, and the insula (DeMaster et al., 2013). A recent
meta-analysis of 25 studies and 1,357 participants showed that
in children and adolescents, correlations between hippocampal
volume and memory tasks ranged from −0.36 to 0.48, but the
hippocampal volume was not predictable by recognition vs. recall,
delay, grouping (spatial categorization), age, sample size, or gender
(Botdorf et al., 2022).

When researching navigation, there is also the problem of
small-scale space vs. large environmental space. In real space,
spatial navigation requires motion of the body in various
directions, while small-scale spatial navigation does not require
changes in perspective (Wang et al., 2014). However, from a
neuropsychological perspective, the distinction between large- and
small-scale space is not absolute as there are also overlapping
brain substrates (Li et al., 2019).2 A recent meta-analysis of

2 An interesting aspect of the common brain activation of both large- and

small-scale spatial abilities (Li et al., 2019) was that these were located at

the cerebral mantle of the brain, which appear to be the most compromised

in general brain atrophy (Pini et al., 2016, Figure 4), especially in younger

adults with Alzheimer’s disease. Because some cases of Alzheimer’s disease

exist without hippocampal atrophy, Pini et al. (2016) have hypothesized

that dementia can start selectively in various regions of the brain and then

generalizes. Bohbot et al. (2007) could indeed show that covariation in brain

atrophy could be found for the hippocampuswith its surrounding brain areas,

for instance, the amygdala and the perirhinal, the entorhinal, and even with

the orbitofrontal cortices.
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Li et al. (2019, Figure 3) showed subcortical hippocampal
activity in large-scale environments but extensive neocortical
activation in studies investigating small-scale spatial ability. Li
et al. came to the conclusion that small-scale spatial abilities
encompass motor imagery, working memory, the control of fingers
and hands, arithmetic, and calculation, as well as matching.
Large-scale spatial ability would involve virtual environments,
scenes, and places, as well as autobiographical, episodic, and
semantic memory.

Thus, which cognitive and hence brain processes may be
relevant for the grid game? The grid game involves constructive
spatial strategies without a memory component, which should
be an advantage because children need the perceptual input that
predicted hippocampal activation and, in turn, memory retrieval
(DeMaster et al., 2013). The grid game also has the advantage
that the places have visible boundaries and conform with young
children’s concept of aggregate space (Lange-Küttner, 2009) and
thus it is suitable for children and adults alike (Lange-Küttner,
2009; Lange-Küttner and Beringer, 2023). The grid game requires
attention to the to-be-colored-in places in the empty spaces in
the entire array, the self-constructed pathways, and the colored-
in places that dynamically appear due to the actions of the
system player and may represent obstacles that constrain room for
maneuver. Thus, it can be assumed that besides the hippocampus,
neocortical networks would play an important role in the grid
game: The development of attention to dynamic displays from 7
to 11 years of age and to adulthood showed a gradual increase of
activation in a frontoparietal network, and more specifically, an
age-related increase of the mid-cingulate gyrus activation, which
is involved in cognitive control accompanied by a decrease in the
involvement of the visual cortex (Wolf et al., 2018), which shows
increasingly less reliance on perception.

Conclusion

In conclusion, this is the first study that developed and tested
a digital interactive grid game for children and adults. In short,
the current study compares children and adults with a randomly
behaving machine when playing an interactive game of coloring
in places in a grid. Interestingly, both children and adults used
long place sequences and short consecutive moves to create large
clusters, while the machine, with its fixed random place selection,
had only short place sequences and longer consecutive moves at its
disposal yet also created one large cluster and several small ones.
This speaks to the logic of spatial constraints determined by filled
vs. empty space (Lange-Küttner, 2024). Future variations of the task
could show how children and adults would react if the computer
had a sequencing strategy at its disposal, or investigate the length of
a game if the players could overwrite already-colored-in places of
the system player. One could hypothesize that such modifications
would sharpen competition and that the length of the game would
develop along the same lines as exploration for reward. This study
contributes to theories about the development of spatial cognition
in children showing an early matured ability to construct pathways
and areas that is careful and circumspect. In addition, it showed
that young children’s practical spatial reasoning is a reasonable

approach in its own right in addition and not inferior to geometric
spatial concepts.
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Appendix

TABLE A1 Pairwise comparisons of the cluster.

