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Rehabilitation programs play an important role in improving the quality of life of patients

with balance disorders. Such programs are usually executed in a home environment,

due to lack of resources. This procedure usually results in poorly performed exercises

or even complete drop outs from the programs, as the patients lack guidance and

motivation. This paper introduces a novel system for managing balance disorders in

a home environment using a virtual coach for guidance, instruction, and inducement.

The proposed system comprises sensing devices, augmented reality technology,

and intelligent inference agents, which capture, recognize, and evaluate a patient’s

performance during the execution of exercises. More specifically, this work presents a

home-based motion capture and assessment module, which utilizes a sensory platform

to recognize an exercise performed by a patient and assess it. The sensory platform

comprises IMU sensors (Mbientlab MMR© 9axis), pressure insoles (Moticon©), and a

depth RGB camera (Intel D415©). This module is designed to deliver messages both

during the performance of the exercise, delivering personalized notifications and alerts

to the patient, and after the end of the exercise, scoring the overall performance of

the patient. A set of proof of concept validation studies has been deployed, aiming to

assess the accuracy of the different components for the sub-modules of the motion

capture and assessment module. More specifically, Euler angle calculation algorithm in

2D (R2 = 0.99) and in 3D (R2 = 0.82 in yaw plane and R2 = 0.91 for the pitch plane), as

well as head turns speed (R2 = 0.96), showed good correlation between the calculated

and ground truth values provided by experts’ annotations. The posture assessment

algorithm resulted to accuracy = 0.83, while the gait metrics were validated against

two well-established gait analysis systems (R2 = 0.78 for double support, R2 = 0.71 for

single support, R2 = 0.80 for step time, R2 = 0.75 for stride time (WinTrack©), R2 = 0.82

for cadence, and R2 = 0.79 for stride time (RehaGait©). Validation results provided

evidence that the proposed system can accurately capture and assess a physiotherapy
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exercise within the balance disorders context, thus providing a robust basis for the

virtual coaching ecosystem and thereby improve a patient’s commitment to rehabilitation

programs while enhancing the quality of the performed exercises. In summary, virtual

coaching can improve the quality of the home-based rehabilitation programs as long as

it is combined with accurate motion capture and assessment modules, which provides

to the virtual coach the capacity to tailor the interaction with the patient and deliver

personalized experience.

Keywords: virtual coach, persuasive technology, motion capture, motor score, balance disorders, physiotherapy

exercises, IMU sensors, gait analytics

1. INTRODUCTION

The majority of elders suffer from vestibular dysfunction-related
balance disorders, which lead to falls. One out of three people
over the age of 65 falls annually. Falls in older people have
wide range of physical and psychological consequences and
increase the likelihood of frailty, cognitive decline, sedentary
behavior, social exclusion, and injury-related death (1). Most falls
are multi-factorial with risk factors covering a wide range of
bio-psychosocial domains including muscle weakness, postural
control deficits, visual disturbances, and gait abnormalities. The
National Institute of Clinical Excellence (2) recommends an early
detailed individualized assessment and treatment intervention
for older adults at risk of falls, but despite the strength of available
evidence, compliance and implementation to date have been
poor or non-existent (3). Customized balance physiotherapy
intervention is the gold standard of care for persons with balance
disorders who are at risk of falling or have experienced a
fall. They are asked to perform individualized exercises daily
in a safe environment. When it comes to such rehabilitation
programs, adherence of the patient to the program is a key
factor for their successful completion. Yet, mainly due to lack of
resources, patients usually do not receive the maximum benefits
of these exercise programs. The primary reasons for this involve
the mistaken performance of the instructed exercises or their
complete omission.

This work proposes a framework for managing a balance

physiotherapy program in a home environment. This framework,
which has been designed and developed within the Holobalance
project, comprises a holographic virtual coach, presented to the

patient through an augmented reality system, a motion sensing
platform, and a smart engine, which assesses in real time the
exercise performance. The main objective of the paper is to detail
the motion sensing platform and analyze the capturing and the
inferring modules, which comprise it. Reader can acquire more
information regarding the overall architecture of the system from
(4) and (5). The details and technology supporting the Virtual
Coach AR module are published in (6), where the reader can
also find information regarding augmented reality systems in
rehabilitation systems.

