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Passive infrared motion sensors are commonly used in telemonitoring applications to

monitor older community-dwelling adults at risk. One possible use case is quantification

of in-home physical activity, a key factor and potential digital biomarker for healthy

and independent aging. A major disadvantage of passive infrared sensors is their lack

of performance and comparability in physical activity quantification. In this work, we

calibrate passive infrared motion sensors for in-home physical activity quantification with

simultaneously acquired data from wearable accelerometers and use the data to find

a suitable correlation between in-home and out-of-home physical activity. We use data

from 20 community-dwelling older adults that were simultaneously provided with wireless

passive infrared motion sensors in their homes, and a wearable accelerometer for at

least 60 days. We applied multiple calibration algorithms and evaluated results based on

several statistical and clinical metrics. We found that using even relatively small amounts

of wearable based ground-truth data over 7–14 days, passive infrared based wireless

sensor systems can be calibrated to give largely better estimates of older adults’ daily

physical activity. This increase in performance translates directly to stronger correlations

of measured physical activity levels with a variety of age relevant health indicators and

outcomes known to be associated with physical activity.

Keywords: sensor calibration, pervasive computing, passive infrared, physical activity, older adults, outing

imputation, ambient assisted living, telemonitoring

INTRODUCTION

Population aging poses unprecedented global challenges to modern health care systems, economies
and last but not least, society as a whole (1, 2). Modern information and communication technology
has the potential to contribute in overcoming some of these challenges (3–5). This includes the use
of pervasive computing technology, such asmicroprocessor enhanced objects of everyday life. Small
sensing devices like smartwatches or smart home appliances may be used to provide continuous
remote monitoring of relevant health indicators and outcomes (4), increasingly referred to as
digital biomarkers (6–8). These may allow for early detection of health deteriorations, enabling
for instance better preventive measures or earlier interventions (9, 10). Additionally, monitoring
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of relevant digital biomarkers by means of pervasive computing
technologies could allow for continuous assessments of chronic
conditions and help in evaluating intervention efficacy (9, 11).

Physical activity (PA) is associated with a wide range of
health benefits, including lower rates of all-cause mortality,
non-communicable diseases, cardiorespiratory and muscular
fitness across all age groups. Regular PA also helps to protect
against frailty, sarcopenia, and cognitive decline (12–14).
Wearable technologies, known as wearables, that can track
individual’s PA behavior are popular consumer items with a
worldwide distribution, particularly in younger and middle-
aged populations. Also, wearable accelerometers are a well-
accepted method to objectively measure PA in everyday life
(15–17).

While wearable devices like smartwatches, smartphones or
fitness trackers would be ideal to track a variety of health
relevant markers like physical activity, post-implementation
based experience, including our own, point toward a clear
preference for unobtrusive contactless sensing devices (9).
Reasons for that may include a certain social stigma associated
with visibly wearing devices amongst peers (18, 19), difficulty
in handling them, added discomfort of having to think about
charging and wearing a device (20), as well as skin irritations
related to long-term biosensor wear (intensified by sweat in
summer). While some of the mentioned issues are related
to the perception of the current generation of older adults
toward technology, handling wearable devices that need regular
maintenance, can also be problematic for older adults with
motor, cognitive, and especially memory related, issues. However,
the alternative, wireless ambient sensors, are oftentimes either
less accurate (for instance infrared sensors or bed motion
sensors) or overly intrusive (for instance video or audio-based
recording devices).

The use of wearable devices for initial calibration of less
accurate but unobtrusive ambient sensors for PA quantification
is a novel approach that could minimize the burden of
wearing a device, while improving the reliability and thus
usefulness of unobtrusive ambient sensors for physical activity
tracking significantly. A similar strategy was employed with
passive infrared (PIR) sensor based gait-speed estimation, where
calibration was performed using a sensor array as ground-truth,
but as the authors state, another source, such as a wearable device,
could have been used (21).

