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The widespread adoption of digital health technologies such as smartphone-based

mobile applications, wearable activity trackers and Internet of Things systems has rapidly

enabled new opportunities for predictive health monitoring. Leveraging digital health

tools to track parameters relevant to human health is particularly important for the older

segments of the population as old age is associated with multimorbidity and higher care

needs. In order to assess the potential of these digital health technologies to improve

health outcomes, it is paramount to investigate which digitally measurable parameters

can effectively improve health outcomes among the elderly population. Currently, there is

a lack of systematic evidence on this topic due to the inherent heterogeneity of the digital

health domain and the lack of clinical validation of both novel prototypes and marketed

devices. For this reason, the aim of the current study is to synthesize and systematically

analyse which digitally measurable data may be effectively collected through digital health

devices to improve health outcomes for older people. Using a modified PICO process

and PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)

framework, we provide the results of a systematic review and subsequent meta-analysis

of digitally measurable predictors of morbidity, hospitalization, and mortality among older

adults aged 65 or older. These findings can inform both technology developers and

clinicians involved in the design, development and clinical implementation of digital health

technologies for elderly citizens.

Keywords: digital health (eHealth), systematic (literature) review, meta-analysis, predictor, hospitalization-,

mortality, elderly

INTRODUCTION

The growing field of digital health attests that digital technologies are increasingly converging
with human health and the delivery of healthcare services. In the last decade, the widespread
adoption of, among others, smartphone-based mobile applications, wearable activity trackers, and
Internet of Things (IoT) systems, have fuelled a socio-technical trend known as the Quantified Self,
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i.e., the use of digital technology (broadly defined) for self-
tracking purposes (1). Tracking parameters relevant to human
health, aiming at improving health outcomes (in short, tracking
for health) is a primary justification of self-tracking. The first
generation of wearable devices and mobile tools could collect
data, and provide insights only related to a small portion of
human health and physiology, chiefly mobility reports (e.g., daily
steps, physical position). Novel applications have expanded their
data sources and can now record a broader variety of health-
related parameters and underlying processes. This is due to a
four-fold technological transformation. First, self-quantification
technologies have expanded in variety as to include data sources
that previously could only be collected exclusively via medical
devices such as heartbeat rate and electroencephalography (2).
Second, smartphone-sensing methods have improved in quality
and reliability, now permitting fine-grained, continuous and
unobtrusive collection of novel health-related data such as sleep
patterns and voice records (3). Third, advances in Artificial
Intelligence (AI)-driven software, especially deep learning (4), are
increasingly allowing to generate insights about human health
from digitally measured data. For example, smartphone apps can
be used to predict a person’s cognitive status from their responses
to gamified cognitive tasks such as 3D virtual navigation (5).

Leveraging digital health to track parameters relevant to
human health is particularly important for the older segments of
the population as old age is associated with multimorbidity (6)
and higher care needs. Given the rapid erosion of the old age
dependency ratio (reduction in share of working-age people vs.
older people) and the often-stated wish of older adults to age
in place, these digital technologies can enable novel and more
continuous autonomy-preserving tools for health monitoring,
prevention and telemedicine. In countries like Italy (34.3%),
Switzerland (33.3%), and Germany (32%) this dependency ratio
has already shrunk to only three working age people for every
person aged 65 and older (7). Personal digital technologies
enable continuous and environment-sensitive collection of
clinically relevant data which could be used to improve
preventative, diagnostic, and therapeutic outcomes. For example,
hypertension, systolic, and diastolic blood pressure can be
measured by digital sphygmodynamometers and blood pressure
monitors. Handheld echo-cardiography can be used for the
assessment of a variety of hemodynamic parameters, such
as right and left ventricular dimension and function, left
ventricular ejection fraction (LVEF), valvulopathies, pulmonary
hypertension and arrhythmias. Arrhythmias can also be detected
using pulse oximeters, smartwatches, sensors, or contact free
electric sensors. ABI can also be measured using portable or
digital ABI systems, or automated blood pressure monitors.
Diabetes can be measured using a variety of digital blood
glucose meters in form of wireless monitors, wearable sensors,
or mobile applications. Digital measurements of BMI include
digital electronic scales, weight monitors, or smart fat calculators.
Respiratory parameters such as respiratory rate, pulmonary
ventilation, or oxygen saturation can be measured by pulse
oximeters, pressure sensors spirometers, microphones, humidity
sensors, accelerometers, or resistive sensors. Finally, physical
activity as any other kinematic and cardiovascular factor
can be assessed using sensors like patches or necklaces,

accelerometers, pedometers, heart rate monitors, or armbands.
Balance parameters such as standing, lying, and sitting can
be assessed using a variety of sensors, sensitive to capture a
wide range of movements in a specific time range. Handgrip
strength and muscle strength can be measured using a digital
dynamometer. Handgrip strength is also a marker for frailty.
Also, a variety of sensors are being used for the diagnosis
of fatigue. They are sensitive in detecting circadian variations,
electrodermal activity and cardiovascular parameters in fatigue.
Furthermore, digital pressure algometers and other devices such
as dolorimeters are being used to measure the pressure pain
threshold in humans. Finally, for the measurement of fever, new
technologies such as wearable thermometers and/or non-contact
thermometers have also emerged.

In order to assess the potential of these digital health
technologies to improve health outcomes, it is paramount
to ground the analysis on solid scientific evidence (8). In
particular, it is necessary to investigate which digitally measurable
parameters—defined as parameters that are measured or can be
measured using personal digital devices—can effectively improve
health outcomes among the elderly population. Currently, there
is a lack of systematic evidence on this topic due to the inherent
heterogeneity of the digital health domain and the lack of
clinical validation of both novel prototypes andmarketed devices.
Our study aims at producing systematic and generalizable
knowledge on which digitally measurable data may be effectively
collected by future digital health devices to improve health
outcomes in certain patient groups. Using a modified PICO
process and PRISMA (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses) framework (9), we provide the
results of a systematic review and subsequent meta-analysis of
digitally measurable predictors of morbidity, hospitalization and
mortality among older adults aged 65 or older. These findings
can inform both technology developers and clinicians involved in
the design, development, and clinical implementation of digital
health technologies for elderly citizens.

