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Introduction: Cancerous Tissue Recognition (CTR) methodologies are continuously

integrating advancements at the forefront of machine learning and computer vision,

providing a variety of inference schemes for histopathological data. Histopathological

data, in most cases, come in the form of high-resolution images, and thus methodologies

operating at the patch level are more computationally attractive. Such methodologies

capitalize on pixel level annotations (tissue delineations) from expert pathologists, which

are then used to derive labels at the patch level. In this work, we envision a digital

connected health system that augments the capabilities of the clinicians by providing

powerful feature descriptors that may describe malignant regions.

Material and Methods: We start with a patch level descriptor, termed

Covariance-Kernel Descriptor (CKD), capable of compactly describing tissue

architectures associated with carcinomas. To leverage the recognition capability of

the CKDs to larger slide regions, we resort to a multiple instance learning framework.

In that direction, we derive the Weakly Annotated Image Descriptor (WAID) as the

parameters of classifier decision boundaries in a Multiple Instance Learning framework.

The WAID is computed on bags of patches corresponding to larger image regions for

which binary labels (malignant vs. benign) are provided, thus obviating the necessity for

tissue delineations.

Results: The CKD was seen to outperform all the considered descriptors, reaching

classification accuracy (ACC) of 92.83%. and area under the curve (AUC) of 0.98.

The CKD captures higher order correlations between features and was shown to

achieve superior performance against a large collection of computer vision features on a

private breast cancer dataset. The WAID outperform all other descriptors on the Breast

Cancer Histopathological database (BreakHis) where correctly classified malignant

(CCM) instances reached 91.27 and 92.00% at the patient and image level, respectively,

without resorting to a deep learning scheme achieves state-of-the-art performance.

Discussion: Our proposed derivation of the CKD and WAID can help medical experts

accomplish their work accurately and faster than the current state-of-the-art.

Keywords: connected health for breast cancer, image descriptors, annotated data, histopathological data,

connected health and computer vision
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INTRODUCTION

About one in eight U.S. women (about 12%) will develop invasive
breast cancer over the course of her lifetime1. Even though
there is a widespread adoption of mammography, interpretation
of these images remains challenging. Some of the fundamental
morphological characteristics of malignant tumors includes (i)
an increased number of cell nuclei per unit area, (ii) increased
size of the nuclei, (iii) the nuclei staining darker than those of
benign cells (nuclear hyperchromasia), (iv) greater than normal
variability in the size and shape of nuclei, and (v) irregular
nuclear contours. Therefore, the number, irregularity, and
contrast of edges are all expected to increase in malignant tumors
compared with benign tissues as noted by Basavanhally et al. (1)
and Irshad et al. (2). The diagnostic questions pathologists face
depend on the clinical situation and the required characteristics
for determining whether a lesion is cancerous. The use of
Computer Aided Diagnosis (CAD) schemes can better assist
medical experts with their everyday tasks in determining whether
a lesion is cancerous or not, the geometric characteristics of the
location of the tumor, size, and its relation to the surgical margins
with anatomic and histological landmarks.

Cancerous tissue recognition (CTR) from histopathological
data is a particularly challenging task since it requires a close
examination of tissue slides from suspected regions under a
microscope which can be time-consuming hence constraining
the number of cases pathologists can handle daily.

An automated identification of the regions that are highly
likely to be cancerous can assist experts in finding them among
the surrounding tissues efficiently, resulting in faster diagnosis.
This is a part of a larger vision in digital connected health
that will enable clinicians not matter where they are located to
provide more informed assessments and decision-making than
the current state-of-the-art.

In order to be trained effectively, most available cancerous
tissue recognition (CTR) schemes require pixel level annotations,
collected in the form of tissue delineations from expert
pathologists [e.g., Sirinukunwattana et al. (3), Spanhol et al.
(4), Xu et al. (5), and Xu et al. (6)], which are then used to
produce labels at the patch level. Nevertheless, collecting such
delineations is error prone and depends on individual experts’
judgment toward identifying accurate transition boundaries
between healthy and tumorous tissues. In contrast, relaxing the
requirement for such tight tissue delineations and instead asking
for annotations only at the bounding box (or whole slide) level
can significantly reduce the effort from the experts. Similar
considerations have appeared in the medical image analysis
literature [e.g., Bejnordi et al. (7), Dundar et al. (8), Xu et al.
(5), and Xu et al. (6)]. However, to the best of our knowledge,
such studies have not looked at weakly-supervised inference from
the perspective of representation learning, which is the primary
contribution of this work. In this work, we propose a framework
for training cancerous tissue recognition (CTR) schemes in the
presence of weakly annotated data to expedite the analysis of
Hematoxylin & Eosin (H & E)-stained tissue samples.

1Breast Cancer: Statistics. Available online at: https://www.breastcancer.org/

We propose a two-step framework for recognition in breast
cancer data. Our key insight comes from the process by
which the tissue slides are stained, specifically, the Hematoxylin
& Eosin (H&E) staining scheme. This process gives unique
color and texture to the tissue samples, and our approach is
to derive a feature descriptor that leverages on these image
properties. First, we derive the Covariance-Kernel Descriptor
(CKD), a patch level descriptor that compactly describes tissue
architectures associated with malignant areas and achieves
superior performance on the problem of Cancerous Tissue
Recognition (CTR) against a diverse collection of image
descriptors including deep learning derived features. The origins
of the Covariance-Kernel Descriptor (CKD) in his area can be
traced in a previous work from our group by Stanitsas et al.
(9). Second, we devise the Weakly Annotated Image Descriptor
(WAID), an image descriptor geared toward larger slide regions
that capitalizes on the covariance-kernel descriptor (CKD). The
weakly annotated image descriptor (WAID) provides inference
on larger image regions, while uplifting the requirement for pixel
level annotations.

