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Cardiovascular diseases continue to be a significant global health threat. The

electrocardiogram (ECG) signal is a physiological signal that plays a major role in

preventing severe and even fatal heart diseases. The purpose of this research is to

explore a simple mathematical feature transformation that could be applied to ECG signal

segments in order to improve the detection accuracy of heartbeats, which could facilitate

automated heart disease diagnosis. Six different mathematical transformation methods

were examined and analyzed using 10s-length ECG segments, which showed that

a reciprocal transformation results in consistently better classification performance for

normal vs. atrial fibrillation beats and normal vs. atrial premature beats, when compared

to untransformed features. The second best data transformation in terms of heartbeat

detection accuracy was the cubic transformation. Results showed that applying the

logarithmic transformation, which is considered the go-to data transformation, was not

optimal among the six data transformations. Using the optimal data transformation,

the reciprocal, can lead to a 35.6% accuracy improvement. According to the overall

comparison tested by different feature engineering methods, classifiers, and different

dataset sizes, performance improvement also reached 4.7%. Therefore, adding a simple

data transformation step, such as the reciprocal or cubic, to the extracted features can

improve current automated heartbeat classification in a timely manner.

Keywords: feature mapping, feature representation, feature transformation, feature conversion, feature

restructuring, data Wrangling

INTRODUCTION

Electrocardiographs (ECGs) have been a staple in medical practice for around a century. A
complete heartbeat process is initiated by the sinus node—consisting of the depolarization of
atriums and ventricles and the repolarization of the ventricles—inwhich atrial depolarization forms
a P wave, ventricular depolarization forms a QRS complex wave, and the repolarization of the
ventricles forms a T wave. Since its inception, ECGs have been used to diagnose physical heart
abnormalities (1). When beats conform to the basic structure of a QRS complex, they are called
normal beats; otherwise, they may be called arrhythmic. In an arrhythmic heartbeat—such as a
beat that occurs too fast, too slow, or is irregularly timed—the morphology of the ECG waves
changes accordingly.
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The accurate determination of beat types can assist in the
diagnosis of ECG signals. However, a more simplistic and
accurate way to distinguish the heartbeats is still an unmet need.
Past research has explored several ECG morphological features
and many complex classifiers for achieving higher classification
performance. Note that ECG morphological features (2),
including RR-interval features (3) and PT-interval features (4).
have been proposed, and some complex classification models,
such as artificial neural networks (5), extreme learning machines
(6), and deep neural networks (7) have been adopted. Although
these methods can achieve slight performance improvements,
the heavy computation (requiring off-line processing) limits
the application of these methods. Due to the development of
mobile medical technology, a greater need for robust lower
computational overhead is emerging.

The rapidly increasing accessibility of mobile devices and their
use in classifying different types of beats makes the investigation
of different potential patterns in ECG data especially important.
Any simple mathematical model can be incorporated in a mobile
app to provide preliminary diagnoses of heart-related problems;
this would offer patients awareness of a problem before receiving
a formal diagnosis from a physician. It could also be used to
promote timely self-treatment (e.g., electrolytic rebalance and
breathing techniques). Recently, in 2019, Oscar et al. noted
that the total number of smartphone users worldwide was
projected to surpass 2.5 billion. Furthermore, the United States
of America found that, as of 2017, ∼64% of its population uses
smartphones (8). Hence, the transformation method developed
in this study was aimed for use in the growing field of mobile
health. Therefore, this study focuses on whether it is possible to
devise a simple feature transformation method that can improve
the classification of different heartbeat events using multiple
feature calculations of ECG signals without the need for complex
algorithms that require high computational power to achieve
similar results.

MATERIALS AND METHODS

Hypotheses
To our knowledge, no study has investigated feature
transformations to classify different heartbeat events. The
main research question is: “What is the simplest mathematical
transformation that can improve classification performance
compared with the original features?”