PIR motion sensors are rather inexpensive, contactless,
and unobtrusive. Therefore they are commonly used in long-
term in-home monitoring settings with older adults (9, 11,
22–26). We have previously shown that in-home physical
activity, quantified by PIR motion sensors can be used to
approximate physical activity in old and oldest-old community-
dwelling adults (26). However, the PIR motion sensor-based
approach has two main disadvantages: (1) baseline activity
comparisons of absolute values between participants are difficult
if apartments and sensor placements differ and (2) it is unclear
how to address outings correctly. We aim to address both
problems by using the much more accurate and well-validated
accelerometer based physical activity, to initially calibrate the
ambient sensor systems.

METHODS

Participants
The data used for this work stems from a study where modern
pervasive computing systems were evaluated for telemonitoring
in older adults (26). Participants were part of the StrongAge
cohort in Olten (Switzerland) (27) and should represent a
naturalistic population sample of community-dwelling, alone-
living, old and oldest-old adults in Switzerland. We included all
participants that had at least 60 days of wearable activity data
recorded (first 30 days reserved for calibration and ≥30 days for
evaluation) in this analysis, totalling 20 participants (age = 88 ±
8 years). The 60 days were chosen to include as many participants
in the dataset as possible while guaranteeing a minimal number
of data points.

The original study was conducted based on principles defined
in the Declaration of Helsinki and approved by the Ethics
Committee of the canton of Bern, Switzerland (KEK-ID: 2016-
00406). All subjects signed and handed in an informed consent
before study participation.

Pervasive Computing Systems
In this work we made use of the DomoCare R© home
monitoring system for older adults (DomoSafety S.A., Lausanne,
Switzerland), the same as in (26). The system consists of PIR
motion sensors (sampling at 0.5Hz) placed in the participant’s
apartment. Kitchen, toilet, living-room, entrance, and bedroom
were always equipped with at least one sensor, if a separate
bathroom was present it was equipped with a sensor as well. In
addition, a magnetic door sensor was placed on the entrance and
fridge door, respectively. All sensing units communicate via the
ZigBee protocol with a base unit, that then sends data to a secure
cloud in real-time. The PIR system allows motion detection in
individual rooms based on changes in infrared radiation caused
by human activity (28). The door sensors allow outings to be
calculated based on entrance door opening and closing events,
as explained in (29).

For the calibration of the PIR sensor system we used the
medical grade Everion R© biosensor worn on the upper arm
(Biovotion AG, Zürich, Switzerland). Amongst other sensors,
the device contains a 3-axis accelerometer that samples at
50Hz and outputs/stores aggregated and standardized activity
(vector magnitude) at 1Hz. The participants wore the device
throughout the daytime and put it on an inductive charger
overnight. While charging the device, data was transmitted
to a smartphone via Bluetooth Low Energy which was then
encrypted and automatically transferred to a secure cloud.
Data from DomoCare R© systems was first stored on cloud
instances from DomoSafety S.A. located in Switzerland and
data from the Everion R© was initially stored on instances at the
University of Bern. Post collection, all data was subsequently
transferred to local servers and ingested into an OmniSci
(OmniSci, San Francisco, CA, United States) analytics database
instance after quality control. A schematic including the data
structure is available in the Appendix. To initially ensure
accelerometer validity, we compared values from the Everion R©

with the widely used and validated (30) Axivity AX3 (Axivity
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Ltd., Newcastle, UK), 3-axis accelerometer [calibrated to local
gravity and temperature, as described in (31)] and found good
overall agreement.

Problem Definition
There are three major limitations related to the use of PIR sensors
for PA quantification: (1) Motion measured by the commonly
used simple PIRmotion sensors is converted to a binary response,
zero if there was no change in infrared radiation above the
sensor’s sensitivity threshold and one otherwise. It is thus
apparent, that simple PIR motion sensors cannot differentiate
between the intensity of the motion, unlike a body attached
accelerometer; (2) the angle and distance to a sensor can influence
if and how long motion is being detected; (3) the size of equipped
rooms and the apartment layout in general can lead to different
results for the same amount of physical activity exerted by a
person. As a result, even if the same person performed the
exact same finite set of activities A = {a1, . . . , an} in different
PIR motion sensor equipped apartments, measures of these
activities between the PIR motion sensor measurement functions
fPIR :A → MPIR;MPIR ∈ R+ and the accelerometer facc : A →