MATERIALS AND METHODS

Data Description
Fully Annotated Breast Cancer Database (FABCD)
For FABCD, tissue samples collected are Hematoxylin & Eosin
(H&E) stained (10), followed by high-resolution (10K × 9K
pixels) scans of tissue sections taken at x50 magnification on
a digital slide scanner. Medical experts (surgical pathologists)
were responsible for providing annotations corresponding to the
malignant and benign image regions. The annotated regions are
then divided into smaller disjoint patches of 150 × 150 pixels.
Twenty-one annotated images of carcinomas and 19 images of
benign tissue taken from 21 patients were combined toward
constructing the FABCD. Binary class labels are assigned to each
of the image patches in Figure 1. That is, those patches for which
more than 80% of the pixels correspond to carcinomas are treated
as the positive class, while patches in the negative class are devoid
of any cancerous regions.

Breast Cancer Histopathological Database (BreakHis)
BreakHis (11) contains data from 82 patients at four different
digital magnifications (40X, 100X, 200X, and 400X). For every
magnification level approximately 2,000 H&E-stained tissue
slides are collected of size 700 x 460 pixels, while binary labels
(benign vs. malignant) and ordinal (four types of malignant
and four types of benign) are provided. The magnification of
40x is aligned with the objectives of this study. Medical expert
is requested to provide images in the form of bounding boxes
surrounding suspicious regions of the whole slide as shown in
Figure 2.

Covariance-Kernel Descriptors (CKD)
In this work, we compute the region covariance descriptors
(RCDs) as proposed by Porikli et al. (12) over a set of features
extracted from every pixel in the image patch. In their basic
form, RCDs (denoted Cz) by Tuzel et al. (13) are generated as
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FIGURE 1 | Breast tissue H&E stained patches from 12 samples of the breast cancer dataset with the first three columns illustrating benign cases, while columns 4–6

depict image patches associated with carcinomas.

FIGURE 2 | BreakHis sample at 40x magnification for a malignant segment

tissue with a yellow bounding box indicating the approximate location of the

malignant tissue (for visualization purposes) surrounded by healthy tissue.

described in Equation (1), where fi ∈ Rd, are d-dimensional
features extracted from each pixel i ǫ {1,2,··· ,N} of an image patch
z, and µ is the mean feature given by µ = 1

N

∑N
i=1 fi.

Cz =
1

(N − 1)

∑N

i=1

(

fi − µ
) (

fi − µ
)T
. (1)

We consider a 5-dimensional RCD consisting of the normalized
intensities of the three channels R, G, and B of a color patch
combined with first-order gradient information along the x and
y axis, as denoted by Gr xi and Gr

y
i respectively. That is, our fi has

the following form (for pixel i in the image patch):

fi =
[

Ri Gi Bi Gr
x
i Gr

y
i

]T
. (2)

Covariance-kernel descriptors (CKDs) are computed as the
fusion of the Region Covariance Descriptors (RCDs) (12) and
Normalized Color Histograms (NCHs) (in conjunction with the
work in (14)) that are used to reveal information uncovered
by the Hematoxylin & Eosin (H&E) staining. Toward deriving
the NCH, for a given patch, we computed color histograms
consisting of 256 bins each for the R, G, and B color channels; this
histogram is normalized to sum to one and concatenated to form
a 768-dimensional feature descriptor for the respective patch.
RCDs compute the feature correlations at the pixel level (local)
in a patch and in that way capture texture and shape in the patch
implicitly. In contrast, NCH represents global color information
at the patch’s vicinity. The combination of both global and
local information captures complementary cues for recognition
which are essential. However, rather than concatenating the three
histograms, as in the case of NCH, we combine them to formulate
a matrix H ǫ R3×b, where each row corresponds to the b-bin
histogram on a channel and enables us to capture global color
correlations via the modality HH

T . In that way, for an image
patch z, the CKD is computed in the form of a compact block
diagonal symmetric positive definite (SPD)matrix descriptor that
contains in its first block the RCD denoted by Cz , while the
second block captures the correlations between the histograms
computed on the three color channels of the image patch, as
formally defined in Definition 1.

Definition 1. (Covariance-Kernel descriptor). The
Covariance-Kernel descriptor, for an image patch z is defined as:

Dz =

[

Cz + ǫ Id1 0d1
0d2 HzH

T
z + ǫ Id2

]

(3)

where ǫ > 0 is a very small constant, d1 and d2 are equal
to the dimensionality of Cz and HzH

T
z respectively, 0d1 and

0d2 are square zero matrices of dimension d1 and d2 respectively,
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while Id1 and Id2 are the identity matrices of dimension d1 and
d2 respectively.

Given that the 3 x 3 histogram correlation matrix HzH
T
z + is

positive definite, and thus a valid Mercer kernel, we further
improve its representational power by computing the
correlations via a kernel function. That is, suppose hc ∈ Rb

denotes a histogram vector (where ∈ {R,G,B}), then we replace
the Gram matrix HzH

T
z in (3) by a kernel matrix Kz defined by

K
(

hc1, hc2
)

= ϕ
(

hc1
)T

ϕ(hc2) for c1, c2 ∈ {R,G,B} and a feature
map ϕ. For our task, the linear kernel performed the best among
the χ2, Radial Basis Function (RBF) and polynomial kernels.

Theorem 1 (positive definiteness of the CKD). For an image
patch z, its corresponding CKD, Dz is an SPD matrix. That is:

vTDzv > 0,∀v ∈ Rd − {0d } (4)

Proof: Let v =
[

vTC vTH
]T

, where vC ∈ R
d1, vH ∈ R

d2 with d1

and d2 corresponding to the size of Cz and HzH
T
z respectively.

That way

vTDzv =
[

vTC vTH
]

[

Cz + ǫ Id1 0d1
0d2 HzH

T
z + ǫ Id2

]

[

vTC vTH
]T

= v
T
C (Cz + ǫ Id1) vC + v

T
H

(

HzH
T
z + ǫ Id2

)

vH (5)

Since Cz � 0 and HzH
T � 0 they both become SPD via a small

additive perturbation on their diagonal. Thus, both terms of the
summation become positive, validating that vTDzv > 0.