METHODOLOGY

Search Strategy and Study Selection
We searched MEDLINE/Pubmed, Embase, Web of Science
and PsycInfo on the 30th of March 2020. We searched the
databases for eligible peer-reviewed articles on digitally
measurable parameters of hospitalization, morbidity, and
mortality published in one of the four languages spoken by
the authors, namely English, Italian, Greek, or German. After
extensive pilot-testing and validation of the search string, we
searched the title, abstract, and keywords using a modified
PICO process for studies published from 1995 to 2020 (see
Annex 1). We set limitations regarding study type excluding
secondary studies (e.g., reviews), theoretical studies and studies
with no proof of concept. A full description of the search terms
is available as Supplementary Material. A total of 4,266 entries
were retrieved using this string. The systematic search was
performed by the first author (SD) and inspected for validation
by the last author (MI). Query logic was adapted to each search
database to optimize retrieval. Following the recommendations
by (10), the study selection process was conducted and presented
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FIGURE 1 | Flowchart.

using the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (http://prisma-statement.org/) as a guide
(see Figure 1). The PRISMA study selection process entails four
phases: identification, screening, eligibility, and final synthesis.

In the screening phase, duplicates were removed both
automatically using the Endnote tool for duplicate detection
and manually based on abstract screening. A total of 343
articles was removed at this stage. The remaining 2,187

entries were screened manually to remove entries whose
ineligibility could be detected via abstract assessments.
Thousand eight hundred and eighty-eight records were
excluded at this stage. Subsequently, full-text screening was
performed on the remaining 299 records. Uncertainties
and diverging inclusion choices between the two reviewers
were discussed among the research team with documented
reasons and re-evaluated until a consensus was reached.
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TABLE 1 | Characteristics of studies included in the final synthesis.

Study type: Randomized Controlled Trials (RCTs), prospective and

retrospective cohort studies.

Population: Included participants were older people ≥65 years, living in

community or residential facilities. Relevant were also studies

that included patients temporarily hospitalized for a specific

health problem. Studies including people

<64 years, residing in hospitals, nursing homes or

rehabilitation centers were considered irrelevant.

Outcomes: Outcomes included all the digitally measurable predictors of

mortality and/or morbidity and/or hospitalization events in

older people. Studies focusing on

implementation issues of digital technology in healthcare or

studies aiming to validate the accuracy of different digital

devices used in healthcare were excluded. Digital

measurements, if available, had to be acquired by digital

devices, such as smartphones, robotics, wearable sensors,

or medical assistants.

Studies including data that were stored in digital databases or

electronic medical records and could not be obtained using

digital devices, were excluded.

Furthermore, studies examining the effectiveness of various

approaches or support systems that are available via digital

devices such as telemedicine, telehealth, e-prescribing,

eLearning, computerized clinical decision support

systems (CCDSSs) or computerized provider order entry

(CPOE) were also excluded.

Studies included in the synthesis had the features described
in Table 1.

Data Extraction and Coding
We created three different spreadsheets in Microsoft. Excel,
one for each of the outcomes reported. Each spreadsheet
included information on the study and outcome characteristics
(Supplementary Material). Study characteristics included year
of publication, study type, sample size, proportion of male
participants, mean age, age range, and population diagnoses.
For mortality events, we extracted the digitally measurable
predictors, the devices used for these measurements and the
duration of follow-up period when mortality was measured.
For morbidity events, information included all the digitally
measurable predictors, all the digital devices used for these
measurements and all the adverse health conditions observed
after the investigation period. For hospitalization events, coded
information included, apart from the digitally measurable
predictors and the used devices, the hospital admission and
readmission rates. For the estimation of the outcomes we
collected all the hazard ratios (HRs), odds ratios (ORs), and 95%
Confidence Intervals (CI) reported for mortality, morbidity, and
hospitalization events. In cases where the ORs, HRs, and CIs
were not provided as primary data by the studies, we calculated
them by extracting for each predictor the number of patients
with the outcome and the total number of patients for each
predictor assigned to each study group (11). For consistency
reasons, crude values were preferred over adjusted.We combined
HRs and ORs reported separately across studies per gender, per
age groups of older people or per quartile of the same predictor

across studies, since the aim was an overall outcome assessment
without subgroup differentiations (12–17). We also calculated
inverse HRs for specific comparisons (18–21).

Data Analysis
Random-effects meta-analysis was performed using the Knapp-
Hartung-Sidik-Jonkman estimator (22, 23). Pooled estimates are
presented using odds ratios or hazard ratios. Heterogeneity was
assessed using tau2, which defines the variance of the true effects
sizes and determines the weight assigned to each of the included
studies in the meta-analysis model. In addition, the I² statistic
which describes the magnitude of heterogeneity across studies
that is attributable to the true differences of the results rather than
chance or sampling error was also examined (23). Heterogeneity
can be interpreted as low, when I²= 0–40%, as moderate, when I²
= 30–60%, as substantial, when I²= 50–90% and as considerable
when I² = 75–100% (24). Meta-regression was performed to
examine whether the results differ based on the diagnosis of the
participants. The presence of publication bias was assessed using
a funnel plot (23, 25). All analyses were performed using Stata
16.1 (StataCorp, TX, USA).

Risk of Bias

For RCTs we used the revised Cochrane tool (RoB 2) to assess
risk of bias in randomized trials. (26) This tool includes seven
items that cover six bias domains; (i) selection bias (2 items);
(ii) performance bias; (iii) detection bias; (iv) attrition bias; (v)
reporting bias; and (vi) other bias. This tool has three grading
levels: (i) low, (ii) moderate, and (iii) high risk of bias. The worst
grading in individual items define the overall risk of bias for each
single study. For the cohort studies we used the Cochrane Risk Of
Bias In Non-randomized Studies—of Interventions (ROBINS-I
tool) (27) and also the Newcastle-Ottawa quality assessment scale
(NOS) for Cohort Studies. (28) Main domains for risk of the
ROBINS-I bias assessment here are: (i) bias due to confounding;
(ii) bias in selection of participants into the study, (iii) bias in
classification of interventions, (iv) bias due to deviations from
intended interventions, (v) bias due to missing data, (vi) bias
in measurement of outcomes, and (vii) bias in selection of the
reported result. Grading of this scale includes four levels: (i)
low, (ii) moderate, (iii) serious, and (iv) critical. Again, the
worst grading in any of these items define the overall risk of
bias for every single study. The Ottawa scale consists of nine
items that cover three dimensions: (i) patient selection (4 items);
(ii) comparability of cohorts (2 items); and (iii) assessment of
outcome (three items). A point is assigned to each item that is
satisfied by the study. The total score therefore ranges from zero
to nine, with higher scores indicating higher quality. A total score
≥7 represents high quality.