Feature Engineering
ECG signals contain a wealth of heartbeat process information,
and high-quality, clear ECG signals can be used for the diagnosis
and evaluation of a variety of heart diseases. However, in some
cases, researchers can obtain only a small portion of the total
number of ECG features. For example, ECG signals can be
obtained from wearable ECG devices, but they are generally
of low quality and have high interference rates, thus making
it difficult to extract more accurate and effective information.
In this study, to reduce the effects of noise, an 8th order 0.5–
30Hz bandpass Butterworth filter was used for the raw ECG
signal (9). Meanwhile, the raw ECG signal without any filter

to process (unfiltered data) was also explored in this study in
order to compare the information with the filtered ECG data.
Feature engineering methods in time-series biomedical signals
are a common step in; for example, extraction of skewness,
kurtosis, entropy, signal-noise ratio, and so on, all of which
have been applied to ECG (10), photoplethysmogram (PPG)
(11) and electroencephalogram (EEG) (12) signals. In this study,
we adopted six feature-engineering methods to calculate ECG
features based on unfiltered and filtered ECG signals (13), such
as skewness (fS), kurtosis (fK), entropy (fE), the zero-crossing rate
(fZ), the signal-to-noise ratio (fN), and relative power (fR). The
formulas of these features are as follows:

1. Skewness (fS)

fS = 1/N

N
∑

n=1

[x[n]− µ̂x/σ ]
3 (1)

where µ̂x and σ are the empirical estimates of the mean and
standard deviation of x, respectively, and N is the number of
sampling points in unfiltered and filtered ECG signals.

2. Kurtosis (fK )

fS = 1/N

N
∑

n=1

[x[n]− µ̂x/σ ]
4 (2)

where µ̂x and σ are the empirical estimates of the mean and
standard deviation of x, respectively, and N is the number of
sampling points in unfiltered and filtered ECG signals.

3. Entropy (fE)

fE = −

N
∑

n=1

x[n]2 loge(x[n]
2) (3)

where x is the unfiltered and filtered ECG signal and N is the
number of sampling points.

4. Zero-crossing rate (fZ)

fZ = 1/N

N
∑

n=1

5{y < 0} (4)

where y is the filtered ECG signal of lengthN and5–the indicator
function 5{A}–is 1 if its argument A is true, and 0 otherwise.

5. Signal-to-noise ratio (fN )

fN = σ 2
signal/σ

2
noise (5)

where σsignal is the standard deviation of the absolute value of the
unfiltered and filtered ECG signal (y) and σnoise is the standard
deviation of the y signal.
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6. Relative power (fR)

Because most of the energy of the ECG signal is concentrated
within the 5–15Hz frequency band, the ratio of the power
spectral density (PSD) in this band to the PSD of the overall
1–40Hz signal provides a measure of fR:

fR =

15
∑

f=5

PSD/

40
∑

f=1

PSD (6)

where PSD is calculated using Welch’s method.

Feature Transformation
To improve features’ separability, a feature transformation is
applied to convert an original feature to a high dimensional
space. The original input features, obtained from the previous
subsection, are written as f. Feature transformation is a function
of the input attributes ϕ(f), defined as follows:

∅

(

f
)

=





















f
ln(f )
1
f

√

f

f 2

f 3

asin(f )





















(7)

where f is the tested feature. This study explores whether
the classification performance can be improved based only on
mathematical transformations, without the use of other external
features. We investigated six data transformations based on the
recommendations in (14, 15).

Database
The ECG dataset used in this study was obtained from the
MIT-BIH Arrhythmia Database (16, 17), which includes ECG
signals and corresponding annotated beat types. The database
is made up of 30-min ECG recordings from 48 patients. For
the consistency of feature calculations, we calculated the features
from the 10s-long ECG signal segments; each segment was part
of a separate heartbeat category. Some categories only had a
small sample size, so only normal beats (Norm), atrial fibrillation
(AF), atrial premature beats (APBs), and premature ventricular
contractions (PVCs) were included in this study, as they had
the largest sample sizes. Table 1 shows the statistics of the
heartbeat segments in the MIT-BIH Arrhythmia Database, in
which we can see that the number of samples in the different
categories varies greatly. Specifically, the number of Norms
(category 1) is four times larger than that of APBs (category 4)
and two times larger than that of AFs (category 2) and PVCs
(category 3). An unbalanced dataset can incorrectly represent
classification performance and, because a balanced dataset was
needed, a resampling technique was required. However, under-
sampling and oversampling have their own flaws (18), and in
order to reduce the impact of a resampling technique, two
different techniques were adopted to balance the data, namely
the random under-sampling technique (RUS) and the synthetic

TABLE 1 | The statistics of heartbeat segments in the MIT-BIH arrhythmia

database (10).