Geometry of CKD
While the CKD already uses rich non-linearities to capture useful
higher-order cues in the data, the positive definiteness structure,
as shown in Theorem 1, further allows the use of non-linear
geometries to significantly improve the recognition performance.
That is, instead of using a Euclidean distance to measure the
similarity between two SPD matrices, a non-linear measure is
used which governs the geometry of the space of these matrices.

In our experiments, we adopt two suchmeasures for efficiently
computing similarities between SPD matrices, namely (i) the
Log-Euclidean Riemannian metric, and the recently introduced
(ii) Jensen-Bregman Logdet Divergence. Of these two, (i) also
defines a Riemannian geometry to the space of SPD matrices
and is a geodesic distance, while (ii) defines an information
geometry-based similarity measure.

First, the Log-Euclidean Riemannian Metric (LERM) Arsigny
et al. (15) is described in Equation (6) for a pair of CKDs Di

and Dj. In Riemannian geometry, the set of symmetric matrices
forms a tangent space for the Riemannian manifold of SPD
matrices, and the space of symmetric matrices is isomorphic to
the Euclidean space. Thus, taking the matrix logarithm embeds
the SPD matrices into a flat tangent space of symmetric matrices
on which the usual Euclidean distance can be used for similarity
computations. The Euclidean distance is:

LERM
(

Di, Dj

)

: =
∥

∥Log (Di) − Log
(

Dj

)∥

∥

F
(6)

where Log (.) is the matrix logarithm and ‖ .‖F is the
Frobenius norm.

Second, the Jensen-Bregman LogDet Divergence (JBLD), first
proposed by Cherian et al. (16), is also considered for similarity
computations. In contrast to LERM, JBLD retains the rich
non-linear geometry of the space of SPD matrices, and at the
same time is computationally cheaper as the matrix logarithms
are replaced by matrix determinants which can be computed
efficiently via Cholesky factorization.

JBLD (Di, Dj) : = [log

∣

∣

∣

∣

Di + Dj

2

∣

∣

∣

∣

−
1

2
log

∣

∣DiDj

∣

∣]
1/2

(7)

where |A| is the determinant of SPD matrix A.

Weakly Annotated Image Descriptor (WAID)
In an effort to broaden the recognition abilities of the CKD
to larger tissue regions (and potentially whole slides) we resort
to Multiple Instance Learning (MIL) (17). In the MIL setting,
we only need to know if there is at least one patch that is
benign or malignant in a whole slide, usually called a bag, and
the MIL formulation needs to incorporate the task of inferring
which instance in the bag belongs to the concerned class. Similar
considerations were presented in Wang and Cherian (18) for
activity recognition in a deep learning framework. Our scheme
differs from the work in Wang and Cherian (19) in that WAID
is computed on symmetric positive definite (SPD) matrices
whose geometry is different from descriptors used in action
recognition in Wang and Cherian (19). The proposed Weakly
Annotated Image Descriptor (WAID) uses the MIL setup to
provide annotations at the bag level thus relaxing the requisite for
tissue delineations and is devised as the parameters of decision
boundaries between positive bags and negative bags.

To formalize the derivation of the WAID, we let a weakly
annotated image i (malignant or benign disease) be denoted
by Z+

i . Performing a random sub-sampling of m patches of
size n × n for each image allows for expressing Z+

i as the set
{Z+

i [1] , Z+
i [2] , . . . , Z+

i [m]}. For a bag to be characterized as
positive the requirement is that at least one of the contained
instances is positive which in this work translates to containing
tumor tissue (benign disease or malignant). In contrast, for
a bag to be negative all instances need to be negative,
which is equivalent to containing neither benign diseased nor
malignant patches. To achieve this, we contrast our positive
bags against negative bags of background classes. In particular,
we devise three strategies for populating negative bags with
instances namely, (i) random noise images, (ii) images from a
surrogate texture recognition dataset [Mallikarjuna et al. KTH
(20)] and, (iii) patches depicting healthy regions from H&E

breast tissue. In that way, we let Z
−

j denote a negative bag,

containing {Z−
j [1] , Z−

j [2] , . . . , Z−
j [M]} instances derived from

a background class. Prior to adopting the MIL machinery to our
problem, it is required that we provide a compact description
of the patches organized in bags; for this task, we employ the
CKD. The CKD is a mapping from the space of image patches
to that of SPD matrices as f : R

n×n −→ Sd++. In that way,

we express ˜Z
+

i and ˜Z
−

i as the sets
{

D+
1 , D

+
2 , . . . , D

+
m

}

and

{D−
1 , D

−
2 , . . . , D

−
m} respectively.
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TheWAID is devised based on variants of the SparseMIL (21)
framework, originally designed for applications which exhibit
sparse positive bags (containing few positive instances); such
an application is image region classification. In particular, we
compute the WAID by solving an SVM objective. In that way,
for every image i we identify the optimal decision boundary
parametrized by wi and bi such that the percentage of classifiable
positive instances is ≥η.

Given a positive bag Z
+

i and at least one negative bag Z
−

j we
aggregate their instances in {D1, D2, . . . , DN} along with their
associated instance level labels

{

y1, y2, . . . , yN
}

such that yi =

+1 if Di ∈ Z
+

i and −1 otherwise; N here is the total number
of instances in the considered bags. For all Di’s we compute their
matrix logarithm [via the operator Log (·)] which is equivalent
to projecting the CKDs to the tangent to the cone plane which
was shown to have a positive effect on similarity computations
for SPD matrices (15) as described for LERM [refer to (6)].