During the last decade, numerous virtual coaching systems
targeting people with a specific health condition have been
presented. (7) presented PAIR, a system built to support
people with cognitive disabilities by creating schedules that

support complex temporal relationships between activities and
by generating rules and reminders related to daily activities.
(8) studied the use of a virtual coach to provide persons with
Parkinson Disease guidance with regard to daily exercise. In this
study (8), a pedometer was used tomonitor daily walking activity.
Diabetes is a health condition that has attracted attention by the
virtual coaching systems. A subset of research works is focused on
creating personalized healthcare pathways for the management
of the disease (9) or tailored intervention plans (10). Going one
step further, a more systemic approach has been proposed, which
includes the continuous monitoring of the patient and adjusting
the treatment plans according to the collected data. Such systems
have been presented in (11) and (12). Coaching frameworks have
been proposed also for the cardiometabolic disease (13), obesity
(14), and depression (15).

The main idea of the proposed framework is the motion
capture system. For this, a short review on motion capture
systems is attempted, in order to present the current state of
the art. The motion tracking system comprises two subsystems.
Namely, the sensors and the processing unit. The sensing
subsystem is responsible for gathering and transmitting the
required data produced by human motions, whereas the
processing unit is responsible for gathering the data and produces
the analytics for classifying the data to specific human motions.
Regarding the sensing technologies, as depicted in Figure 1, one
can categorize them in two major categories: the visual and the
non-visual tracking.

Human motion tracking has been significantly improved
during the last decade, mainly due to advances in sensing
technology. Motion capture systems (both vision-based and
inertial systems) have been widely used first in laboratory
settings and nowadays in everyday life. Several surveys have been
published, describing human motion capture under different
perspectives with a focus on the application (16) and/or on
technological aspects (17). (18) published a review of wearable
sensors for human monitoring, placing emphasis on the
applicability of the proposed technology. Their survey reviews
sensing technology including motion capture based on inertial
sensors and their applications, including health monitoring,
wellness, and safety. Likewise, (19) reviewed wearable motion
sensing systems applied to gait detection and analysis in clinical
settings. They classify the reviewed methods according to the
utilized sensor, subject populations, and measured parameters.
In a recent review paper, (20) discussed the advantages and
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FIGURE 1 | Human motion tracking technologies.

disadvantages of body sensor networks while debating about
their applicability to human activity recognition. In addition,
Wong et al. (21) reviewed applications of wearable sensors in
the biomechanics area. Differently from (18), they put emphasis
on the devices and the sensors that are incorporated in the
motion tracking systems. Furthermore, they document the
advantages and disadvantages of the proposed methods. In
another survey (22), special focus is placed on wearable inertial
sensors. The authors analyzed several medical applications
of wearable inertial motion tracking, including daily-life
activity monitoring, gait analysis, stabilometry, upper body
mobility assessment, instrumented clinical tests, and tremor
assessment. For all reported applications, authors describe the
required methods in order to tackle those. Interestingly, the
category of the applications reveals a grouping of techniques
that reflects different complexity levels in using IMU sensors:
for example, stabilometry requires simpler algorithms and
fewer sensors than upper body mobility assessment. Harle (23)
provided a technical review of the issues arising and methods
deployed in IMU-based systems for pedestrian localization.
Similarly, Yang et al. (24) focused on target, reviewing sensing
technologies as well as techniques with their respective sources
of performance and errors. Yang and Li (25) focused on
walking speed estimation, while (26) presented a review of
(m)IMU-based tracking systems for 3D attitude estimation

focusing on the technical aspects of IMU-based human motion
tracking methods. In particular, sensor fusion techniques and
related issues are presented and explained in detail including
techniques to estimate and tune filter parameters. In (27),
six algorithms for estimating a smartphone’s sensor unit
performance were compared. They aimed at analyzing and
comparing algorithms in order to detect the most appropriate
for pedestrian localization even when the magnetometer’s signal
is disturbed. They performed tests in home environments,
artificially distorting the magnetic field using a set
of magnets.

In terms of novelty, the proposed approach, while adopting
the best practices proposed by the literature, proceeds one step
further, as it creates a closed-loop accessible interaction between
the virtual coach and the patient during the execution of the
physiotherapy program. The interaction includes the capturing
and assessment of the performed exercises and the notification
of the patient with appropriate messages in order to correct and
improve the exercise performance. While the exercise assessment
is performed in real time, the user experience resembles the one
experienced by an actual physiotherapist. To achieve this level
of user experience, novel motion capturing algorithms have been
designed and developed.

The rest of the paper is organized as follows. Section 2
introduces the specific body motions related with the context of
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FIGURE 2 | Virtual coaching closed-loop interaction.

the system before presenting the motion capture system. Also,
the relative metrics and analytics to be calculated are detailed.
In the last parts of the paper, the system implementation details
are provided (section 3), while section 4 presents the results of
the performed validation studies. Finally, in section 5 the overall
work is discussed and conclusions are presented.