Index Heartbeat

type

Description Number of

segments

1 Norm Normal beat 283

2 AF Atrial fibrillation 135

3 PVC Premature ventricular contraction (PVC) 133

4 APB Atrial premature beat 66

Total (All) - 617

Note that the segment in this table means the 10 s length ECG segment.

minority oversampling technique (SMOTE) (19). For the RUS
process, the samples of category 1 (Norm) were resampled
randomly according to the numbers in category 2 (AF), category
3 (PVC), and category 4 (APB) to classify each other. For
the SMOTE process, categories 2, 3, and 4 were resampled
according to the number in category 1. The RUS and SMOTE
random samples were generated using MATLAB version R2019a
(The MathWorks, Inc., MA, USA). Finally, RUS-balanced and
SMOTE-balanced datasets were generated and used to classify
the different categories, as shown in Table 2.

Feature Evaluation
The original features were calculated first using six feature-
engineering methods and were named fS, fK , fE, fZ , fN ,
and fR. New features were then developed from different
dimensionalities based on these original features, including
logarithmic [ln(f )], reciprocal (1/f ), square-root (

√

f ), square
(f 2), cube (f3), and arcsine [asin(f )] calculations. To classify the
different ECG categories, these ECG features were extracted and
constructed based on the different feature-engineering methods
and mathematical transformations. The features were evaluated
by classifying the different heartbeat categories using multiple
linear and non-linear classifiers.

The dataset—and each category within the dataset—was
divided into a training set (70%) and a testing set (30%). In
the training set, 10-fold cross-validation was adopted to validate
the generalization ability of the trained classifier. In the testing
phase, the performance evaluation was based on the testing set by
the trained model. The F1 score was calculated as an evaluation
measure as follows:

F1 = 2 × Recall × Precision/(Recall + Precision) (8)

where precision = TP/(TP + FP) and recall = TP/(TP + FN).
Here, TP stands for true positives, FP stands for false positives,
and FN stands for false negatives.

In order to compare the change in the classification
performance, the difference measure (D-value) was adopted and
calculated as follows:

D value = F1transformed feature − F1original feature (9)

If D is positive (D > 0) then the transformed feature improved
the F1 accuracy, if D is zero, then transformed feature scored the
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TABLE 2 | The statistics of different categories in this study.

Trial number Heartbeat type Number of segments

(unbalanced dataset)

Number of segments

(RUS dataset)

Number of segments

(SMOTE dataset)

1 Norm vs. AF 283 vs. 135 135 vs. 135 283 vs. 283

2 Norm vs. PVC 283 vs. 133 133 vs. 133 283 vs. 283

3 Norm vs. APB 283 vs. 66 66 vs. 66 283 vs. 283

Norm, AF, PVC, and APB each represent normal beat, atrial fibrillation beat, Premature ventricular contraction, and Atrial premature beat. The unbalanced column shows that the

quantity of different categories varies greatly; the balanced column shows an approximately equal number of different categories after random sampling. RUS represented random

under-sampling and SMOTE represented Synthetic Minority Oversampling Technique.

same F1 score as the original feature, and if D is negative (D <

0), then the transformed feature scored less F1 score than the
original feature. Certainly, the main goal of this study is to find
the transformation method that is consistently achieve a D value
> 0, regardless of the feature extraction method, classifier, signal
quality, and sampling technique.

Classification
We used five linear and non-linear classifiers to evaluate
the different feature-engineering methods and mathematical
transformations. The classifiers were the k-nearest neighbor
(KNN), neural net (NN), support vector machine (SVM),
decision tree (TREE), and Naïve Bayes (NB). For the KNN
classifier, the number of neighbor points was set to 10. The NN
classifier was a feedforward neural network with an input layer,
a hidden layer with 10 neurons, and an output layer. The SVM
classifier with a quadratic kernel was used. For the TREE, the split
criterion of TREE was Gini’s diversity index (gdi); the maximal
number of decision splits was 100. For the Naïve Bayes classifer,
the kernel smoother type was the Gaussian kernel, and the
kernel smoothing density support was unbounded. In training
the model, 10-fold cross-validation was used, which protected
against overfitting by partitioning the dataset into multiple parts
and estimating the accuracy of each fold. Code written in
MATLAB was used to perform the feature evaluation and model
training. Figure 1 shows a work flowchart of this study.