Toward allowing for non-linear classification boundaries in
the SVM model, we compute explicit feature maps 9 (·) which
linearly approximate the Jensen-Shannon’s homogenous kernel
based on the work by Vedaldi and Zisserman (22). This allows
for the computation of a linear SVM on the feature maps while
encapsulating important non-linearities for separating instances
belonging to the positive bag from instances in the negative
bag(s). As a result, the parameters of the classification boundary
are easily captured in wi, which for the non-linearized case
becomes less trivial. Then χ2 and the intersection kernel were
also considered with the Jensen-Shannon’s kernel achieving the
highest performance among them. For simplifying the notation
we let di denote the vector resulting from concatenating the
columns of Log (Di) . The classifier is, in that way, computed in a
kernel Hilbert space H for which the inner product is defined as
〈

9
(

di
)

,9
(

dj
)〉

H
= 9 (di)

T
9 (dj).

With the above notation, we propose our multiple-instance
max-margin WAID learning as:

min
wi ,bi ,ξ

‖wi‖
2

2

+ C
∑N

k=1
ξk subject to

yk

(

wT
i 9

(

dk
)

+ bi

)

≥ 1− ξk, ∀k ∈ {1, . . . ,N}

ξk > 0, ∀k ∈ {1, . . . ,N}

|y+i |

|Z
+

i |
≥ η (8)

where y+i denotes the set of instances that receive a positive
label by the trained ∞-SVM (23), that has three important
components, namely (i) the WAID descriptor defined by the
pair (w, b), (ii) the class labels y that is −1 for all instances
in the negative bag, however is either +1 or −1 depending on
whether the optimization decides the instance in the positive
bag is positive or negative, and (iii) a proportionality constraint
that says that we know a proportion defined by η of the positive
bag has positive instances. The hyper-parameter η needs to be
decided via cross validation or from experience.

To accommodate constraints that are difficult to cater to, we
incorporate slack variables denoted by ξk to handle the non-
separability of the samples as defined below.

sign (w
T

i
ψ

(

dl
)

+ bi) = +1, ∀ dl ∈ y+i . (9)

Even though the conventional SVM part of the formulation
is convex, and thus can be solved efficiently via standard
optimization machinery, the η-constraint makes it
combinatorial. An important observation for solving this
problem is the effect of the regularization parameter C on the
objective; larger values of C penalize more steeply misclassified
instances. Toward satisfying the η-constraint, computed on the

ratio
|y+i |

|Z
+

i |

, the SVM objective is iteratively solved for increasing

values of C. In particular, starting with a small value for the
parameter C we retrieve a solution and check if the η-constraint
is satisfied based on that. In the case that the condition is not
satisfied, the parameter C is rescaled to a larger value making the
formulation less tolerant to misclassifications and thus steering
it toward making more positive predictions. In the case that the
condition is met, the SVM objective is solved for that value of C
and the parameters of the classifier (WI and bI) are extracted and
used to form the WAID. More formally, the WAID (Figure 3)
for an image I is presented in Definition 2.

Definition 2 (WAID). The Weakly Annotated Image
Descriptor for an image I is defined as:

WI =

∣

∣

∣wT
I bI

∣

∣

∣

T
(10)

Once the WAID is computed for every sample in a given
set of images, standard machine learning techniques are
implemented toward learning based on the patterns uncovered
by the descriptor.

The overall pipeline for processing the aforementioned
benchmark is illustrated in Figure 4. First, images are sub-
sampled and for the generated patches CKD descriptors are
computed. Second, for every group of patches the WAID is
computed then an SVM model is computed on the resulting
WAID representations.

RESULTS

In this section, we present our experiments on the two databases
described in the methods. First, we present a thorough evaluation
of the CKD on the FABCD against a very large collection of
image descriptors computed at the patch level. Following that,
we evaluate the WAID on the BreakHis dataset against Multiple
Instance Learning (MIL) alternatives as well as schemes that have
been previously proposed for providing inference on the dataset.

FABCD
We present comparisons using SVMs, while for all the learned
models we evaluate the classification performance using two
different metrics, namely (i) classification accuracy (ACC), and
(ii) the Area Under the Curve (AUC) computed from Receiver
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FIGURE 3 | WAID computation. Images are sub-sampled, and descriptors are computed for every derived patch. The WAID is computed as the vector containing the

parameters of an SVM model computed in a multiple instance learning framework.

FIGURE 4 | Weakly annotated data processing. First, images are sub-sampled and CDKs are computed on every patch. Second, the WAID is computed for every

group of patches. Finally, an SVM model is computed for classifying malignant images.
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FIGURE 5 | ROC curve for intermediate level descriptors on FABCD (Best if

viewed in color).

Operating Characteristic (ROC) curves in a 10-fold cross-
validation. For RCDs and CKDs, we use Radial Basis Function
(RBF)Mercer kernels based on the LERM and the JBLDmeasures
stated in the Supplementary Material. For the rest of the tested
descriptors, a collection of different kernels and parameter
configurations were tested. In particular, the tested kernels were
linear, polynomial, RBF, and Sigmoid. In Figure 5 we can see
that for almost all features represented, linear kernels achieved
the highest performance and were used to report our results. The
only exception is the kernel utilized for the Gabor features which
is a polynomial kernel of third degree.

Figure 5 above presents the resulting ROC curves for the
conducted experiments. Among edge-based descriptors, Fisher
Vectors (FVs) appear to achieve the highest accuracy as
well as AUC, reaching accuracy of 79.66%. The NCH IV-A
outperformed all the edge-based descriptors achieving a high
accuracy value of 91.63%, accompanied by very high AUC. RCDs
reported accuracy that was on par with the performance of
the NCHs. Finally, the CKD was seen to outperform all the
considered descriptors, reaching ACC of 92.83% and AUC of
0.98.Table 1 below aggregates the results obtained on FABCD for
all the described intermediate level descriptors in terms of ACC
and AUC, as computed for the extracted ROC curves.

Comparisons Against CNNs
Even though CNN based representations would require patch
level annotations for their crafting, we believe that presenting
comparisons against popular CNN topologies is very important.
It should be noted though, that in the general weakly supervised
setup patch level annotations are not necessarily available. Since
we have data limited to a few thousand samples, we fine-tuned
two popular CNN topologies with weights learned on the 1M
image database of the ILSVRC challenge. For this study, we
established a comparison against the Alexnet (24) and VGG16
(25) topologies. We compare against well-known CNN models

TABLE 1 | Experimental results on FABCD.