Macc, Macc ∈ R+ would likely differ widely. Now in reality, this
simplification is not exactly true, because certain activities ai will
be measured by the accelerometer but not by the PIR sensors—
for instance when a person is outside the apartment, outside the
field of view of the PIR sensors or in a non-equipped room.
This gives rise to a subset of all measured activities Ã ⊆ A =
{

ai | ai ∈ A, ai ∈ dom(fPIR)
}

. We will henceforth refer to facc

that is only defined over this subset as f̃acc : Ã → M̃acc.
The idea of initial calibration is then to find a mapping

f̂PIR : Ã → M̂PIR, such that for a given activity ai, the Euclidean
distance between the calibrated PIR motion measurement
function f̂PIR and the domain restricted accelerometer

measurement function f̃acc is minimized, which can be thought
of as a classic regression objective:

min

√

(

f̂PIR (ai) − f̃acc (ai)
)2

∀ i = 1 . . . n

Well-calibrated f̂PIR functions from different PIR sensor
equipped apartments should then allow that somewhat similar
results are obtained for a given activity, since facc, given a certain
activity ai should be similar across apartments. This assumption

is only true if the difference between f̃acc and facc is not too
large and the accelerometer intensity measurements between
participants is mostly comparable. The latter assumption is likely
true as for instance described in (32), while the former is largely
apartment and person specific but may be improved upon by
including an estimate for activity while outside.

Learning Calibration Function
To find a suitable function f̂PIR, or in this case a distribution over

f̂PIR we propose to use Gaussian process regression, such that

f̂PIR ∼ GP
(

µ, k
)

, where µ (A) = 0 is the standardized activity

mean and k
(

A,A
′
)

the activity covariance function. Gaussian

process regression (GPR) provides various characteristics that

are likely useful in our calibration scenario. First, it allows non-
linear relationships to be modeled and is non-parametric (33).
In addition, GPR is known to work well with relatively little
data and allows a predictive distribution to be obtained, which
can help in detecting model uncertainty (33, 34). The included
epistemic model uncertainty could be helpful post calibration
as it could allow for quantification when patterns not seen
during calibration occur, and give respective warnings if total
uncertainty increases.

In the shown experiments we ended up using k
(

ai, aj
)

=

σ 2
0 + ai · aj + σ 2

n δij, as kernel defining the covariance function,
where δij is a Kronecker delta, σ 2

n is a learnable bias term
and σ 2

0 is a learnable noise constant representing additional
homogenous aleatoric uncertainty in the activity measurements
(33). To give a comparison how other, more traditional
algorithms might perform, we additionally evaluated calibration
performance with a regular linear regression (LR) algorithm
and the popular XGBoost (XGB) implementation (35) of a tree
boosting algorithm. The GPR kernel and hyperparameters for
the other algorithms were selected by means of 3-fold cross-
validation (splitting at the participant level) and random search
(36). It is rather difficult to assess the usefulness of the predictive
distribution, obtained by the marginal normal of the GP, in a
realistic manner. We try to quantify its utility by calculating the
linear correlation between the daily average MAEdp (see below)
and the daily average uncertainty estimate (the σ of the marginal
Gaussian distribution).

Data Pre-processing and Representation
We represent individual activities ai as activity bouts/islands and
describe their characteristics in vector space. The activity islands
are extracted by first applying a simple moving average low pass
filter, with 1-min length, to the total PIR motion activity signal
(the sum of the duration where all PIR motion sensors in an
apartment were active) and then extracting the activity islands
(stretches where low-pass filtered activity is constantly > 0).
Based on these islands we calculate the following features that
can be used to summarize the islands in vector space: the total
duration of the island, the hour of the day, the duration PIR
sensors detected activity for each equipped room and the relative
activity of each room with respect to the total island duration.
Corresponding activity from the wearable accelerometer was also
extracted and summed over the island duration, giving us the
target activity facc. The feature matrix was standardized to have
zero mean and unit variance across column.