Data Availability
The MIT-BIH Arrhythmia Database is publicly available and can
be downloaded from https://www.physionet.org/physiobank/
database/mitdb/.

RESULTS AND DISCUSSION

Each feature was used to classify different heartbeat categories,
and the F1 score for each of the feature classifications
was recorded and summarized in Appendix Table A. In
Appendix Tables A, A.1–A.3 showed the performance of three
classification trials (Norm vs. APB, Norm vs. AF, and Norm
vs. PVC) that were achieved based on the unbalanced dataset.
Tables A.4–A.6 showed the performance of three classification
trials that were achieved based on the RUS balanced dataset.
Tables A.7–A.9 showed the performance of three classification
trials that were achieved based on the SMOTE balanced dataset.
Each table in Appendix Table A contained the F1 score of

five classifiers that were achieved by unfiltered and filtered
ECG signals. The D-value in the table was calculated based
on the maximum F1 score of classifiers between the original
feature and the transformed features. For the original feature,
the D-value was always zero as the F1 score is subtracted
from itself, while the transformed feature had either a positive,
negative, or zero D value. A positive value meant that the
transformed feature improved the classification performance,
and a negative value meant that the transformed feature was
not helpful in classification. The first and last columns of
Appendix Table A are the D-values. The results show that not
all the mathematical transformations were consistently effective.
We set the original feature as the baseline of classification
with a D-value of zero. The D-value after the mathematical
transformations was either positive or negative. For example, the
D-value of fN had the most negative value, which showed that
the mathematical transformations for the signal-to-noise ratio
feature were not helpful.

When we analyzed Appendix Table A, we found some
interesting changes for filter processing, feature engineering,
feature transformations, and different classifiers. In Table A.2,
the F1 score of fS is only 40% by the KNN classifier. However,
the reciprocal of fS ( 1fS ) improves the F1 score to 75.6%. In
Table A.8, the F1 score of the same solution improved from 71.6
to 91.9%. From other tables, we also found a 10% improvement
of KNN after the reciprocal transformation of skewness. For filter
processing, the F1 score of KNN also had a big improvement. In
Table A.1, the F1 score of KNN for fZ , calculated by an unfiltered
ECG signal, was only 18.2%, which means that the solution can’t
work well at all. However, after the filtering process, the F1 score
of KNN reached 70%. In Table A.4, the F1 score of KNN for
fZ also improved from 46.5 to 73.7% after filtering. In addition,
when we see the F1 score difference in classifiers, we found
that KNN was not the best classifier, as it only shows a poor
result compared to other classifiers. However, when we adopted
some proper processing, such as filtering, transformation, and
resampling methods, the performance of KNN increased from
18.2 to 95.2%, which was higher than other classifiers found in
Tables A.1, A.4, A.7.

Actually, other feature engineering methods, except fZ , don’t
improve the performance of KNN. This tells us that the use of a
zero-crossing rate (fZ) and a KNN classifier should be concerned
with the noise of physiological signals, and a suitable filter should
be implemented first. It is an imperative that a solution regarding
the combining of optimal filter, feature engineering, feature
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FIGURE 1 | A work flowchart of this study.

transformation, and classifiers achieve better performance. In
addition, different feature engineering methods show different
characteristics. The reciprocal transformation of skewness ( 1fS )
significantly improves the F1 score. However, the reciprocal
transformation of other feature-engineering methods does not
show improvement at all, or only showsminor improvement. For
example, in Table A.2, the reciprocal transformation of skewness
improved the F1 score by 35.6% for the KNN classifier, and
improved the F1 score by more than 10% for other classifiers.
Tables A.1, A.4, A.5, A.7–A.9 also show similar changes.

We also analyzed cases of performance reduction. In
Table A.4, the D-value of (fK )

2 and the original fK was
−15.1%, which demonstrates that the square transformation
does not provide any help for the classification. From Table A.2,
ln(fZ) reduces the F1 score by 4.3%, and other transformed
features of fZ also had a negative D-value. As mentioned above
regarding fZ , the logarithm transformation of fZ wasn’t helpful
in improving the classification, which was not the best choice of
mathematical transformation.