Features ACC AUC

Intensities 57.91% 0.60

HOG 51.86% 0.53

Gabor 65.60% 0.71

Fisher 79.66% 0.88

Sparse codes 72.31% 0.78

BOW 76.46% 0.84

RCD-JBLD 74.26% 0.81

RCD-LE 87.66% 0.94

NCH 91.63% 0.97

CKD-JBLD 85.51% 0.94

CKD-LE 92.83% 0.98

The bold values highlight the best performance.

TABLE 2 | Experimental results on FABCD against CNNs.

Features ACC AUC

CNN(AlexNet) 89.23% 0.96

CNN(VGG-16) 93.91% 0.99

CKD-LE 92.83% 0.98

The bold values highlight the best performance.

that are often found to be generically useful for a variety of
tasks. However, our experiments show that in small-data regimes,
training such large topologies leads to overfitting and thus
reduced performance in comparison to feature representations
that are tailored to the task, as is the case with our proposed
CKD descriptor.

The results of this section are delivered in the form of ACC
and AUC in a 10-fold validation setup in Table 2. The CKDwhen
combined with LE similarities is seen to outperform the Alexnet
topology which achieved ACC of 89.23%. Finally, the VGG-16
was able to outperform the CKD achieving ACC of 93.91% and
AUC of 0.99.

BreakHis
Parameter Tuning
Our experimentation indicated that working with tissue slides
collected at 40x magnification level and patches of size 50 ×

50 yielded the highest training accuracy as also illustrated in
Figure 6A. Similarly, Figure 6B presents a parameter exploration
with respect to the number of patches sub-sampled from
the initial slide. We found that sampling 25 patches yielded
the optimal recognition accuracy since it balances between
training accuracy and over-fitting. Furthermore, as illustrated in
Figure 6C, we can see that working with more than 15 negative
bags did not improve the performance of the WAID. Finally,
Figure 6D depicts the performance of the devised scheme against
different values of the parameter η. We select η = 0.9.

Among the three different types of background bags (KTH,
healthy tissue, and random noise), we found that working
with random noise images yielded the highest accuracy. Low
dimensional embeddings by der Maaten and Hinton (26) of
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FIGURE 6 | Parameter exploration for, (A) patch size, (B) number of patches, (C) number of negative bags and, (D) η parameter.

CKDs computed on instances of the aforementioned bags
(blue dots) are plotted against CKDs computed on patches of
BreakHis (red dots) in Figure 7. For the case of healthy tissue
patches, the overall performance was hindered by the risk of
steering the decision boundaries around healthy samples since
the positive bags also contain instances corresponding to healthy
tissue deteriorating the overall performance. This can result
in the inaccurate enclosure of the benign or malignant tumor
instances as also suggested by Figure 7A. In addition, the KTH
database offers a large variability in the types of contained
textures resulting in a less firm cluster formation when plotted
against CKDs on the histopathological data as also illustrated in
Figure 7B. Finally, when working with random images for the
background class, as presented in Figure 7C, it resulted in a better
separation from the tissue samples which was also imprinted in
our results.

Comparisons Against MIL Schemes
The comparisons of the WAID against MIL based alternatives
and a baseline corresponding to computing a CKD descriptor
on the whole image termed Single-CKD (S-CKD) was reported.
The results are shown in terms of accuracy and the area
under the curve averaged across the 5-folds provided with the
benchmark. First, we considered the MIL-SVM Andrews et al.
(27) scheme, the Sparse-MIL (21) was included in this set of
experiments, since it takes into account the sparse distribution

of positive instances in the positive bags which we set to 0.3 (an
estimate of the percentage of cancerous tissue against healthy
in the image). In both, we used a linear kernel. Third, in a
boosting setup we present comparisons against the MIL-Boost
(28) and the MCIL-Boost (6) schemes, for which we use 50
weak classifiers. The number of weak classifiers was identified
via a trial and error process in an effort to control the amount
of over-fitting of the model on the training sets. Additionally,
for the MCIL-Boost (6) scheme we present results for two and
three clusters in the positive bags. The number of clusters in
the data was aligned with the characteristics of the dataset
according to which samples contain malignant tissue surrounded
by healthy tissue and potentially transition areas between the
two. Finally, to further motivate the adaptation of a MIL based
scheme we present results based on image descriptors computed
at the whole view (S-CKD). For S-CKD and the WAID, we
use an SVM model with an RBF kernel with γ = 0.00025. For
the experiments involving the following schemes, namely, (i)
MIL-SVM, (ii) SIL and, (iii) Sparse-MIL, we used the MISVM
python module distributed in support of Doran and Ray (29).
Furthermore, for the MIL-Boost and MCIL-Boost schemes we
used the distribution, accompanying the work by Xu et al. (5, 6).

Summarizing the contents of Table 3, we see that MIL-SVM
and Sparse MIL achieved the lowest performance achieving an
average 0.76 and 0.70 AUC across the five computed folds.
Following that, the S-CKD achieved an AUC of 0.83 underlining
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FIGURE 7 | Low dimensional embeddings of CKDs on sub-sampled patches of BreakHis images against CKDs computed on (A) patches of healthy tissue, (B) KTH

patches, and (C) random noise images.

TABLE 3 | Comparisons against different frameworks for weakly supervised data

on BreakHis.