2. MATERIALS AND METHODS

Based on the current physiotherapy protocols, a set of exercises
has been proposed by specialized physicians. Each one of the
proposed exercises, which are described in detail in (28) and in
(29), targets at improving a specific disabilities related to balance
disorders, such as gaze stability, dizziness, swimminess, gait, and
postural alignment. From the aforementioned balance exercises,
a set of body movements has been identified. Namely, in order to
meet the requirements derived by the physiotherapists’ proposed
exercises, we had to capture and assess: (1) head movements
in the yaw, pitch, and roll plane, (2) gait, (3) trunk sway while
standing and while walking, (4) hill rise movement, (5) 180◦ body
turns, and (6) bending over while standing and while sitting. In
parallel with these movements, the posture of the body must also
be assessed.

Aiming to design and develop a full-scale closed loop virtual
coaching service, an Internet of Things platform is proposed.
Figure 2 presents the closed-loop interaction between the patient
and the virtual coach through the motion capture and the scoring
modules, which collect and assess the collected data from the
sensing platform. In the following subsections, each one of the
basic modules is described in detail.

2.1. Sensing Platform
The sensing platform described in the following section
considered head movement, posture, postural sway, and gait
parameters as the key factors assessed by physiotherapist
providing individualized programs in order to identify
appropriate exercises and their progressions.

Based on the body movements mentioned above, a set
of sensing devices has selected. Considering the usability of
the proposed system, the minimum set of devices has been
selected. Thus, the sensing platform comprise two 9-DoF IMUs,
a pair of pressure insoles, also equipped with accelerometer and
gyroscope, and a depth camera.

Regarding the positioning of the sensors, one IMU was placed
on the forehead of the patient (attached with a Velcro© strap),
one was placed on the patient’s waist, and of course the pressure
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TABLE 1 | Motion metrics.

Euler angles

Head movement

Posture

Trunk sway

Gait parameters • Center of pressure

• Double support

• Single Support

• Step duration

• Stride duration

• Cadence

insoles in the patient’s shoes. The depth camera was placed 1.85
m away from the patient, due to its field of view specification.

2.2. Motion Capture Module
The motion capture module is responsible for collecting the
data produced by the sensing platform, processing them, and
producing quantitative information through relevant analytics,
about the execution of a specific exercise.

A set of algorithms has been developed and implemented,
which aimed to calculate the metrics from which the
physiotherapy analytics described in section 2 are derived.
Table 1 lists the metrics calculated by the proposed system.

Let a
{p}

d
(t), g

{p}

d
(t), and m

{p}

d
(t) be the acceleration, gyroscope,

andmagnetometer data produced by the IMU sensors, where d =

{x, y, z} the direction of the component and p = {head,waist} the

positioning of the sensor. Furthermore, let p
{f }
i (t) be the pressure

data produced by the pressure insoles, where i ∈ [1, n], n is
the number of the pressure sensors embedded in the pressure

insole and f = {left, right} denoting the relevant foot. Let A
{f }

d
(t),

G
{f }

d
(t) be the acceleration and gyroscope data produced by the

pressure insoles. Finally, let Fj(t) be the data produced by the
depth camera, where j = {RGB, depth}.

2.2.1. Euler Angles
Accelerometer, gyroscope, and magnetometer data are used to
calculate the pointing vector of the head and the waist. For this,
the well-known Kalman filter is utilized, as it is proposed by

(30). Thus, the data a
{p}

d
(t), g

{p}

d
(t), and m

{p}

d
(t) are translated

to Euler angles in the yaw (yaw{p}(t)), pitch (pitch{p}(t)), and
roll (roll{p}(t)) planes. Euler angles are used as input for
the calculation of a wide set of metrics, as described in the
following sections.

2.2.2. Head Movement
Head movement is a term that includes speed; movement range
in yaw, pitch, and roll planes; and number of repetitions of a
particular pattern. In order to calculate these metrics, Algorithm
1 has been employed.

Algorithm 1 collects data from the sensing devices every
timeinterval milliseconds. For this batch, it applies a “full circle”

Algorithm 1:Head movement calculation.

Input: timeinterval
Output: movement events
events= [];
while exercise-performed == true do

[yaw{p}(t), pitch{p}(t), roll{p}(t)]=
collectdata(timeinterval);
for plane in [yaw, pitch, roll] do

plane{p}(t)= eliminateFullCircles(plane{p}(t));

plane{p}(t)= lowPassFilter(plane{p}(t));

mins, maxs= localExtremaYaw(plane{p}(t));

end

foreachmin in mins do
events.apend(getMaxPair(maxs));

end

getRepetitions(events);
foreach event in events do

getSpeed(event);
getRange(event);

end

end

return;

elimination function, which aims to correct the discontinuity
appearing in the Euler angles data when exceeding 360◦. After
that, a second-order low-pass filter is applied, with fc = 50Hz
and the local extrema of the data series are calculated. Then, a
minimum distance pairing function is applied to estimate the
min–max pairs of the data. Finally, for each min–max pair, the
relative metrics (speed, range) are calculated.