Statistical Evaluation Metrics
First, it should be noted that evaluation was always performed on
all available data beyond the initial 30 days that were reserved for
calibration. Throughout this work we refer to multiple evaluation
metrics that are explained here. First, the mean absolute error
MAEp between the activity estimate for each activity island and
its corresponding accelerometer activity was calculated for each
participant p. MAEdp refers to the same but averaged over a day
d. Second, to measure the proportionality of calibration, the
Pearson correlation coefficients ρp between the sum of estimated

post calibration activity F̂dPIR =
∑

ai∈d
f̂PIR (ai) per day d and the
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sum of total accelerometer activity Fdacc =
∑

ai∈d
facc (ai) per day

d were calculated. Similarly to ρp, we calculate ρ̃p the Pearson
correlation coefficient between the sum of daily calibration
activity F̂dPIR and domain restricted sum of accelerometer activity

F̃dacc =
∑

ai∈d,ai∈Ã
f̃acc (ai). For all metrics, the sample average

over all participants can be calculated, resulting in the global
MAE, ρ and, ρ̃.

Determining the Amount of Wearable
Ground-Truth Data
To assess the relationship between wear-time and calibration
performance, we performed calibration with 1 day, 7 days, 14
days 21 days, and 30 days of accelerometer data and calculated ρ̃

and MAE for each wear-time point and each learning algorithm
(as results may be algorithm dependent).

Evaluation of Post-calibration
Performance Evolution
One of the main concerns about this kind of calibration
procedure is the potential degradation that calibration quality
could be subjected to over time as a result of a shift in the data
generating distribution (e.g., as a result of changing behavior or
seasonal patterns). To assess the potential for degradation, we
calculated the weekly averageMAE for all participants over thirty
consecutive weeks (if data was available). To ensure similar scales,
we first standardize weekly averages by removing the median and
scaled data with respect to the interquartile range. Finally, for
each week, the global average was taken, and a regression line
estimated. The p-value of the slope coefficient was then used to
determine whether the parameter differed significantly (based on
α = 0.05) from 0, allowing one to decide whether any relevant
trend might be present.

Effect of Calibration on Correlations With Clinical
Assessments
To evaluate how calibration influences overall relationships with
health indicators and outcomes, we calculate the non-parametric
Spearman’s rank correlation coefficients r between median daily
total activity and the mean of the respective clinical assessments
(if multiple were taken per participant over the same duration).
Clinical assessments include: the fall-risk focused Timed Up and
Go (TUG) (37), the balance and gait focused Tinetti Performance
Oriented Mobility Assessments (POMA-b and POMA-g) (38),
the late life depression focused Geriatric Depression Scale (GDS)
(39), the cognition focused Montreal Cognitive Assessment (40),
the frailty focused Edmonton Frail Scale (EFS) (41) as well as
muscle force focused handgrip, hip flexor and knee extensor
strength. To assess whether there are statistical differences
between pre- and post-calibration, we apply the non-parametric
Wilcoxon signed rank test to the absolute correlation values
under the alternative hypothesis that post-calibration values are
on average greater compared to pre-calibration values.

Time Spent Outside
To assess overall PA, time spent outside the home needs to be
considered. In our case, using PIR in-home sensors, PA outside
the home can be seen as blocks of missing data.

A common strategy to deal with missing data is called
imputation, which refers to replacing missing data with
substitutes (for instance a variable’s mean over all observed
values) (42). Imputation can often work reasonably well, if the
data is “missing completely at random” or “missing at random”
(42). Given that outing likely involves more physical activity than
being inside, it may be impossible to correctly impute physical
activity of outing periods. Fortunately, access to calibration data
from a wearable (given the wearable is also worn outside, which
is true in our case), allows us to estimate a factor τp (for each
participant p) by which the expected inside activity should be
multiplied with. To calculate this factor, we first calculate outings
according to (29) and then for each outing we divide the physical
activity measured by the accelerometer with the average activity
of the accelerometer during the same time of day, when the
person was at home. Eventually, the median of these ratios gives
us τp. A global factor τ can then be calculated by averaging over
all individual participant’s τp. As we are dealing withmissing time
blocks, we use temporal means—similar to what has been used
for imputing non-wear time intervals with accelerometers (17,
43). That is, the expected activity sum for the given time-interval
(when the outing occurred) over all observed days. To evaluate
the effect of this imputation procedure on overall calibration,
the evaluation metric ρ̃ is calculated using (1) temporal mean
imputation, (2) temporal mean imputation with factor τp and (3)
temporal mean imputation with factor τ .