Method ACC AUC

Patient Image Image

MIL-SVM (27) 73.24 71.42 0.76

Sparse-MIL (21) 71.53 71.27 0.70

MIL-Boost (28) 79.54 79.68 0.87

MCIL-Boost (6) (c = 2) 80.44 79.73 0.89

MCIL-Boost (6) (c = 3) 80.14 80.13 0.89

S-CKD 77.99 77.40 0.83

WAID (KTH) 84.05 82.02 0.87

WAID (Healthy) 80.63 79.98 0.86

WAID (Random) 85.50 83.57 0.90

The bold values highlight the best performance.

the necessity of the MIL paradigm. The fusion of boosting
and MIL was shown to be sufficient to exceed the three
aforementioned baselines, and its performance was exceeded by
allowing for multiple clusters in the data through MCIL-Boost.
The latter achieved an AUC value of 0.89 accompanied by ACC
of 80.13 and 80.14% at the image and patient level, respectively.
MCIL-Boost was only outperformed by the proposed WAID
which reached an AUC of 0.90 accompanied by ACC of 83.57
and 85.50% at the patient and image level, respectively.

Comparisons Against State-of-the-Art Schemes
In this section, we establish comparisons against visual learning
schemes that have been previously deployed for providing
inference on the selected magnification (x40) of the BreakHis
dataset. We compare against the work by Spanhol et al. (11) for
which Parameter Free Threshold Adjacency Statistics (PFTAS)
features (30) were computed and coupled with different classifiers
namely, (i) 1-Nearest-Neighbor, (ii) Quadratic Discriminant
Analysis, (iii) Random Forests, and (iv) Support vector machines.
Comparisons are also established with the work by Spanhol
et al. (4) which proposed a CNN based on the (24) topology.
Furthermore, we present results against the work by Song et al.
(31) that utilized a Fisher Vector based scheme. Finally, a CNN

FIGURE 8 | ROC curve for experiments against MIL schemes on BreakHis

(Best if viewed in color).

based scheme capitalizing on the GoogleNet topology (32) was
presented by Das et al. (33). It should be noted that we are
not concerned with fusion rules on the predictions of multiple
images as in Spanhol et al. (4) and Das et al. (33), and we
focus our evaluation on the predictions at the image and patient
levels as reported in the respective studies. In the aforementioned
studies, results were presented in the form of Correctly Classified
Malignant (CCM) instances, at the slide level as well as the patient
level. It should be noted that for the PFTAS based schemes the
authors did not provide slide level performance statistics, while
for Das et al. (33) the CCM at the patient level is based on
majority voting in contrast to averaging as deployed in all other
schemes. Figure 8 shows the ROC curve for the experiments.

Table 4 summarizes the results obtained on the BreakHis by
the WAID against recently published schemes on this dataset.
The proposed framework outperforms existing approaches
achieving state-of-the-art performance on BreakHis with its
CCM reaching 91.27 and 92.00% at the patient and image
level, respectively, without resorting to a deep learning scheme,
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TABLE 4 | Comparisons against state-of-the-art on BreakHis.

Method CCM

Patient Image

PFTAS-1NN (11) 80.90 –

PFTAS-QDA (11) 83.60 –

PFTAS-RF (11) 81.80 –

PFTAS-SVM (11) 81.60 –

CNN-Alexnet (4) 89.60 88.60

Adaptive-Fisher (31) 87.00 90.00

CNN-Googlenet (33) – 91.26

WAID (Random) 91.27 92.00

The bold values highlight the best performance.

thus making WAID a computationally attractive and easier to
implement alternative.

DISCUSSION

In this work, we presented a framework for the analysis of
histopathological breast cancer data in the presence of weak
supervision. The proposed Covariance-Kernel descriptor (CKD)
manages to capture higher order correlations between edges and
color information (as the result of the staining process) that
are very important for the recognition of malignant areas while
enclosing them in a compact representation. Although the CKD
successfully characterizes tissue architectures at the patch level, its
performance deteriorates as the targeted slide regions increase in
size. This can be attributed to the fusion of different tissue types
in larger slide regions (healthy, benign disease, and malignant
regions). To address this shortcoming, while leveraging the
recognition capability of the CKD to larger regions of the slide
(and potentially the whole slide), we derive an image descriptor
in aMultiple Instance Learning (MIL) (17) framework that builds
upon the CKDs. The MIL paradigm was selected due to its ability
to provide inference for data organized in the form of bags (larger
slide regions or whole slides) containing not individually labeled
instances (patches). In pursuance of obviating the necessity for
pixel level annotations, we propose the weakly annotated image
descriptor (WAID) which solely requires weakly annotated
samples in the form of binary labels (malignant vs. benign) and
is capable of characterizing larger slide regions. Based on the
results gathered from the experiments, we concluded that WAID
is able to achieve state-of-the-art performance on a database that
contains weakly annotated images.

As personalized medicine becomes prevalent, medical experts
are faced with high demands to create automation of their most
recurrent tasks and for a more complex set of analyses to be
done (34). The average patient waits approximately 10 days for
a pathology result, which can be critical for some patients when
it comes to treatment plans as their safety and health are at
risk2. Samples containing a large set of data require substantial

2Tests-and-procedures: biopsy. Available online at: www.cancer.net.

effort and time from medical experts who have to manually
segment the data. With these challenges, it is essential to address
real-world medical challenges, solve clinical or public health
problems, and recognize patients’ needs (35). An automated
model will allow medical diagnosis to be made at a timelier and
prompter rate, thereby allowing patients to receive their results
earlier which minimizes both anxiety and delayed treatments.
Our model does not require an extensive amount of effort from
medical experts, hence eliminating human errors. In addition,
this allows medical experts to focus their time on treatment plans
and patient consultations which will further improve the quality
of care patients are to receive. This will not only help to improve
the patient’s health outcomes but also enhance the quality of
health management.

Some limitations of this study are: (1) the dataset is not large
enough, (2) the descriptors may not work for other cancers since
theymay need different weights, and (3) future studies are needed
to validate the model.