Results
A PRISMA flowchart summarizing the article selection process is
presented in Figure 1. After the initial database search, 43 studies
were considered relevant according to the inclusion criteria and
were included in the analysis.

A full description of the included studies is depicted in
Tables 2A, 2B. Two of the included studies were RCTs (41,
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TABLE 2A | Study characteristics—demographic data.

References Study design Participants N (%males),

mean age, age range

Diagnosis Intervention

Aboyans et al. (29) Retrospective cohort 387 (78%), mean age: 68.22 (12.24) Peripheral arterial disease Digital Subtraction Angiography

Afilalo et al. (30) Prospective cohort 131 (66%), mean age: 75.8 (4.4) Scheduled to undergo cardiac

surgery

Cardiac Surgery

Amar et al. (31) Prospective cohort 100 (74%), mean age: 63.78 (8.48) No diagnosis Esophagectomy

Arboix et al. (32) Retrospective cohort 47 (57%), mean age: 71.55 (10.82) Thalamic hemorrhage –

Barnett et al. (33) Retrospective cohort 8,361 (74.1%), mean age: 63.0 (11.4) Open heart procedure Cardiovascular Surgery

Baumert et al. (12) Retrospective cohort 3,092 (86.9%), mean age: 77.1 (5.65) No diagnosis/Osteoporosis –

Berton et al. (34) Prospective cohort 505 (71.5%), mean age: 68.01 Acute myocardial infraction Intensive Care Unit

Buch et al. (35) Prospective cohort 946 (48.8%), age range: 60–80 Age-related macular

degeneration

–

Buchman et al. (18) Prospective cohort 1,249 (23%), mean age: 80.0 (7.72) No diagnosis –

Casella et al. (36) Prospective cohort 1,959 (70%) mean age: 67 (12) Acute myocardial infraction Coronary Care Unit

Ferrer et al. (37) Prospective cohort 328 (38.4%) mean age: 85 No diagnosis –

Fisher et al. (13) Prospective cohort 4,910 (43.10%), mean age: 79.4 (5.6) Age-related macular

degeneration

–

Fujishima et al. (38) Prospective cohort 187 (61%), mean age: 71 (10) Coronary artery disease –

Fukumoto et al. (39) Prospective cohort 1,786 (65.5%), mean age: 65 (10) Cardiac catheterization Left-heart Catheterization

Ho et al. (40) Prospective cohort 1,483 (50.44%), age: >70 No diagnosis –

Inoue et al. (14) Prospective cohort 4,373 (0%), mean age: 68.1 (6.6) No diagnosis –

Jones et al. (41) RCT 988 (59%), mean age: 67 (10) Heart failure Digitalis vs. Placebo plus

Diuretics and

Angiotensin-converting–enzyme

Inhibitors

Joseph et al., (59) Prospective cohort 101 (46.5%), mean age: 79 (9) Patients with ground level

fall-injuries

Hospitalized for ground-level falls

Jotheeswaran et al.

(10)

Prospective cohort 12,373 (37.7%), mean age: 74.1 (7.0) Dementia –

Law et al. (42) Retrospective cohort 168 (75.6%), mean age: 83.5 (2.5) Aortic aneurysm Open and endovascular repair of

abdominal aortic aneurysm

Lee et al. (43) Prospective cohort 1,147 (60.2%), mean age: 64.5 (12.32) Ischemic stroke Robotic totally endoscopic

coronary artery bypass grafting

Lion et al., (60) Prospective cohort 61 (0%), mean age: 71.68 (4.28) No diagnosis –

Lyyra et al. (15) Prospective cohort 295 (35.3%), mean age: 75 No diagnosis –

Matsuzawa et al.

(44)

Prospective cohort 140 (0%), mean age: 68.12 (10.58) Chest pain Cardiac catheterization

Missouris et al. (45) Prospective cohort 110 (60%), mean age: 70.8 (9.99) Peripheral vascular disease –

Mujib et al. (46) RCT 7,788 (75%), mean age: 64 (11) Chronic heart failure Digoxin or placebo

Oberman et al. (47) Prospective cohort 3,613 (0%), age range: 50–79 No diagnosis –

Palmisano et al. (16) Prospective cohort 770 (66.4%), mean age: 65.5 (14) No diagnosis –

Park et al. (48) Prospective cohort 498 (50%), mea nage: 82.8 (5.3) 30 days phone intervention post

hospital discharge

Care transition quality

improvement program

Philibert et al. (49) Retrospective cohort 2,278 (46%), mean age: 66 (9) No diagnosis –

Pinto et al. (50) Prospective cohort 2,968 (48.6), age range: 57–85 Global sensory impairment –

Plakht et al. (51) Retrospective cohort 2,763 (67.8%), mean age: 66.6 (13.3) Acute myocardial infraction Hospitalization after atrial

myocardial infraction

Radhakrishnan et al.

(52)

Retrospective cohort 403 (45%), age range: <60–>94 No diagnosis Telehealth

Rolland et al. (17) Prospective cohort 7,250 (0%), mean age: 80.5 (3.76) Hip fracture –

Sheng et al. (53) Prospective cohort 4,055 (44.5%), mean age: 68.5 (7.5) Peripheral arterial disease –

Smirnova et al. (54) Retrospective cohort 2,978 (51%), mean age: 65.9 (9.6) No diagnosis –

Stein et al. (19) Prospective cohort 1,655 (82%), mean age: 66.81 (11.69) ICD implantation Implantable cardioverter

defibrillator

(Continued)
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TABLE 2A | Continued

References Study design Participants N (%males),

mean age, age range

Diagnosis Intervention

Tateishi et al. (55) Retrospective cohort 164 (53%), median age: 76 Acute ischemic stroke Thrombolysis.

van Vugt et al. (56) Retrospective cohort 1,614 (55.5%), mean age: 68.6 (10.8) Colorectal cancer Colorectal cancer surgery

Ward et al. (57) Retrospective cohort 309 (43.3%), mean age: 65.7 age range:

34–94

Peripheral arterial disease –

Wilson et al. (58) Prospective cohort 5,630 (35.1%), age: >70 No diagnosis –

Zeitzer et al. (20) Prospective cohort 2,976 (100%), mean age: 76.4 (5.53) Osteoporosis –