All data processing, analyses and plotting have been
performed with the Python (Python Software Foundation)
scripting language (version 3.7). For the LR and GPR algorithm
implementations from Scikit-learn library (44) were used. In
case of the XGB algorithm, the official Python implementation
was used.

RESULTS

Calibration Results With Differing Amounts
of Data and Learning Algorithms
In Figure 1, we visualized evaluation metric ρ̃ and MAE for
1, 7, 14, 21, and 30 days of calibration data in combination
with the proposed GPR based calibration as well as LR and
XGB based calibration. It should be noted, that for both
evaluation metrics, the largest increase in performance can be
seen between one and seven days of calibration data (from
wearable accelerometer). Beyond 14 days, more data leads to
increasingly smaller improvements. In case of the correlation
coefficient ρ performance saturation seems to be reached by 21
days, while in case of the MAE saturation is not completely
evident, even after 30 days. In terms of the learning algorithms

used to approximate the activity calibration function f̂PIR, it is
visible how GPR shows the best performance with little data
up to 14 days. After that, GPR is mostly on par with LR
and starts losing in comparison to XGB. Correlation values ρ

show an average of 0.84 after 14 days. Note that all results
displayed downstream were based on the 14 days calibration
data case.
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FIGURE 1 | Visualization of data and algorithm dependent calibration performance. Performance of algorithms used for calibration of passive infrared sensor systems,

with respect to physical activity measured by wearable accelerometers. The learning curves show the performance across all 20 participants of the calibration method

against the number of days of accelerometer reference data. The different line colors show different learning algorithms used for calibration (LR, Linear Regression;

XGB, XGBoost; GPR, Gaussian Process Regression). The left plot shows the Pearson correlation coefficient ρ̃ as evaluation criterion (higher is better), while the right

plot shows the mean absolute error (MAE) evaluation criterion (lower is better). With GPR, only 7–14 days of reference accelerometer data is necessary to obtain a

mapping quality, which can only be marginally improved upon with additional data.

FIGURE 2 | Post calibration performance evolution. shows evolution of average calibration performance, up to 30 weeks post calibration. Individual colored lines

represent standardized MAEd
p for a given week of each participant, while the black line represents the standardized MAE over all participants for a given week We

observe that even up to 30 weeks (∼7 months) post-calibration an initial calibration using 14 days of accelerometer data remains valid.

Post-calibration Performance Evolution
Visually, it is difficult to discern any sort of overall deterioration
throughout 30 weeks post calibration, beyond some short-term
variation (see Figure 2). Regression analysis of MAE against
time, further reveals that the slope is not statistically significant
(p= 0.262).

Impact of Calibration on Age Relevant
Health Indicators and Outcomes
Results showing correlations of clinical assessments using
calibrated and uncalibrated activity from the ambient sensor
system as well as the accelerometer, demonstrate how calibration

leads to increases in correlation for all assessments except hip
extensor strength. Oftentimes post-calibration correlations reach
strengths close to the accelerometer gold standard (see Table 1).
Results based on the Wilcoxon signed-rank test, additionally
suggest that the differences in correlations between pre- and
post-calibration are statistically significant (n= 8, p= 0.004).

Handling Outings
We found that for most participants time spent outside the house
leads to more activity compared to the average of the same time
they spent at home. On average the ratio of activity outside vs.
inside was found to be 1.38. However, depending on the person
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TABLE 1 | Participant characteristics and demographics.

Pre-calibration Post-calibration Accelerometer

TUG −0.42 −0.57 −0.54

POMA–b 0.51 0.66 0.66

POMA-g 0.49 0.56 0.65

GDS −0.43 −0.61 −0.64

MoCA 0.68 0.85 0.80

EFS −0.56 −0.64 −0.65

Handgrip right 0.39 0.49 0.48

Hip right 0.37 0.36 0.34

Shows Spearman’s rank correlation coefficient rs between clinical assessment results and

median daily activity sum of the ambient system, pre- and post-calibration, as well as from

the worn accelerometer sensor.

FIGURE 3 | Distribution of inside-outside activity ratios. Histogram of the ratio

between time spent outside and inside the home. The average value is 1.38

across all included participants. These values are based on data from a

wearable accelerometer sensor.

this ratio can be quite a bit different, ranging from 0.92 up to 1.82.
The distribution is visualized as a histogram shown in Figure 3.