CONCLUSION

In this work, we presented a framework for the analysis of
histopathological breast cancer data in the presence of weak
supervision. This work was concerned with the derivation
of a scheme demanding less annotation effort by medical
experts. We initiated our analysis with the derivation of an
intermediate image representation (patch level), termed CKD,
which outperformed a very large collection of popular computer
vision descriptors on a private, fully supervised H&E Breast
cancer dataset (FABCD). Following that, we proposed an image
descriptor, termed WAID, which was derived in a MIL setup
for characterizing larger image regions. WAID achieved state-
of-the-art performance on the considered magnification level of
the BreakHis both against MIL-based schemes as well as prior
methods on the database.

Delays in diagnosing cancer is either from providers simply
not consider cancer in their differential diagnosis3 or by the
waiting time of 10 or more days depending on the workload and
skills of the expert to collect complicated analysis of H&E slides2.
By implementing the derivation of a scheme that demands less
annotation effort from medical experts, H&E slides can be read
at a faster pace without compromising on accuracy enabling
providers to determine the diagnose and treatment plan that will
lessen the stress, anxiety, and unwanted burden on their patients.
In regard to patients’ well-being, our proposed derivation of the
CKD andWAID can help medical experts accomplish their work
accurately and faster.

DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the
article/Supplementary Material.

3Available online at: https://www.frontiersin.org/research-topics/13170/use-of-

primary-care-datasets-for-high-risk-and-early-cancer-detection

Frontiers in Digital Health | www.frontiersin.org 10 December 2020 | Volume 2 | Article 572671

www.cancer.net
https://www.frontiersin.org/research-topics/13170/use-of-primary-care-datasets-for-high-risk-and-early-cancer-detection
https://www.frontiersin.org/research-topics/13170/use-of-primary-care-datasets-for-high-risk-and-early-cancer-detection
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


Stanitsas et al. Image Descriptors

ETHICS STATEMENT

The studies involving human participants were reviewed
and approved by UMN IRB. Written informed consent for
participation was not required for this study in accordance with
the national legislation and the institutional requirements.

AUTHOR CONTRIBUTIONS

PS has contributed 30% of the paper’s content while the other
authors have equal contributions. All authors contributed to the
article and approved the submitted version.

FUNDING

Research reported in this publication was supported by
the National Cancer Institute of the NIH under Award

Number R01CA225435. This material was also based on work
supported by the NSF through grants #CNS-1439728 and
#CNS-1939033. AC was funded by the Australian Research
Council Center of Excellence for Robotic Vision (project
number CE140100016).

ACKNOWLEDGMENTS

The content is solely the responsibility of the authors
and does not necessarily represent the official views of
the NIH.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fdgth.
2020.572671/full#supplementary-material

REFERENCES

1. Basavanhally A, Ganesan S, Feldman M, Shih N, Mies C, Tomaszewski J, et al.

Multi-field-of-view framework for distinguishing tumor grade in er+ breast

cancer from entire histopathology slides. IEEE Trans Biomed Eng. (2013)

60:2089–99. doi: 10.1109/TBME.2013.2245129

2. Irshad L, Veillard A, Racoceanu D. Methods for nuclei detection,

segmentation, and classification in digital histopathology: a review—current

status and future potential. IEEE Rev Biomed Eng. (2014) 7:97–114.

doi: 10.1109/RBME.2013.2295804

3. Sirinukunwattana K, Raza S, Tsang Y, Snead D, Cree I, Rajpoot N. Locality

sensitive deep learning for detection and classification of nuclei in routine

colon cancer histology images. IEEE Trans Med Imaging. (2016) 35:1196–206.

doi: 10.1109/TMI.2016.2525803

4. Spanhol F, Oliveira L, Petitjean C, Heutte L. Breast cancer histopathological

image classification using convolutional neural networks. In: International

Joint Conference on Neural Networks. Vancouver, BC: IEEE (2016).

5. Xu Y, Zhu J, Chang E, Lai M, Tu Z. Weakly supervised histopathology cancer

image segmentation and classification. Med Image Anal. (2014) 18:591–604.

doi: 10.1016/j.media.2014.01.010

6. Xu Y, Zhu J, Chang E, Tu Z. Multiple clustered instance learning for

histopathology cancer image classification, segmentation and clustering. In:

Conference on Computer Vision and Pattern Recognition. Hubei: IEEE (2012).

7. Bejnordi B, Balkenhol M, Litjens G, Holland R, Bult P, Karssemeijer

N, et al. Automated detection of dcis in whole-slide h&e stained

breast histopathology images. IEEE Trans Med Imaging. (2016)35:2141–50.

doi: 10.1109/TMI.2016.2550620

8. Dundar M, Badve S, Raykar V, Jain R, Sertel O, Gurcan M. A multiple

instance learning approach toward optimal classification of pathology slides.

In: International Conference on Pattern Recognition. Cape Town: IEEE (2010).

9. Stanitsas P, Cherian A, Li X, Truskinovsky A, Morellas V, Papanikolopoulos

N. Evaluation of feature descriptors for cancerous tissue recognition. In:

2016 23rd International Conference on Pattern Recognition (ICPR) Daejeon:

IEEE (2016).

10. Fischer A, Jacobson K, Rose J, Zeller R. Hematoxylin and eosin staining

of tissue and cell sections. CSH Protocols. (2008) 2008:pdb.prot4986.

doi: 10.1101/pdb.prot4986

11. Spanhol F, Oliveira L, Petitjean C, Heutte L. A dataset for breast cancer

histopathological image classification. IEEE Trans Biomed Eng. (2016)

63:1455–62. doi: 10.1109/TBME.2015.2496264

12. Porikli F, Tuzel O, Meer P. Covariance tracking using model update based

on lie algebra. In: International Conference on Computer Vision and Pattern

Recognition. Istanbul: IEEE (2006).

13. Tuzel O, Porikli F, Meer P. Region covariance: a fast descriptor for detection

and classification. In: European Conference in Computer Vision. Graz (2006).

14. Maji S, Berg AC, Malik J. Classification using intersection kernel support

vector machines is efficient. In: Computer Vision and Pattern Recognition.

Beijing: IEEE (2008).