Zhu et al. (21) Retrospective cohort 186 (84.4%), mean age: 65 Bladder cancer Robot-assisted radical

cystectomy

46), 28 prospective (10, 13–20, 30, 31, 34–40, 43–45, 47, 48,
50, 53, 58–60) and 13 retrospective cohort studies (12, 21,
29, 32, 33, 42, 49, 51, 52, 54–57). The total number of older
participants (≥65 years) included in the analysis was 92,994, of
whom, 48% (n = 44,461) were males and 52% (n = 48,533)
females. Of the 43 studies, 18 studies included cardiovascular
patients, 13 studies included patients with other diagnoses, and
in 12 studies the participants had no specific diagnosis. Twenty-
nine of the included studies reported results about mortality
events, 18 about morbidity and five studies reported results about
hospitalization and readmissions. Out of these 43 studies, one
study (46) analyzed retrospectively data originating from two
independent groups and it was included twice in the analysis.
Digital measurements were reported in 15 studies for a wide
range of physical and physiological functions. Wearable sensors
and stopwatches were used for themeasurement of walking speed
and other kinematic factors, such as balance parameters. Balance
parameters such as standing posture and switches between sitting
and standing were also measured by body fixed sensors and
stopwatches. Also, a wrist-worn accelometer and an implantable
defibrillator were used for the assessment of physical activity. A
triaxial wearable gyroscope sensor was used for the measurement
of the arterial stiffness and frailty among older people. A digital
standing scale was used for the measurement of BodyMass Index
(BMI) and an inhome polysomnography for the measurement
of respiratory rate. Other devices that were used comprised
an automatic device for the Ankle Brachial Index (ABI), an
electronic spirometry for the vital capacity, an electric counter
for the tapping rate and a digital reactive hyperaemia peripheral
arterial tonometry (RH-PAT) for the assessment of the reactive
hyperaemia peripheral arterial tonometry index. The remaining
28 studies involved measurements that were not collected using
personal digital devices but could have been obtained using
commercially available digital devices (e.g., hypertension, systolic
and diastolic blood pressure, and arrhythmias as they can be
measured via, respectively, digital sphygmodynamometers, blood
pressure monitors, and pulse oximeters or smartwatches.

Risk of Bias Assessment
Risk of bias assessment was performed independently by
two authors (Tables 3–5). Disagreements were solved through
discussion and re-evaluation of the differently evaluated points
until a consensus was reached. According to RoB and ROBINS-I
scales, 17 studies were assessed as being of serious risk of bias,

16 studies were assessed of moderate risk of bias and only 10
studies were assessed as being of low risk of bias. According to the
Newcastle Ottawa Scale, only six studies had a total score ≥ 7.

RESULTS

Mortality
Meta-analysis of all the digitally measurable predictors of
mortality identified by the search, indicated six statistically
significant predictors (Figure 2). These included diabetes (HR
1.70; CI 1.37, 2.10; 8 studies; OR 1.64; CI 1.06, 2.51; 6
studies), decreased BMI (HR 1.24; CI 1.06, 1.45; 6 studies),
arrhythmias (HR 1.77; CI 1.33, 2.35; 5 studies), slow walking
speed (HR 1.69; CI 1.32, 2.16; 4 studies), not being physically
active (HR 1.97; CI 1.20, 3.24; 3 studies) and LVEF <40
(OR 2.17; CI 1.63, 2.90; 3 studies). Hypertension results
were marginally insignificant for mortality (HR 1.22; CI: 0.94,
1.58; 5 studies; OR 1.49; CI: 0.89, 2.50; 4 studies). Being
physically active, having increased BMI and obesity were
significantly associated with survival (HR 0.42; CI 0.20, 0.88;
2 studies, HR 0.77; CI 0.61, 0.96; 5 studies and OR 0.71;
CI 0.50, 0.99; 6 studies, respectively), whereas the results
related to systolic blood pressure ≤90 (HR 1.91; CI 0.88,
4.13; 2 studies) were neither for mortality nor for survival
statistically significant.

The description of four balance parameters was based on
two studies on standing posture [HR 1.23; CI 1.11, 1.36; (18)
and (17)] and sit-to-stand ability [HR 1.06; CI 0.72, 1.56; (18)
and (17)] while measurements of the other two variables were
reported only in one study (18). Since these multiple balance
measurements were originating from the same samples, we did
not estimate a common effect size for all the balance parameters
to avoid the unit of analysis error (23). In contrast, we created a
forest plot visual representation of the outcomes which indicates
that the only significant predictor of mortality was pooled
standing posture (HR 1.23; CI 1.11, 1.36; 2 studies).

Table 3 summarizes additional predictors of mortality
identified only once across the included studies. According to
these results, a respiratory rate ≥16 breaths·min−1 (HR 1.44;
CI 1.29, 1.62), arterial stiffness (HR 2.98; CI 2.08, 4.27), ABI
>90 (HR 2.33; CI 1.24, 4.39) severe left ventricular dysfunction
(HR 2.12; CI 1.75; 2.57) significant left ventricular hypertrophy
(HR 1.96; CI 1.49; 2.57), left ventricular dilatation (HR 1.79;
CI 1.3; 2.47), left ventricular filling pressure (HR 1.17; CI
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TABLE 2B | Study characteristics—predictors and outcomes.

References Predictor type

(digitally

measurable)

Digital device

used

Outcome Time spectrum for

mortality

Morbidity severity Hospital admission

Aboyans et al.

(29)

Hypertension,

diabetes

No digital device

mentioned

Mortality, morbidity,

hospitalization

62 months Renal artery stenosis Intensive Care Unit

admission

Afilalo et al. (30) Slow walking speed Stopwatch Morbidity – Morbidity –

Left ventricular

ejection fraction <

40

Mortality, morbidity

Amar et al. (31) Supraventricular

tachydysrhythmias

No digital device

mentioned

Mortality 30 days Supraventricular

tachydysrhythm-ias

–

Hypertension,

diabetes

No digital device

mentioned

Morbidity

Arboix et al. (32) Respiratory events,

obesity

No digital device

mentioned

Mortality Not mentioned – –

Barnett et al. (33) Hypertension,

diabetes, ejection

fraction >40, obesity

No digital device

mentioned

Mortality 30 days – –

Baumert et al.

(12)

Respiratory rate ≥16

breaths·min 1

Overnight in-home

Polysomnography

Mortality 6.4 (1.6) years /8.9

(2.6) years

– –

Berton et al. (34) Diabetes No digital device

mentioned

Mortality, morbidity – Atrial fibrillation/

flutter

–

Hypertension,

arrhythmias

No digital device

mentioned

Morbidity

Buch et al. (35) Hypertension,

diabetes

No digital device

mentioned

Mortality 14 years – –

Buchman et al.