For different classification issues, reciprocal transformation
did not improve the classification accuracy of all trials.
In Table A.9, the cube transformation made the highest
improvement for Norm vs. PVC classification by reaching
about 9.3%. Although the reciprocal transformation also made
an improvement, the improvement was only about 3.8%. In
Tables A.3, A.6, cube transformation was also superior to the
reciprocal transformation. According to this analysis, cube
transformation had an advantage in classifying Norm and PVC
compared with AF and APB.

As observed above, there was no one transformation to solve
all problems. Based on Appendix Table A, we summarize the
D-value as follows below:

A. D-value = 0 (No classification accuracy improvement)

The D-value being equal to zero means that applying feature
transformation can lead to no improvement. In fact, transformed
features can only provide the same result as the feature itself.
As can be seen in Table A.1, when the square root was applied
to the zero-crossing feature, the F1 score of fZ and

√

fZ
were the same result (89.8%); this was achieved by the Naïve
Bayes classifier. Feature transformation did not improve the
classification accuracy.

For the filtered process, similar results are shown in
Tables A.2, A.3, A.5, A.7; when fS was transformed to

√

fS,
the F1 score did not improve and the D-value was equal
to zero. For the unfiltered process, there were also similar
results, as shown in Tables A.1–A.3, A.6, A.7. The square
root did not improve the performance when compared to the
original feature.

B. D-value > 0 (Classification Improvement)

The D-value > 0 meant that the transformation improved
the classification performance when compared to the original
feature. We easily found the phenomenon in Table A.2 when
the fZ was transformed to 1

fS
, the F1 score improved from 80.8

to 89.9%. The D-value reached up to 9.1%. In Table A.4, the D-
value of (fN)

3 and fN reached up to 12.7% and 1
fS
obtained a 16%

D-value in Table A.5. In Table A.8, the same transformation of
1
fS

improved the F1 score from 71.6 to 91.9%, which obtained

a 20.3% D-value. More positive D-values can be found in
Tables A.2–9.

C. D-value < 0 (Negatively impact classification accuracy)

In Appendix Table A, it’s easy to find some negative D-values.
Negative D-values mean that the transformation is terrible and
is not helpful in classifying. It demonstrates that it is better not
to transform for an inappropriate transformation. In Table A.4,
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FIGURE 2 | Comparison of classification performance between unfiltered data and filtered data. Note that the reciprocal is the most consistently effective data

transformation.

(fK )
2 obtained a lower F1 score, from 68.1 to 52.9%, and the D-

value was −15.2%. Similarly, (fN)
3 decreased the F1 score from

74.2 to 65.9% in Table A.5, and its D-value was−8.3%.
The D-value clearly shows the change of different solutions.

This performance difference occurs due to the intercorrelation
between the classification, feature engineering methods, and
transformations. The optimal combination is valuable to explore
when the available methods are limited, such as in the application
with low computation and low battery.

Furthermore, to analyze the results clearly, an average
calculation for an overall analysis was conducted based on
the six feature engineering methods, and the averaged results
were plotted in Figure 2. Meanwhile, the corresponding D-
values between original and transformed features were shown
in Figure 3. From Figures 2, 3, we see that the filter improved
the performance for the unbalanced, RUS, and SMOTE.
Overall, the SMOTE achieved greater improvement than the

unbalanced and RUS balanced datasets. In addition, most of the
transformed features achieved a positive improvement compared
to the original feature. In Figure 2, the red box pointed out
the best transformation for each figure. According to the
statistics of F1 score, 1

f
and f 3 made greater improvements,

which were 4.7% (Norm vs. AF) and 3.3% (Norm vs.
PVC). Furthermore, 1

f
achieved the five best results, and

f 3 achieved the four best results. From these two sides, 1
f

was the most stable mathematical transformation. Figure 4

shows the average F1 score of the unbalanced, RUS, and
SMOTE datasets, which were a further overall calculation
based on Figure 2. And Figure 5 shows the corresponding
D-values between original and transformed features. The
performance of Norm vs. APB, Norm vs. AF, and Norm vs.
PVC were improved by 1.9, 2.6, and 1.8% by 1

f
, 1

f
, and

f 3, respectively.
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FIGURE 3 | D-value comparison between the original and transformed features. Note that the reciprocal is the most consistently effective data transformation.

FIGURE 4 | Overall impact of data transformations on classifying ECG heartbeats by averaging the unbalanced, RUS, and SMOTE results. Note that the reciprocal is

the most consistently effective data transformation.