It is important to point out that the proposed method
functions substantially well besides the IMU data well-known
drifting problem due to the fact that as it estimates the metrics
only from the adjacent minimums and maximums, we expect a
quite small drift within this time interval. Thus, as the final metric
follows a differential function, the drift is eliminated.

2.2.3. Posture
While posture is not directly connected with a specific exercise
movement, patients should stand, sit, or walk with an upright
body position. For this, an algorithm for estimating the posture
of the patient is proposed. Algorithm 2 utilizes the data from the
depth camera as well as the data from the head IMU sensor.

Algorithm 2 collects data from the sensing devices every
timeintervalmilliseconds. Then, it estimates (using Algorithm 1)
the local maximum values of the head position in the pitch
plane. This is because we need to estimate the time that is most
suitable to assess the posture, and this is when the head is in its
most upright position.When these time points are calculated, the
closest frame (RGB and depth) for each time point is detected.
Afterwards, a background removal function is applied, based on
the depth data, and finally, a body landmark model is applied
(31), which estimates the head position and the waist position.
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Algorithm 2: Posture estimation.

Input: timeinterval
Output: body posture
events= [];
while exercise-performed == true do

[pitch{head}(t), Fj(t)]= collectdata(timeinterval);

pitch{p}(t)= eliminateFullCircles(plane{p}(t));

pitch{p}(t)= lowPassFilter(plane{p}(t));

maxs= localMaxYaw(pitch{p}(t));
foreachmax in maxs do

frameOfInterest= getFrame(Fj(t));
frameOfInterest=
backgroundRemove(frameOfInterest);
points[]= getBodyLandmarks();

end

calculatePosture(points);

end

return;

Using these two points, the body posture is estimated for each
time point.

2.2.4. Trunk Sway
Data produced by the IMU sensor positioned in the waist of
the patient were utilized to assess the stability in standing and
walking exercises. After reviewing all the quantification indexes
proposed in (32), the 95% area pitch–roll angular velocities have
been selected. More particularly, let pv(t) and pr(t) be the angular
velocities (deg/s) in the pitch and in the roll plane, respectively.
Using these data, we create the graph G = {|pv(t)|, |pr(t)|}, which
represents the pitch velocity vs. roll velocity ratio.

Based on graph G, the quantification index equals to the
radius of the quadrant required to enclose the 95% of the figure’s
points. It is clear that the higher is the index, the more unstable
the patient was during the standing/walking exercise. More
specifically for the walking activities, it is important to point out
that graph G includes only the data that correspond to walking
back and forth, omitting the data that correspond to body turns.
Figure 3 presents a sample of graph G for both normal gait and
unstable gait.

2.2.5. Gait Parameters
Gait parameters, as it is described in Table 1, are used to
assess patient’s walking pattern in a quantitative manner. Within
the context of the proposed coaching system, the gait will be
performed in a home environment. Thus, in most of the cases, an
exercise that refers to a walking activity will include many back
and forth routes due to space limitations. As the gait parameters
are reported only for the full-scale steps, the algorithm for
calculating the gait parameters must initially isolate the full-scale
steps and reject body turns and half-steps.

The rationale of Algorithm 3 is based on the utilization of the
IMU data produced from the pressure insoles to select the steps
for extracting the gait parameters. More specifically, the absolute
rotation of the feet are calculated by integrating the gyroscope

data G(deg/s). By combining these data with the data derived
from the accelerometer (A(m/s2)) function, omitTurns&Stops()

detects the time frames within which the patient performed full-

scale steps. Then, the pressure data from the insoles (p
{f }
i (t)) are

retrieved for the same time frames and the gait events (hill rise,
toe off, and flat foot) for each foot are calculated. These gait events
eventually are used for the calculation of the metrics described
in Table 1.

Algorithm 3: Gait parameters calculation.