15. Arsigny V, Fillard P, Pennec X, Ayache N. Log-euclidean metrics for fast and

simple calculus on diffusion tensors. Magn Reson Med. (2006) 56:411–21.

doi: 10.1002/mrm.20965

16. Cherian A, Sra S, Banerjee A, Papanikolopoulos N. Jensen-bregman logdet

divergence with application to efficient similarity search for covariance

matrices. IEEE Trans Pattern Anal Mach Intell. (2013) 35:2161–74.

doi: 10.1109/TPAMI.2012.259

17. Dietterich T, Lathrop R, Lozano-Perez T. Solving the

multiple instance problem with axis-parallel rectangles.

Artif Intell. (1997) 89:31–71. doi: 10.1016/S0004-3702(96)0

0034-3

18. Wang J, Cherian A, Porikli F, Gould S. Action representation using 13 classifier

decision boundaries. In: CVPR. Salt Lake City, UT (2018).

19. Wang J, Cherian A. Learning discriminative video representations using

adversarial perturbations. In: ECCV. Munich (2018).

20. Mallikarjuna P, Targhi AT, Fritz M, Hayman E, Caputo B, Eklundh J-O. THE

KTH-TIPS 2 Database (2006).

21. Bunescu R, Mooney R. Multiple instance learning for sparse positive bags. In:

International Conference on Machine Learning. Corvalis, OR: ACM (2007).

22. Vedaldi A, Zisserman A. Efficient additive kernels via explicit

feature maps. IEEE Trans Pattern Anal Mac Intell. (2012) 34:480–92.

doi: 10.1109/TPAMI.2011.153

23. Yu FX, Liu D, Kumar S, Jebara T, Chang SF. ∞-SVM for learning with label

proportions. In: ICML’13: Proceedings of the 30th International Conference on

International Conference on Machine Learning. Vol. 28 (2013). p. 504–12.

24. Krizhevsky A, Sutskever I, Hinton G. Imagenet classification with deep

convolutional neural networks. In: Advances in Neural Information Processing

Systems. Lake Tahoe, NV (2012).

25. Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-Scale

Image Recognition. CoRR (2015).

26. der Maaten LV, Hinton G. Visualizing data using t-sne. J Mach Learning Res.

(2008) 9:85. Available online at: http://jmlr.org/papers/v9/vandermaaten08a.

html

27. Andrews S, Tsochantaridis I, Hofmann T. Support vector machines

for multiple-instance learning. Adv Neural Inf Process Sys. (2003)

15:577–84.

28. Viola P, Platt J, Zhang C. Multiple instance boosting for object detection. In:

Conference on Neural Information Processing Systems. Vancouver, BC (2005).

Frontiers in Digital Health | www.frontiersin.org 11 December 2020 | Volume 2 | Article 572671

https://www.frontiersin.org/articles/10.3389/fdgth.2020.572671/full#supplementary-material
https://doi.org/10.1109/TBME.2013.2245129
https://doi.org/10.1109/RBME.2013.2295804
https://doi.org/10.1109/TMI.2016.2525803
https://doi.org/10.1016/j.media.2014.01.010
https://doi.org/10.1109/TMI.2016.2550620
https://doi.org/10.1101/pdb.prot4986
https://doi.org/10.1109/TBME.2015.2496264
https://doi.org/10.1002/mrm.20965
https://doi.org/10.1109/TPAMI.2012.259
https://doi.org/10.1016/S0004-3702(96)00034-3
https://doi.org/10.1109/TPAMI.2011.153
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


Stanitsas et al. Image Descriptors

29. Doran G, Ray S. A theoretical and empirical analysis of support

vector machine methods for multiple-instance classification.

Mach Learn. (2014) 97:79–102. doi: 10.1007/s10994-013-

5429-5

30. Hamilton N, Pantelic R, Hanson K, Teasdale R. Fast automated cell

phenotype image classification. BMC Bioinformatics. (2007) 8:110.

doi: 10.1186/1471-2105-8-110

31. Song Y, Zou J, Chang H, Cai W. Adapting fisher vectors for histopathology

image classification. In: International Symposium on Biomedical Imaging, VIC:

IEEE (2017).

32. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. Going

deeper with convolutions. In: Conference on Computer Vision and Pattern

Recognition. Santa Clara, CA: IEEE (2015).

33. Das K, Karri S, Roy A, Chatterjee J, Sheet, D. Classifying

histopathology whole-slides using fusion of decisions from deep

convolutional network on a collection of random multi-views at multi-

magnification. In: International Symposium on Biomedical Imaging, IEEE.

(2017).

34. Van Eycke Y-R, Foucart A, Decaestecker C. Strategies to reduce the

expert supervision required for deep learning-based segmentation of

histopathological images. Front Med. (2019) 6:222. doi: 10.3389/fmed.2019.0

0222

35. Kostkova P. Grand challenges in digital health. Front Public Health. (2015)

3:134. doi: 10.3389/fpubh.2015.00134

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Stanitsas, Cherian, Morellas, Tejpaul, Papanikolopoulos and

Truskinovsky. This is an open-access article distributed under the terms of

the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Digital Health | www.frontiersin.org 12 December 2020 | Volume 2 | Article 572671

https://doi.org/10.1007/s10994-013-5429-5
https://doi.org/10.1186/1471-2105-8-110
https://doi.org/10.3389/fmed.2019.00222
https://doi.org/10.3389/fpubh.2015.00134
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles

	Image Descriptors for Weakly Annotated Histopathological Breast Cancer Data
	Introduction
	Materials and Methods
	Data Description
	Fully Annotated Breast Cancer Database (FABCD)
	Breast Cancer Histopathological Database (BreakHis)
	Covariance-Kernel Descriptors (CKD)
	Geometry of CKD

	Weakly Annotated Image Descriptor (WAID)


	Results
	FABCD
	Comparisons Against CNNs

	BreakHis
	Parameter Tuning
	Comparisons Against MIL Schemes
	Comparisons Against State-of-the-Art Schemes


	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