Most of the previous research on this topic focused on the
RR interval and various other morphological features. Because
of the broad spectrum of varying heart diseases—as well as signal
noise—ECGwaveformmorphologies can vary greatly. One of the

most difficult issues in this field of study is the correct extraction
of ECG morphological features. Although some researchers have
achieved higher classification performances using methods based
on hundreds of ECG morphological features (20–23), ECG
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FIGURE 5 | Overall D-value changes after averaging the unbalanced, RUS, and SMOTE results. Note that the reciprocal is the most consistently effective data

transformation.

signals with high levels of noise andmanymorphological features
are usually incorrectly extracted (7, 24, 25), and this affects the
robustness and effectiveness of the morphological method used.
A simple feature extraction followed by optimal mathematical
transformation, as this paper proposes, could be a new way to
improve the detection of heart rate abnormalities.

A simple mathematical transformation, as discussed in this
study, would likely not use significant processing energy or
battery life and would be especially helpful in situations in which
time and mobile battery life are critical. In contrast, complex
calculations and classifiers, which take longer to run on even
high-performance computers, would likely be less useful, as
mobile devices are usually used for their simplicity and quickness,
both of which the algorithm in this study promotes. However,
mobile processing is evolving rapidly, so it may be possible to
incorporate more complex methods into mobile devices in the
near future. It is therefore important to continue improving
the accuracy and reproducibility of the transformed features so
they can compete with more complex methods while having the
advantage of speed and simplicity.

Our findings are significant as they show the impact
of mathematical transformations on extracted features
and the overall accuracy in detecting abnormal heartbeats.
Calculating the optimal feature (such as skewness in our
study) and the optimal mathematical feature transformation
is easily programmable into simple-to-use heart activity
detection devices, unlike their more complex counterparts.
As mentioned earlier, considering battery life, processing
power, and the urgent need for an algorithm that will
quickly classify heartbeats, whether for personal or
medical purposes, the reciprocal feature-engineering
method will perform as desired, especially considering the
stable improvement in classification performance of the
transformed feature.

It is also important to note that AF, PVC, and APB are some of
themost prevalent arrhythmic conditions, and this algorithmwill
definitely be useful in themedical and self-care industry.With the
development of digital health technology, wearable ECG devices
are proliferating rapidly. The reciprocal transformation method
used in this study is useful in this context for promoting the
real-time detection of heart activity by reducing complexity and
improving accuracy.

The findings of this study do not mean that we always have to
use reciprocal transformation to improve classification accuracy.
However, it shows the importance of feature transformation.
Meanwhile, it also has some disadvantages and limitations. First,
the sample size is small in this study, and more clinical data
is needed to explore these new findings. Our study focused on
ECG segments that are 10s in length, which only contain three
types of abnormal heartbeats. Future research will explore other
types of abnormalities. Second, the dataset is not balanced, which
required the use of methods to upsample and downsample the
dataset. Third, reciprocal transformation is applicable in solving
the AF and APB detection, but it is not helpful in recognizing
the PVC category. In other ways, the cube transformation is
more favorable in solving the PVC category recognition. It
is important to note that this is an interrelated optimization
problem. In addition, given the data we have, we found that the
reciprocal improves feature sensitivity and separability, which
is beneficial to the classification. However, only AF, APB, and
PVC were studied. More abnormal heartbeat events should be
explored and validated in future work. Meanwhile, for upcoming
studies, regardless of the application, we recommend testing
the reciprocal as a feature transformation step and examining
different classifiers for better classification results.

CONCLUSION

We tested the hypothesis that a simple mathematical
transformation can lead to better heartbeat classification,
which could improve studies that rely on transformed features
as biomarkers. Six mathematical transformations were evaluated
for heart activity classification performance, and we found
that some processing steps for original fZ made the F1 score
improve from 18.2 to 95.2%. Meanwhile, we also found that
reciprocal 1

f
improved the overall (tested over different feature

engineering methods and different dataset sizes) classification
accuracy to 4.7%. The main finding was that the application
of a reciprocal transformation to features extracted from the
ECG signals improved heartbeat classification consistently. The
proposed extra mathematical step is therefore useful for big data
analytics and can be easily incorporated into mobile and portable
health applications.
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