Input: timeinterval
Output: gait_parameters
while exercise-performed == true do

[p
{f }
i (t),A

{f }

d
(t),G

{f }

d
(t)] = collectdata(timeinterval);

copleft(t) = getCOP(p
{left}
i (t)) ;

copright(t) = getCOP(p
{right}
i (t)) ;

hillleft(t) = getPressureHill(p
{left}
i (t));

hillright(t) = getPressureHill(p
{right}
i (t));

toeleft(t) = getPressureToe(p
{left}
i (t));

toeright(t) = getPressureToe(p
{right}
i (t));

hillleft(t) = binarize(hillleft(t));

hillright(t) = binarize(hillright(t));

toeleft(t) = binarize(toeleft(t));

toeright(t) = binarize(toeright(t));
[hillRiseleft , hillRiseright , toeOffleft , toeOffright] =

getGaitEvents(hillleft(t), hillright(t), toeleft(t), toeright(t));
gait_parameters =
getGait(hillRiseleft , hillRiseright , toeOffleft , toeOffright);

rotation(t) = integral(G
{f }

d
(t));

validTimeFrames =
omitTurns&Stops(rotation(t),A

{f }

d
(t));

gait_parameters = gait_parameters[validTimeFrames];

end

return;

2.3. Metrics and Analytics Validation
Setups
The metrics and the analytics calculated in the previous section
required several algorithms and methodologies to be developed.
These approaches need to be validated to reassure that the
produced results are accurate enough to produce meaningful
interaction with the patient. For this, several in-lab validation
studies have been carried out.

2.3.1. Euler Angles Validation
As Euler angles constitute one of the most important metrics of
the motion capture system, a two phase validation study has been
performed. For the first phase, an experimental setup has been
built, as presented in Figure 4A. The setup includes a calibrated
area with a drawn unit circle, which is divided in 15◦ sectors.
Additionally, a 9-DoF IMUdevice is attached with a string, which
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FIGURE 3 | Graph G for (A) normal and (B) abnormal gait.

FIGURE 4 | Experimental setups for validating IMU data. (A) 2D validation setup and (B) 3D validation setup.

loose end is pinned on the center of a circle. We performed
50 experiments. For each experiment, a specific angle (φ) was
selected and we moved the sensor for φ degrees clockwise and
anticlockwise for 15 times with random speeds.

For the second phase, a laser pointer attached on a head
mounted display device is employed (which is used to project the
virtual coach). A subject was placed on a sitting position against
a wall, which had targets (Figure 4B) placed at specific points.
Subject instructed to perform repetitive head movements, trying
to “hit” specific targets, either in the yaw or in the pitch plane.
Targets were constantly captured using a high frame rate video
camera. The video stream was used to retrieve the actual head
movement metrics (angle range and speed) for each movement.

2.3.2. Posture Estimation Validation
Posture is crucial to execute correctly standing and walking
exercises. Especially in the cases where the patient is asked to
perform bending movements, it is important to return to his/her
upright position. For this, five subjects used the motion capture
module. Subjects were instructed to bend over and return to

upright position. Five repetitions were executed while sitting and
five repetitions while standing.

Using the video streams recorded by the depth camera (RGB
stream), an observer indicated whether five subjects returned to
their upright position while performing bending exercises. Their
selections were compared with the output of Algorithm 2.

2.3.3. Gait Parameters Validation
Gait parameters required a separate validation setup. For this,
two commercial systems equipped with proprietary data analysis
software were compared with the output of Algorithm 3. For
example, the WinTrack© pressure platform and the RehaGait
Pro© IMU system were utilized.

To validate the center of pressure (CoP), three subjects used
the motion capture system and the WinTrack© in parallel while
performing a walking activity of eight steps at normal speed. We
calculated CoP data compared with the relative data provided by
the WinTrack© software.

On a similar fashion, three subjects used RehaGait© and
WinTrack© for validating (i) double support time, (ii) single
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FIGURE 5 | Experimental setups for validating gait parameters: (A) Comparison with the WinTrack© system, and (B) comparison with the RehaGait© system).

TABLE 2 | Validation studies details.

3D IMU validation study Posture validation CoP validation Gait parameters validation

Participants n = 5 n = 5 n = 5 n = 8

Demographic and subject characteristics

Age (years) (median− IQR) 45.0− 9.0 45.5− 10.5 56.0− 8.0 56.2− 1.20

Height (cm) (median− IQR) 175.0− 7.0 177.0− 14.0 172.0− 7.0 175.0− 15.50

Weight (kgr) (median− IQR) 73.5− 3.0 73.5− 4.0 76.5− 4.0 79.5− 9.0

Gender (male%) 80.0 60.0 80.0 62.5

support time, (iii) step duration, (iv) stride duration, and (v)
cadence. More specifically, five subjects used simultaneously
the RehaGait© system and the motion capture system while
performing five strides in a straight line. Then, five subjects used
the WinTrack© system and the motion capture system while
performing eight steps in a straight line.