(18)

Standing posture,

Timed Up and Go

(TUG) stand, TUG sit

to stand, TUG stand

to sit, 32-ft. Slow

walking speed

Body-fixed sensor Mortality, morbidity 3.6 years Mild cognitive

impairment,

Dementia

–

Casella et al. (36) Systolic blood

pressure ≤90,

diabetes, heart rate

>100 b/min

No digital device

mentioned

Mortality 30 days – –

Ferrer et al. (37) Atrial fibrillation No digital device

mentioned

Mortality 3 years – –

Fisher et al. (13) Decreased BMI,

increased BMI,

hypertension,

diabetes

No digital device

mentioned

Mortality 4.8 years – –

Fujishima et al.

(38)

Hypertension,

diabetes, diastolic

blood pressure,

increased BMI

No digital device

mentioned

Morbidity – Ischemia –

Fukumoto et al.

(39)

Hypertension,

diabetes, atrial

fibrillation, left

ventricular ejection

fraction < 45

No digital device

mentioned

Morbidity – Cholesterol

embolization

syndrome

–

Ho et al. (40) Hypertension,

diabetes

No digital device

mentioned

Morbidity – Mobility decline –

Decreased BMI,

increased BMI,

Digital standing

scale

Slow walking speed Stopwatch

Inoue et al. (14) Arterial stiffness Triaxial wearable

gyroscope sensor

Mortality 9 years – –

(Continued)
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TABLE 2B | Continued

References Predictor type

(digitally

measurable)

Digital device

used

Outcome Time spectrum for

mortality

Morbidity severity Hospital admission

Jones et al. (41) Decreased BMI,

increased BMI,

diabetes, ejection

fraction

No digital device

mentioned

Mortality 3.5 years – –

Joseph et al.,

(59)

Upper-extremity

function-frailty

Triaxial wearable

gyroscope sensor

Hospitalization – – Institutionalization,

readmissions

Jotheeswaran

et al. (10)

Weight loss,

decreased physical

activity, slow walking

speed

Standard timed

walking test for

walking speed

Mortality 2.8–5 years Incident

dependence

–

Slow walking speed Morbidity

Law et al. (42) Hypertension,

diabetes

No digital device

mentioned

Mortality 30 days – –

Lee et al. (43) Abnormal ABI <0.90 Automatic device Mortality 30 days – –

Lion et al., (60) Systolic blood

pressure

No digital device

mentioned

Morbidity – Dizziness –

Lyyra et al. (15) Vital capacity Electronic

spirometer

Mortality 10 years - –

Tapping rate Electric counter

Muscle strength Not mentioned

Slow walking speed Stopwatch

Matsuzawa et al.

(44)

Reactive hyperaemia

peripheral arterial

tonometry index

Digital reactive

hyperaemia

peripheral arterial

tonometry (RH-PAT)

Morbidity – Ischemic heart

disease

–

Diabetes, systolic

blood pressure,

diastolic blood

pressure, increased

BMI

No digital device

mentioned

Missouris et al.

(45)

Hypertension,

diabetes

Semi-automated

ultrasound

sphygmomanometer

Mortality 6.1 years – –

Mujib et al. (46) Hypertension,

diabetes, ejection

fraction <35

No digital device

mentioned

Morbidity – Stroke/neurological

deficit

–

Oberman et al.

(47)

Hypertension,

diabetes, systolic

blood pressure

No digital device

mentioned

Morbidity – Hypertrophied left

ventricular mass

–

Palmisano et al.

(16)

Decreased physical

activity

Implantable

cardioverter

defibrillator

Morbidity – Atrial arrhythmias –

Park et al. (48) Weakness, pain,

palpitations, fatigue,

fever, weight gain,

difficulty breathing

No digital device

mentioned

Hospitalization – – 30-day readmissions

Philibert et al.

(49)

Systolic blood

pressure, diastolic

blood pressure,

diabetes

No digital device

mentioned

Mortality Not mentioned – –

Pinto et al. (50) Hypertension,

diabetes, increased

BMI, decreased

BMI, obesity

No digital device

mentioned

Morbidity – Impaired mobility –

(Continued)
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TABLE 2B | Continued

References Predictor type

(digitally

measurable)

Digital device

used

Outcome Time spectrum for

mortality

Morbidity severity Hospital admission

Plakht et al. (51) Hypertension,

obesity, atrial

fibrillation, severe left

ventricular

dysfunction,

significant left

ventricular

hypertrophy, left

ventricular dilatation,

left ventricular filling

pressure, moderate

or severe mitral valve

regurgitation

pulmonary

hypertension, left

atrial dilatation, right

ventricular

dysfunction,

moderate or severe

tricuspid

regurgitation

No digital device

mentioned

Mortality 8.2 years – –

Radhakrishnan

et al. (52)

Pulmonary and

arrhythmia

comorbidity, obesity

No digital device

mentioned

Hospitalization – – Admission

Rolland et al.

(17)

Slow walking speed,

repeated chair

stands, balance test

Stopwatch Mortality 3.8 years – –

Low handgrip

strength

Not mentioned

Sheng et al. (53) Hypertension,

diabetes

Blood pressure

monitor

Mortality 5.9 years – –

Smirnova et al.

(54)

Obesity, diabetes No digital device

mentioned

Mortality 5 years – –

Stein et al. (19) Atrial fibrillation,

diabetes, decreased

BMI, obesity, left

ventricular ejection

fraction <40,

increased physical

activity, decreased

physical activity

No digital device

mentioned

Mortality 1 year – –

Tateishi et al. (55) Hypertension,

diabetes

No digital device

mentioned

Mortality, morbidity 90 days Unfavorable

outcome

–

Atrial fibrillation Morbidity

van Vugt et al.

(56)

Increased BMI,

decreased BMI,

obesity

No digital device

mentioned

Mortality,

hospitalization

30 days – LOS, readmission

Ward et al. (57) Hypertension,

diabetes, abnormal

ABI <0.90

No digital device

mentioned

Morbidity – Left ventricular

ejection fraction <

35

–

Wilson et al. (58) Hypertension,

increased BMI,

decreased BMI,

walking

difficulty/slow

walking speed

No digital device

mentioned

Morbidity – Hip fracture –

Zeitzer et al. (20) Increased physical

activity, decreased

physical activity

Wrist-worn

accelerometer

Mortality 6.5 years – –

Zhu et al. (21) Increased BMI No digital device

mentioned

Mortality Not mentioned – –

Frontiers in Digital Health | www.frontiersin.org 9 February 2021 | Volume 2 | Article 602093

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


Daniolou et al. Meta-Analysis of Digitally Predictable Health Outcomes

TABLE 3 | Additional predictors of Mortality.