(I) Cluster size (J) Cluster size Mean di�erence
(I–J)

SE p 95% Confidence interval
for di�erenceb

Lower Bound Upper Bound

1 2 24.010 1.214 <0.001 20.148 27.873

3 27.091 1.103 <0.001 23.582 30.600

4 28.624 1.032 <0.001 25.341 31.906

5 29.278 1.004 <0.001 26.085 32.471

6 29.726 0.979 <0.001 26.613 32.839

7 30.009 0.962 <0.001 26.948 33.071

8 30.217 0.954 <0.001 27.182 33.251

2 1 –24.010 1.214 <0.001 –27.873 –20.148

3 3.081 0.295 <0.001 2.142 4.020

4 4.614 0.339 <0.001 3.534 5.693

5 5.268 0.355 <0.001 4.139 6.397

6 5.716 0.361 <0.001 4.567 6.865

7 5.999 0.362 <0.001 4.847 7.151

8 6.206 0.369 <0.001 5.034 7.379

3 1 –27.091 1.103 <0.001 –30.600 –23.582

2 –3.081 0.295 <0.001 –4.020 –2.142

4 1.533 0.151 <0.001 1.052 2.013

5 2.187 0.183 <0.001 1.604 2.770

6 2.635 0.190 <0.001 2.032 3.238

7 2.918 0.197 <0.001 2.293 3.544

8 3.126 0.205 <0.001 2.473 3.778

4 1 –28.624 1.032 <0.001 –31.906 –25.341

2 –4.614 0.339 <0.001 –5.693 –3.534

3 –1.533 0.151 <0.001 –2.013 –1.052

5 0.654 0.075 <0.001 0.417 0.892

6 1.102 0.094 <0.001 0.803 1.401

7 1.385 0.106 <0.001 1.048 1.723

8 1.593 0.117 <0.001 1.220 1.965

5 1 –29.278 1.004 <0.001 –32.471 –26.085

2 –5.268 0.355 <0.001 –6.397 –4.139

3 –2.187 0.183 <0.001 –2.770 –1.604

4 –0.654 0.075 <0.001 –0.892 –0.417

6 0.448 0.058 <0.001 0.263 0.633

7 0.731 0.076 <0.001 0.490 0.973

8 0.939 0.087 <0.001 0.663 1.214

6 1 –29.726 0.979 <0.001 –32.839 –26.613

2 –5.716 0.361 <0.001 –6.865 –4.567

3 –2.635 0.190 <0.001 –3.238 –2.032

(Continued)
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TABLE A1 (Continued)

(I) Cluster size (J) Cluster size Mean di�erence
(I–J)

SE p 95% Confidence interval
for di�erenceb

Lower Bound Upper Bound

4 –1.102 0.094 <0.001 –1.401 –0.803

5 –0.448 0.058 <0.001 –0.633 –0.263

7 0.283 0.046 <0.001 0.136 0.431

8 0.491 0.060 <0.001 0.301 0.680

7 1 –30.009 0.962 <0.001 –33.071 –26.948

2 –5.999 0.362 <0.001 –7.151 –4.847

3 –2.918 0.197 <0.001 –3.544 –2.293

4 –1.385 0.106 <0.001 –1.723 –1.048

5 –0.731 0.076 <0.001 –0.973 –0.490

6 –0.283 0.046 <0.001 –0.431 –0.136

8 0.207 0.034 <0.001 0.099 0.315

8 1 –30.217 0.954 <0.001 –33.251 –27.182

2 –6.206 0.369 <0.001 –7.379 –5.034

3 –3.126 0.205 <0.001 –3.778 –2.473

4 –1.593 0.117 <0.001 –1.965 –1.220

5 –0.939 0.087 <0.001 –1.214 –0.663

6 –0.491 0.060 <0.001 –0.680 –0.301

7 –0.207 0.034 <0.001 –0.315 –0.099

The p-values were adjusted for multiple comparisons with the Bonferroni correction.

TABLE A2 Post-hoc t-tests (two-tailed) for independent samples (human/machine).

t df p Mean di�erence 95% Confidence interval

Lower Upper

Cluster 1 2.35∗ 156 0.020 4.20 0.67 7.73

Cluster 2 –2.92∗∗ 156 0.004 –2.09 –3.50 –0.67

Cluster 3 –2.39∗ 156 0.018 –1.00 –1.83 –0.17

Cluster 4 –1.86 156 0.064 –0.48 –0.99 0.03

Cluster 5 –1.55 156 0.122 –0.32 –0.72 0.09

Cluster 6 –2.09∗ 153.6 0.039 –0.32 –0.62 –0.02

Cluster 7 –1.81 156 0.072 –0.20 –0.42 0.02

Cluster 8 –1.23 156 0.222 –0.13 –0.33 0.08

Degrees of freedom were adjusted if the Levene’s test for equality of variances was significant. ∗p < 0.05. ∗∗p < 0.01. ∗∗∗p < 0.001.
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