In both of the aforementioned setups (Figure 5), data
acquisition was simultaneously performed from both systems
and temporal and pressure gait parameters were extracted
and compared.

2.4. Validation Studies
Aiming to validate the proposed framework described in section
2.2, a set of small-scale validation studies have been performed.
Five in-lab validation studies were performed: two for the
Euler angles calculation, one for the posture estimation, and
two for the gait parameters. Table 2 presents the demographics
[age, height, and weight are expressed through the median
value and the interquartile range (IQR)] for the subjects
participated in the validation studies, except of course the
2D Euler validation setup, where a single operator performed
the experiment. It is mentioned that the participants in all
validation studies were different. Participants were individuals

suffering from balance disorders due to chronic unilateral
vestibular dysfunction.

They were all informed regarding the context of each study
and volunteered to participate, after providing their written
consent regarding the willingness to use the system and to
have their data recorded and used for research purposes. The
validation studies took place under the supervision of the Unit
of Medical Technology and Intelligent Information Systems. In
total, 23 patients participated in the validation studies.

2.5. Exercise Assessment Module
The response time of the module is crucial for the overall
functionality of the system because it is directly related with
the response time of the virtual coach when an intervention
is required. When, for instance, a patient executes an exercise
wrongly, we need the module to capture the movement in real-
time and initiate a communication loop with the patient. On the
other hand, most of the signal processing methodologies rely on
the entire data stream to perform processing like integration and
filtering. Additionally, the accuracy of the calculated metrics is
higher when a complete data sequence is available, compared
to the accuracy of the same algorithms when processing part of
the data.
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In order to tackle this discrepancy between the requirements
from the user experience and the signal processing
methodologies point of view, a novel short-term and long-
term approach to evaluate exercises is proposed. According to
this approach, the assessment module comprises two functions,
as depicted in Figure 6. The objective of the online assessment
function is used to evaluate the performed exercise for two
aspects, safety and correctness of execution. First, the output
of the online function is messages/alerts (delivered from the
Virtual Coach) that advice the patient to stop the execution of
the exercise if a safety rule is violated. For example, if the system
detects a high value of sway during a walking exercise, it will
produce a message to notify the user that she/he should stop the
exercise. Second, the online function produces messages/advises,
which inform the patient about the way she/he performs an
exercise and correct the relative movements. Thus, if the system
detects a movement of the head in the pitch plane while the
patient was instructed to perform movements in the yaw plane,
then the online function will produce an advice and notify the
user to correct the movement.

The online function uses only a portion of the collected
sensing data on specific timeinterval time windows and has the
capacity to produce almost real-time responses. The rules for
both the safety alerts and the correcting advises were structured
based on a two-phase procedure. During the first phase, three
physiotherapists specialized in balance disorders documented a
set of rules based on their experience. Then, during the second
phase, the collected rules were unified and presented to the
specialists, where the rules were classified into two categories. The
first category included rules independent from the patient, and

the second category included rules that depend on the baseline
performance of the patient. The second category is crucial to
personalize the interaction between the system and the patient.

When an exercise is finished (usually after a certain time or
a certain number of repetitions), the entire collected dataset is
delivered to the offline assessment function. The objective of the
offline function is to produce a motor score for the performed
exercise. This score will be used for the clinical assessment of
the patient and assist the physician to plan the intervention
while providing notification to the patient about the achieved
progress. The offline function processes the entire dataset and
recalculates the motion metrics and analytics. Based on these
analytics, a linear model is applied to quantify the performance
of the entire exercise.

More specifically, the metrics and analytics discussed in
section 2.2 are calculated for each repetition of an exercise. Let
mt

i be the calculated value for the analytic t at the i repetition.
Then, the motor score for the analytic t is:

TABLE 3 | Sensors included in the sensing platform.

Sensor
Technical specifications

Sampling Output data

Mbientlab MMR© 9axis IMU 100 Hz • 3D rotations (deg/s)

• 3D accelerations (m/s2)

Moticon© pressure insoles 100 Hz • pressure on z axis (16 × 2) (N/cm2)

• 3D rotations (deg/s)

• 3D accelerations (m/s2)

Intel D415© depth camera 30 fps • RGB and depth data

FIGURE 6 | Proposed methodology for exercise scoring.
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Mt =
1

N

N∑

1

mt
i , (1)

where N is the number of the captured repetitions. Finally, the
motor score is calculated as:

MS =
1

k

j=k∑

j=1

Mj −Mbj

Tj −Mbj
, j = 1, 2, . . . , k, (2)

where k is the number of the evaluation analytics required to

evaluate a specific exercise,Mb
j
i is the baseline performance of the

patient at the j analytic, and Tj is the target value of the j analytic,
which patient is trying to reach. All values are normalized.