No. References Predictor HR/OR (95% CI) p

1. Arboix et al. (32) Respiratory events OR 3.30; CI 0.62, 17.62 0.081

2. Baumert et al. (12) Respiratory rate ≥16

breaths·min−1

HR 1.44; CI 1.29, 1.62 <0.00001

3. Inoue et al. (14) Arterial stiffness HR 2.98; CI 2.08, 4.27 <0.00001

3. Lee, (43) ABI>90 HR 2.33; CI 1.24, 4.39 0.009

5. Lyyra (15) Vital capacity HR 0.07; CI 0.03, 0.19 <0.00001

6. Lyyra (15) Tapping rate HR 0.04; CI 0.77, 0.91 <0.00001

7. Lyyra (15) Muscle strength HR 0.73; CI 0.58, 0.92 0.007

8. Philibert et al. (49) Diastolic Blood Pressure HR 0.67; CI 0.60, 0.75 <0.0001

9. Plakht et al. (51) Severe Left ventricular

dysfunction

HR 2.12; CI 1.75; 2.57 0.002

10. Plakht et al. (51) Concentric or significant left

ventricular hypertrophy

HR 1.96; CI 1.49; 2.57 0.788

11. Plakht et al. (51) Left ventricular dilatation HR 1.79; CI 1.3; 2.47 0.003

12. Plakht et al. (51) Left ventricular filling pressure HR 1.17; CI 1.09; 1.24 0.152

13. Plakht et al. (51) Moderate or severe mitral valve

regurgitation

HR 1.47; CI 1.14; 1.9 <0.001

14. Plakht et al. (51) Moderate or severe pulmonary

hypertension

HR 1.88; CI 1.48; 2.39 0.001

15. Plakht et al. (51) Left atrial dilatation HR 1.24; CI 1.14; 1.35 0.929

16. Plakht et al. (51) Right ventricular dysfunction HR 1.22; CI 1.1; 1.36 0.159

17. Plakht et al. (51) Moderate or severe tricuspid

regurgitation

HR 1.65; CI 1.29; 2.1 <0.001

18. Rolland et al. (17) Low handgrip strength HR 1.47; CI 1.18, 1.83 0.0006

TABLE 4 | Additional predictors of Morbidity.

No. References Predictor OR/HR; (95% CI) p

1. Buchman et al. (18) Slow walking speed for

MCI

HR 115; CI 0.93, 1.42 0.08

2. Buchman et al. (18) Slow walking speed for

Dementia

HR 1.62; CI 1.23, 2.14 0.0006

3. Jotheeswaran et al.

(10)

Slow walking speed IRR 1.28; CI 1.12, 1.47 0.003

4. Matsuzawa et al.

(44)

Reactive hyperemia

peripheral arterial

tonometry index

OR 0.51; CI 0.38, 0.66 <0.00001

5. Palmisano et al. (16) Decreased physical

activity

OR 5.56; CI 2.45, 12.64 <0.0001

6. Pinto et al. (50) BMI obesity OR 1.12; CI 0.76, 1.63 0.57

7. Ward et al. (57) ABI <0.90 OR 2.48; CI 1.22, 5.07 0.01

1.09; 1.24), moderate or severe mitral valve regurgitation (HR
1.47; CI 1.14; 1.9), pulmonary hypertension (HR 1.88; CI
1.48; 2.39), left atrial dilatation (HR 1.24; CI 1.14; 1.35) right
ventricular dysfunction (HR 1.22; CI 1.1; 1.36), moderate or
severe tricuspid regurgitation (HR 1.65; CI 1.29; 2.1), and low
handgrip strength (HR 1.47; CI 1.18, 1.83) were significantly
associated to mortality. Vital capacity (HR 0.07; CI 0.03,
0.19), high tapping rate (HR 0.04; CI 0.77, 0.91), and muscle
strength (HR 0.73; CI 0.58, 0.92), were significant predictors of
longer survival.

Current analysis represents a synthesis of the digitally
measurable predictors of mortality. The analysis indicates
that a variety of crucial health-related survival parameters,
such as hemodynamic, respiratory, kinetic measurements,
BMI and diabetes, can be measured and managed remotely.
Digital technologies such as blood pressure monitors, pulse
oximeters, and sensors for the measurement of heart
and respiratory rate, blood glucose meters for diabetes,
height-weight monitors for BMI, movement sensors,
accelerometers, pedometers for physical activity parameters,
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TABLE 5 | Predictors of hospitalization.

No. References Predictor type

(digitally measurable)

OR (95% CI) p

Hospital

admission

1. Joseph, (59) Upper-Extremity

Function-Frailty

OR 4.14; CI 1.63, 10.51 0.000

2. Radhakrishnan et al.

(52)

Pulmonary comorbidity OR 3.43; CI 1.12, 10.5 0.031

Arrhythmia comorbidity OR 0.60; CI 0.36, 1.0 0.051

Obesity OR 2.69; CI 1.0, 7.19 0.048

Hospital

readmission

1. Joseph, (59) Upper-Extremity

Function-Frailty

OR 2.12; CI 0.89, 5.16 0.045

2. Upper-Extremity

Function-Frailty

OR 2.37; CI 1.05, 5.33 0.019

3. Park et al. (48) Weakness OR 0.68; CI 0.42, 1.09 0.055

4. Pain OR 0.42; CI 0.21, 0.85 0.008

5. Palpitations OR 1.62; CI 0.6, 4.38 0.172

6. Fatigue OR 3.04; CI 1.15, 8.03 0.013

7. Fever OR 1.15; CI 0.14, 9.33 0.045

8. Weight gain OR 3.83; CI 1.30, 11.27 0.007

9. Difficulty breathing OR 1.58; CI 0.68, 3.64 0.144

10. van Vugt et al. (56) Increased BMI OR 0.91; CI 0.66, 1.26 0.291

11. Decreased BMI OR 0.95; CI 0.46, 1.97 0.441

12. Obesity OR 1.03; CI 0.68, 1.58 0.044

dynamometers for muscle strength, spirometers, and hand-held

echocardiogram can be efficiently incorporated in routine-care

of older people, since they are correlated with survival or
mortality, respectively.