We further found that by temporal mean imputing, ρ (the
correlation to overall daily accelerometer activity) increases in
most cases. Regarding the type of temporal mean imputation,
using no coefficient seems to lead to significantly lower
correlation values compared to using a person specific coefficient
(p = 0.0007) or a static coefficient value (p = 0.0007), between
which no significant difference (p = 0.8) was found (see
Figure 4).

Predictive Distribution
To evaluate the potential usefulness of a predictive distribution
we assessed how well it correlates with the daily MAEdp for
each participant. The median correlation coefficient across all
participants was 0.49 ± 0.15 (min = 0.1, max = 0.67). An
example of a decent correlation is given in Figure 5.

DISCUSSION

We found that using even relatively small amounts of wearable
based ground-truth data, PIR based wireless sensor systems
can be calibrated to considerably improve estimates of older
adults’ daily physical activity. We could additionally verify,
that this increase in performance directly translates to stronger
correlations of the measured physical activity levels with a
variety of age relevant health indicators and outcomes, known
to be associated with physical activity. This indicates that the
performance gained by calibration is not only present on paper
but also manifests itself in physical activity readings that capture
relations to health significantly better than would be the case
without calibration.

Deciding on the necessary amount of wearable data, sufficient
for calibration, is a rather subjective and task specific matter,
as it is a trade-off between calibration performance and wear-
time. In our case, calibrating a PIR motion sensor system, 7–14
days seem to give reasonable results, with diminishing additional
benefit employing longer calibration periods. We also observed
that the optimal type of algorithm, approximating the calibration

function f̂PIR, seems dependent on the amount of available
calibration data. For small amounts of calibration data, GPRmay
be considered the best choice—which is a known property of
GP based approaches (45). As a side note, in our case a linear
kernel proved to be the best parametrization, which would be
equivalent to using a Bayesian linear regression algorithm, but
the GP view might still be more effective given little data (46).
This also explains why the GPR results largely converge to the LR
results given more data. On the other hand, the XGB algorithm
leads to slightly better performance, given more than 14 days
of calibration data, which would be the expected behavior for
an algorithm with much more learning capacity. Now, since we
want to restrict the necessary wear-time to a minimum, GPR
is, as we initially assumed, a suitable algorithm for the task.
An additional benefit of GPR’s Bayesian nature, is the included
predictive uncertainty, which we think can be quite useful as it
often indicates a simultaneous increase in model error and may
thus be used to diagnose when a calibration model’s performance
degrades. For our data (see Figure 5), however, we found no
significant degradation in calibration performance up to 30 weeks
post calibration, indicating that calibration is overall relatively
stable and resilient toward smaller potential perturbations.

It comes as no surprise that it is important to somehow
factor in the time spent outside, else, physical activity of people
spending a lot of time outside would be vastly underestimated.
The question, as how to best deal with outings in this scenario
does however remain open and we did not find any work
assessing this in community-dwelling old and oldest old adults.
Our findings suggest that just replacing time spent outside with
the average activity throughout a given time-interval is a valid
strategy, leading to significant calibration improvements but does
in most cases underestimate physical activity as old and oldest-
old adults tend to be more physically active when outside. We
found our participant population to be, on average, 1.38 times
as physically active when outside, compared to if they were
inside at the same time of the day (see Figure 3). Using this
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FIGURE 4 | Comparison between multiple imputation strategies to handle outing. Displayed is the correlation between the total daily calibrated activity and the total

accelerometer activity. In the case of the blue line, simple temporal imputation has been used to substitute missing physical activity due to outings. The orange line

denotes the case where in addition to temporal mean imputation a global correction factor was added, whereas with the green line a person specific correction factor

was used. Red denotes the baseline, where outings where not imputed at all.

FIGURE 5 | Correlation between daily average mean average errors and predictive uncertainty. Shown is the example of a participant, where we plotted the daily

average MAEd
p and the daily average predictive distribution (both mean aggregated on a week level) as given by the marginal normal of the GPR.

knowledge, it is possible to further improve outing imputation,
correcting somewhat for the bias caused by outing. Interestingly,
no improvements were seen between using a static global factor
and employing a person specific factor, suggesting, that even if
no accelerometer ground-truth was available, outings may be
corrected by a factor of around 1.4. We are not exactly sure why
this is, but it may be due to the fact that we are using a very
rough estimate anyways and the exact factor would only have an
effect if our estimates were more accurate. However, this finding
merits further investigation in different populations and under
varying circumstances.