Aiming to verify the aforementioned rationale, a pre-pilot
study with five subjects was conducted. These subjects, after
spending two sessions of using the system for familiarization
purposes, executed four balance physiotherapy exercises. Each
exercise duration was 60 s. This process yielded to a set of 20
exercises. All exercises were video recorded. A physiotherapist
reviewed the set of exercises and classified the produced alerts
and messages to three classes. Namely, class A included messages
that are correct and he would also give them to the patient,
class B included messages that are correct but he would not
give them to the patient, and class C included messages that
are not considered correct. Only messages with clinical interest
were considered (e.g., a goodmorningmessage would be excluded

FIGURE 7 | Motion capture and exercise assessment module setup.

FIGURE 8 | Comparison between observed and calculated angles in (A) yaw and (B) pitch planes.
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FIGURE 9 | Bland–Altman plots for yaw (A) and pitch (B) planes.

from the process). Finally, the physiotherapist noted the number
of messages (class D) that he/she would give to the patient and
not delivered by the Virtual Coach.

3. SYSTEM IMPLEMENTATION DETAILS

Based on the body movements described in the previous section,
a set of sensors has been selected. The criteria for selecting
the sensing devices included (1) access of the data produced
by the sensor through open source Application Programming
Interface, (2) streaming capacity, and (3) sampling frequency.
After surveying the market, the devices described in Table 3 have
been selected. Table 3 also includes the most important technical
characteristics of each sensor, while Figure 7 demonstrates the
positioning and an illustration of each sensor.

Regarding data acquisition, an important aspect is data
synchronization between the different sensing devices. This
aspect is even more important after considering the fact that
due to the communication protocol of the two wireless devices
(IMU and pressure insoles), which both utilize Bluetooth Low
Energy (BLE©) stack, data loss has been detected, reducing
the sampling frequency by 1.0–1.3%. For this, a global clock
hosted in an orchestrating node annotates the receiving data
and interpolates the missing data by using a cubic interpolation
function. This procedure assures that the motion analysis
module will receive the correct number of data samples
for processing, which is crucial for the robustness of the
proposed algorithms.

The modules were developed using Python© 3.6, under
the Multiprocessing library. Image processing functions were
developed using the OpenCV© library. The Virtual Coach was
developed using Unity© framework and presented to the final
user through the Haori Mirror© Augmented Reality headset. The
communication between the motion capture module and the
Virtual Coach was contacted using the Orion Message Broker, an
FI-WARE actuator.

4. RESULTS

In this section, the results of the validation studies along with the
outcome of the system testing are reported. In the first section,
the results from the experimental validation studies are presented
while in the second section the findings from the system testing
are explained in detail.

4.1. Metrics and Analytics Validation
Results
The validation studies for the metrics and the relevant analytics
are described in section 2.3. The aim of the 2D IMU validation
study was to prove the feasibility of the Euler angle calculation
problem. Thus, a single operator performed n = 326 rotations
using the experimental setup described in section 2.3. The results
of the study clearly indicated that the proposed approach has the
capacity to calculate rotations and angle ranges (R2 = 0.99).

Figure 8 summarizes the results from the 3D IMU validation
study. During this study, five participants executed head rotations
in yaw and pitch planes. The recorded data were examined by
two independent observers, who had to determine the head
movement range and the head movement speed (head turns/s).
The examination from the observers was performed twice, with
a 7-days time interval. Intraobserver variability for both yaw
plane (R2 = 0.99 for the first observer and R2 = 0.98 for
the second observer) and pitch plane (R2 = 0.99 for the first
observer and R2 = 0.98 for the second observer) indicates that
the observers provided valid annotated data, while interobserver
variability (R2 = 0.98 for the yaw plane and R2 = 0.97 for the
pitch plane) allowed to use the provided values as ground truth
for comparison with the output of the motion capture module.

Additionally, a Bland–Altman analysis was performed on the
collected data, which is presented in Figure 9 for both planes.
As far as the head movement speed is concerned (head turns/s),
there was also a very high correlation between the observed and
the calculated values (R2 = 0.96).
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TABLE 4 | Confusion matrix for the posture validation study.

n = 71 Predicted NO Predicted YES

Actual NO 8 5

Actual YES 7 51

The conclusion of the 3D IMU validation study is that the
motion capture module can accurately calculate both the range
of the head movement in both planes (R2 = 0.82 for the yaw
plane and R2 = 0.91 for the pitch plane) and the turn speed.