Subgroup analyses comparing participants with
cardiovascular diseases to those with no cardiovascular
diagnoses were performed on three of the statistically significant
predictors of mortality. Subgroup analysis for diabetes (HR
1.69; CI 1.43, 2.00 for cardiovascular vs. HR 1.62; CI 0.95, 2.75
for other diagnoses) and decreased BMI (HR 1.24; CI 1.08,
1.42 for cardiovascular patients vs. HR 1.24; CI 0.96, 1.61 for
other diagnoses) indicated that diabetes and decreased BMI
are significant predictors of mortality only for cardiovascular
patients, whereas arrhythmias (HR 1.61; CI 1.35, 1.93 for
cardiovascular vs. HR 2.63; CI 1.46, 4.74 for other diagnoses)
did not differentiate across diagnoses regarding their association
with mortality.

We did not perform a subgroup analysis for slow
walking speed, not being physically active and LVEF<40
and since, in the first case none of the studies included
cardiovascular patients, and in the two last cases the
number of studies included was not sufficient for a
subgroup analysis.

Some of the previous analyses were based on a small number
of studies and the instability of these results should be considered.

The 95% Confidence Intervals of the included studies
are very narrow, and although estimates are close to each
other suggesting homogeneity, the I2 is relatively high (23,
24). Non-significant heterogeneity tests for Hypertension in
ORs (I2 = 59, p = 0.06) and systolic blood pressure (I2

= 92, p = 0.11) possibly occurred due to low power,
since the number of studies included in these analyses was
small (23).

Morbidity
Predictors of morbidity are depicted in Figure 3. Hypertension
(OR 1.32; CI 1.06, 1.64; 13 studies), and decreased BMI (OR 1.50;
CI 1.11, 2.01; 3 studies) were identified as significant predictors
of morbidity. Meta-analysis of outcomes reporting results for
arrhythmias (OR 1.44; CI 0.73, 2.84; 3 studies), LVEF < 45 (OR
1.04; CI 0.71, 1.52; 4 studies) and diastolic blood pressure (OR
1.45; CI 0.60, 3.47; 2 studies) did not provide any statistically
significant result, whereas results regarding diabetes (OR; CI 1.26
0.96, 1.65; 13 studies), slow walking speed (OR 1.57; CI 0.91, 2.68;
3 studies) increased BMI (OR 1.03; CI 0.89, 1.19; 5 studies) and
systolic blood pressure (OR 1.06; CI 0.97, 1.16; 3 studies) were
marginally insignificant.

Figure 3 also provides a visualization of the contribution of
each of the four balance parameters to morbidity, based on the
combined outcomes of two independent groups originating from
the same study (18). Results indicate that none of them was
associated to dementia and/or mild cognitive impairment or to
being healthy.

Other statistically important predictors of morbidity
identified only once through the literature search (Table 4), were
slow walking speed reported as HR for dementia (HR 1.62; 1.23,
2.14) and as incidence rate ratio IRR (IRR 1.28; 1.12, 1.47). Other
statistically important predictors of morbidity were decreased
physical activity (OR 5.56; CI 2.45, 12.64) and an abnormal ABI
<90 (OR 2.48; CI 1.22, 5.07).
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FIGURE 2 | Continued
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FIGURE 2 | Forest plots for predictors of Mortality.

Subgroup analysis indicated that hypertension was a
significant predictor of morbidity for cardiovascular patients,
compared to people with other diagnoses (OR 1.55; CI 1.19,
2.00 vs. OR 1.12; CI 0.88, 1.43), while diabetes was a significant
predictor of morbidity only for non-cardiovascular patients (OR
1.23; CI 0.95, 1.59; for cardiovascular vs. OR 1.57; CI 1.22, 2.00
for other diagnoses).

Heterogeneity was moderate for hypertension (I2 = 45, p =

0.006) and diabetes (I2 = 47, p = 0.004), and no heterogeneity
was evident for decreased BMI studies (I2 = 0 p = 0.006). The
small number of studies included in the remaining analyses,
could account for the non-significant heterogeneity values,
indicating limiting power for estimating the true effect (23).

Hospitalization
Two studies reported results about predictors of hospitalization,
three about predictors of hospital readmission and one study
provided a ratio for the Intensive Care Unit (ICU) admission.
Identified predictors of the included studies are presented in
Table 5. The odds for hospitalization were higher for people
with ground-level fall injuries diagnosed as frail compared to
those who were not diagnosed as frail (OR 4.14; CI 1.63, 10.51).
Obesity (OR 2.69; CI 1.0, 7.19) and pulmonary problems (OR

3.43; CI 1.12, 10.5) were significant predictors of hospitalization
for people with colorectal cancer. Frailty (OR 2.37; CI 1.05, 5.33)
was reported as a significant predictor of 60-day readmission
for people with fall injuries, while fatigue (OR 3.04; CI 1.15,
8.03) and weight gain (OR 3.83; CI 1.30, 11.27) were reported
as significant predictors of 30-day readmissions for people with
a history of hospitalization followed for 30 days after the last
hospital admission. Finally, supraventricular tachydysrhythmias
seem to be an important predictor of ICU admission (OR 18.9; CI
4.59, 77.87) for people that have undergone esophageal operation.
Although hospitalization outcomes did not provide us with an
adequate number of studies to proceed to an analysis with
multiple predictors, we succeeded however to find associations
between additional technologies and health management of older
people. These technologies include digital dynamometers for
the assessment of frailty and weakness in older people, sensors,
sensitive in identifying fatigue symptoms and, digital pressure
algometers and dolorimeters for the measurement of pain.

Limitations
This study presents several limitations mostly due to the high
heterogeneity of the study population. A first limitation is the
relatively small number of studies included in the synthesis
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FIGURE 3 | Forest plots: predictors of Morbidity.

given the large number of variables examined. Some of our
analyses were based on a small (<5) number of studies, which
is typically considered the minimal threshold for random-effects
meta-analyses to maintain to maintain statistical power. In
particular, the quantification of hospital admissions could not be
continued because the meta-analysis showed that too few studies
shed light on the topic of “hospitalizations” to quantify them
in a statistically significant way. Secondly, no review protocol
was published prior to the start of our analysis. Thirdly, we
included in the synthesis only studies written in one of the
languages spoken by the research team. This limitation had no
effect on the final synthesis as all retrieved studies were written in
English. Finally, some of the studies we analyzed appeared to be
subject to a risk of bias. To minimize this risk, we implemented
several bias assessments, especially a risk of bias and publication
bias assessment. The results indicate that most studies under
review (39) were assessed as being of high and moderate risk
of bias, while 10 studies were assessed as having a low risk of
bias. Publication bias assessment was conducted to assess small
study effects via funnel plot (61, 62). In case of publication
bias, the results of smaller studies are spread widely, due to
lower precision, and asymmetrically around the average estimate
compared to the results of larger studies. This asymmetry is
suggestive of missing studies. In the absence of publication
bias, individual study results are more evenly distributed around
the pooled estimate (23, 62, 63). However, caution should be
exercised when interpreting funnel plots especially when the
number of included studies is smaller than 10 (25). In our cases,
the funnel plots for diabetes related mortality and morbidity
(Figures 4, 5, respectively) are hard to interpret.