Using short-term data from a more accurate wearable device
seems to work well for calibrating wireless PIR ambient sensor

systems. Given that previous research on the calibration of PIR
sensor systems to measure gait-speed also led to very promising
results (21), such relatively simple initial calibration procedures
should be considered in future long-term telemonitoring
applications and research employing wireless PIR sensors.

After all, our calibration procedure has its obvious limitations
and problems. In general, it should be noted that due to
the relatively small sample size, generalization of our results
involving statistical inference may be limited. Regarding the
calibration procedure, most PIR sensors have relatively low
sampling rates due to the having a refractory period and a
restricted field of view. This makes it virtually impossible to
get a completely accurate estimate of the real physical activity,
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as we would get by using a high-frequency accelerometer. This
means that there will likely always be a certain underestimation
of physical activity even after calibration, as certain activities
are just missed by the PIR system. Further, we should add
that the approach can only function if someone is living alone.
Although some work suggests PIR installations may be usable in
a multi-person setting, this is likely not the case with physical
activity quantification. Another problem is variance in results
between participants (as can be easily seen in Figure 4). For
certain people it did not seem possible to get a good calibration
(although still slightly better than baseline), and even after in-
depth manual investigation, in two instances we did not find any
reasonable explanation for this behavior. Possible explanations
could be that there were not enough sensors in a room, that
the sensors were not placed ideally, or that the person’s behavior
makes it inherently difficult to capture physical activity using
PIR sensors—for instance someone that is regularly taking care
of the neighbor’s pet. This is another important argument in
favor of using reliable data for calibration of wireless systems.
By employing cross-validation it is straight forward to identify
installations for which there is a large disagreement before
and after calibration, this also allows to manually check for
potential biases using Bland-Altman plots. Considering medical
applications, the validity of data coming from non-invasive
ambient motion sensors is of particular importance for building
up trust with this new technology, and may in that way allow
for broader application. We would thus advice work related to
contactless health monitoring to use more accurate and validated
wearable devices for initial calibration and sanity checking of
wireless sensors. Future work might evaluate similar calibration
procedures applied to other modalities like contactless heart rate
or breathing rate sensing. In addition, it would be very interesting
to further investigate the found activity outside to activity inside
ratio in larger populations of community-dwelling older adults.

CONCLUSION

We found that using calibration data from a wearable
accelerometer, collected over 7–14 days, significantly improves
physical activity estimates of wireless passive infrared sensor
systems. This leads also to significantly stronger correlations
with health indicators and outcomes, known to be associated
with physical activity. Bayesian methods like Gaussian process
regression, that work well with small datasets and provide an
inherent predictive distribution, which can help in diagnosing

when a calibration function deteriorates over time—for instance
due to changes in a person’s behavior. Time-spent outside should

be imputed with the average activity throughout the same time
period at home, multiplied by an individual outing factor. If an
individual outing factor is not available, a factor of ∼1.4 may
be used.

We conclude that using even relatively small amounts of
wearable based ground-truth data over 7–14 days, PIR based
wireless sensor systems can be calibrated to give largely better
estimates of older adults’ daily physical activity. This increase
in performance translate directly to stronger correlations with a
variety of age relevant health indicators and outcomes known to
be associated with physical activity.
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APPENDIX

While most fields are self-explanatory, we describe some details
regarding fields used in the calibration procedure. The “duration”
attribute of the PirMotions table refers to how many seconds
a given sensor was reporting motion. The location attribute
of the same table describes the room the sensor was in
and the time_ the exact time of the firing (in UTC). The
activity field of the Biovotion1 table represents the normalized

activity values stemming from the device’s accelerometer and
the time_ describes the exact measurement time (in UTC). The
DoorSensors table’s location field refers to the location the sensor
was placed—in this work only entrance sensors were relevant.
The status attribute describes whether the door was opened or
closed and the time_ attribute denotes the exact time of this event
(in UTC).

FIGURE A1 | Schematic of sensor data acquisition and final data structure.
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