As far as the posture estimation is concerned, five subjects
were instructed to perform ten repetitions of a standing bending
exercise and five repetitions of a sitting bending exercise. The
subjects also instructed to randomly choose whether they should
return to their upright position. As upright position, we define
the initial trunk position of the subject, for which they were
instructed to stand to a correct upright position.

Table 4 depicts the confusion matrix of the validation
procedure. The matrix yields to accuracy = 0.83, precision =

0.87, and recall = 0.91. It is noted that Algorithm 2 failed to
calculate posture in 5.33% of the cases.

Regarding the validation of the gait parameters, Figure 10
summarizes the relative findings. Figures 10A,B refer to the CoP,
where its location relative to the foot and the detected max
pressure during a step cycle are compared with the WinTrack©

system. Bland–Altman analysis and high correlation (R2 =

0.87) suggest that our system can provide reliable estimations
for the CoP. Figures 10A–H report the validation results for
the gait parameters using as reference the WinTrack© and the
RehaGait© system. Bland–Altman analysis and linear regression
analysis [R2 = 0.78 for double support, R2 = 0.71 for single
support, R2 = 0.80 for step time, R2 = 0.75 for stride time
(WinTrack©), R2 = 0.82 for cadence, and R2 = 0.79 for stride
time (RehaGait©)] also indicate that the motion capture system
can provide reliable analytics for the walking exercises.

4.2. Exercise Assessment Results
In the previous section, the validation results for the motion
capture module have been reported. Based on the output of the
motion capture module, the exercise assessment module, using
the model discussed in section 2.5 produces recommendations
and alerts for the patient, which are delivered through the
Virtual Coach.

The results of the procedure described in section 2.5 are
reported in Figure 11A, for the five subjects [age (median −

IQR): 58.0 − 3.0, height (median − IQR): 176.0 − 7.0, weight
(median− IQR): 79.5− 8.0], different from the ones participated
in the validation studies for the motion capture module. As
in the previously reported validation studies, all five subjects
suffer from balance disorders due to chronic unilateral vestibular
dysfunction. Oral consents related to the scope of the study have
been given from all five patients. It is clear that the majority of the
produced messages (85.5%) were considered as correct while the
missedmessages were limited to 5.3%.

Finally, the same physiotherapist ranked the overall
performance of the patient in a scale of 0–100 in order to

FIGURE 10 | Bland–Altman analysis for gait parameters: (A) CoPx-WinTrack©

as reference, (B) Max pressure-WinTrack© as reference, (C) Double

support-WinTrack© as reference, (D) Single support-WinTrack© as reference,

(E) Stride time-WinTrack© as reference, (F) Step time-WinTrack© as reference,

(G) Cadence-RehaGait© as reference, and (H) Stride time-RehaGait© as

reference.

assess the motor score described in section 2.5. The regression
analysis of the collected data (R2 = 0.78) provides the proof of
concept for the applicability of the proposed framework.

5. DISCUSSION

Virtual coaching in healthcare is an emerging technology, which
is expected to improve the quality of patient management
while reducing cost. During the last few years, several virtual
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FIGURE 11 | Validation results for the scoring functions: (A) Online scoring and (B) offline scoring.

coaching systems have been proposed, as discussed in section
1. Yet, as a recent review concludes (33), rehabilitation
is a medical area that is underrepresented in the virtual
coaching arena.

This work proposes a full-scale closed-loop virtual coaching
system for managing balance disorders. The system consists of
a sensing platform, an augmented reality avatar, and a motion
capture and evaluation agent. This agent intents to mimic
the presence of a physiotherapist and provides guidance and
encouragement to the user.

While a full-scale pilot study is ongoing, which is expected
to provide more evidence about the benefits of the proposed
scheme, a proof-of-concept study suggests that virtual coaching
can benefit rehabilitation programs on balance disorders.
More specifically, a motion capture and assessment module,
which constitutes the basis of the overall virtual coaching
platform, is presented and its submodules are detailed.
Validation results on each individual submodule indicate that
the proposed approach can accurately capture and recognize
specific exercises related to balance physiotherapy programs.
Key factors for the correct operation of the coaching system
is the accurate and real-time capturing of the performed
exercise as well as the establishment of appropriate metrics
for quantifying it. Finally, the exercise assessment module
delivers meaningful and auxiliary notifications and alerts to the
patient during the performance of an exercise, as a validation
study indicated.

The proposed framework, integrated with an augmented
reality holographic avatar, can offer guidance and motivation
to people with balance disorders and assist them receive the
maximum benefits of specialized rehabilitation programs in their
home environment.
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