In spite of these limitations, our study provided a systematic
synthesis of digital measurements that can be predictive
of mortality, morbidity, and hospitalizations among older
adults. Our findings identify a number of digitally measurable
physiological parameters that can serve as proxies for the
worsening of an older person’s health. This is information
is critical to evaluate the current promises and challenges of
digital health technologies in the care and health promising

of older people, especially in the context of telemedicine
and assisted living. Furthermore, this information can inform
evidence-based decision making in the context of digital health
and gerontechnology.

DISCUSSION

Our results identified the following predictors of mortality:

diabetes, decreased BMI, arrhythmias, slower walking speed,
and insufficient physical activity. Hypertension, diabetes and

decreased BMI were also identified as significant predictors of
morbidity, while frailty, pulmonary comorbidity, obesity, pain,
fatigue, and fever were identified as significant predictors of

hospital admission or readmission. Overall, our results show
that personal digital health technologies that can adequately
measure the above parameters have the potential to improve
health outcomes for older people. This investigation is a
prerequisite for the design, development, and deployment of
personal digital health technologies that can effectively measure
the most informative parameters and thereby leverage that
information to enhance health outcomes within the older
population segment. Our analysis indicates that a variety of
health parameters, such as hemodynamic, respiratory, kinetic
parameters, BMI, and diabetes, which are potentially collectable
using personal digital technologies can be effectively used to
predict and improve the health outcomes of older people aged
65 or older. Further, digital technologies such as blood pressure
monitors, pulse oximeters and sensors for the measurement
of heart and respiratory rate, blood glucose meters for
diabetes, height-weight monitors for BMI, movement sensors,
accelerometers, pedometers for physical activity parameters,
dynamometers for muscle strength, spirometers and hand-held
echocardiogram can be efficiently incorporated in routine-care
of older people, since they are correlated with survival or
mortality, respectively. All the digitally measurable predictors
of morbidity pertained to parameters that can be managed
remotely using personal digital health technology. Our results
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FIGURE 4 | Publication bias for Mortality.

FIGURE 5 | Publication bias for Morbidity.

suggest that the incorporation of blood pressure monitors,
of blood glucose monitors, of digital height-weight monitors,
of movement sensors and stopwatches aiming to measure
physical activity and gait speed as well as the incorporation
of hand-held echocardiogram in routine care of older people
can efficiently contribute to health maintenance and to the
protection from adverse health conditions. Since the purpose
of the current research was to provide a synthesis of the
new technologies that can be used to measure risk factors of
morbidity, we did not distinguish morbid conditions regarding
their pathogenesis.

These results are consistent with previous studies that revealed
positive correlations between specific technologies and health
outcomes. For example, the use of remote digital arrhythmia
monitoring has been observed to have an impact on medical
care regarding hospitalization rates and effects on morbidity and
mortality (64, 65). The systematic and meta-analytic nature of
our study, however, allows contextualizing this evidence against a
broader technological and medical context, comparing different
data sources and thereby achieving more solid and generalizable
knowledge. Some of the associations revealed by our study may

appear prima facie counter-intuitive. One of them is the fact
that obesity is positively associated with survival (OR 0.70; CI
0.56, 0.87; 6 studies) in older adults. However, this so-called
“obesity paradox” appears to be well-known. Among others,
Abramowitz et al. (66). report that numerous studies over the
past two decades have shown a body-mass index (BMI) in the
normal range is associated with the lowest risk of death. Other
large cohort studies in various populations have reached different
conclusions, demonstrating a survival benefit for overweight or
even obesity, which has been interpreted by many as a causal
relationship (66). Although obesity has been associated with a
higher risk for cardiovascular and peripheral diseases and also
for different types of cancer, previous studies have found that, in
cases of acute decompensation or chronic hypertensive disease,
type 2 diabetes, chronic kidney disease, or metastatic cancer,
obese people in the older population segments tend to live
longer (67–69), suggesting that obesity-induced health outcomes
depend on variables such as age (68). Although for younger
patients obesity is a risk factor for a higher mortality, in older
patients it can become protective due to greater reserve for the
fight against a disease. In the elderly, recent studies indicate
that obesity is associated with a lower mortality risk (70, 71).
These findings could be possibly explained by the fact that
many previous studies were retrospective analyses which did not
examine obesity as primary outcome and did not control for
potential confounders that could influence the outcome, such
as the presence of specific chronic conditions (69, 72). Further,
current data are compatible with the view that not obesity but
BMI changes are the primary factor which requires continuous
monitoring in the old age as losing weight with age is generally
associated with worse outcomes. Nonetheless, the possibility of
this “obesity paradox” continues to be debated in the literature
and is of great public health importance, not least because
of the message communicated to the public (66). Another
counter-intuitive result is that hypertension does not appear
to be a significant predictor of mortality of people aged 65+.
However, the little effect of blood pressure values on mortality
risk is not surprising. As part of their treatment for stroke
and CHD, many of the individuals were under treatment with
agents to decrease triglyceride or lipid levels. It is possible that
inclusion of categorical diagnostic information for hypertension
and lipid treatment could have improved the prediction model.
Unfortunately, these data are not currently available to us.
However, we will note that hypertension exerts its deadly effects
through CHD and stroke, so it is possible that some if not most of
all the variance with respect to death are being captured by those
variables (49).

CONCLUSIONS

Our meta-analysis has systematically reviewed and compared
43 studies. Our results identified the following predictors of
mortality for people aged 65 years or older: diabetes, reduced
BMI, arrhythmias, slower walking speed, and insufficient physical
activity. Hypertension, diabetes and decreased BMI were also
identified as significant predictors of morbidity. Overall, our
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results show that digital health technologies that can adequately
measure the above parameters have the potential to improve
health outcomes for older people. This information is essential
to develop digital health technologies for older people that could
improve their overall health and well-being.
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